COCKFIELD AQUIFER SUMMARY, 2017

AQUIFER SAMPLING AND ASSESSMENT PROGRAM

APPENDIX 9 TO THE 2018 TRIENNIAL SUMMARY REPORT PARTIAL FUNDING PROVIDED BY THE CWA

Contents

BACKGROUND	4
GEOLOGY	4
HYDROGEOLOGY	4
PROGRAM PARAMETERS	5
INTERPRETATION OF DATA	6
Field and Conventional Parameters	6
Inorganic Parameters	7
Volatile Organic Compounds	7
Semi-Volatile Organic Compounds	7
Pesticides and PCBs	8
WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA	g
SUMMARY AND RECOMMENDATIONS	9
Table 9-1: List of Wells Sampled, Cockfield Aquifer–FY 2017	10
Table 9-2: Summary of Field and Conventional Data, Cockfield Aquifer-FY 2017	11
Table 9-3: Summary of Inorganic Data, Cockfield Aquifer-FY 2014	12
Table 9-4: FY 2017 Field and Conventional Statistics, ASSET Wells	13
Table 9-5: FY 2017 Inorganic Statistics, ASSET Wells	13
Table 9-6: Triennial Field and Conventional Statistics, ASSET Wells	14
Table 9-7: Triennial Inorganic Statistics, ASSET Wells	14
Table 9-8: Volatile Organic Compound List	15
Table 9-9: Semi-Volatile Organic Compound List	16
Table 9-10: Pesticides and PCB List	18
Figure 9-1: Location Plat, Cockfield Aquifer	19
Chart 9-1: Temperature Trend	20
Chart 9-2: pH Trend	20
Chart 9-3: Specific Conductance Trend	21
Chart 9-4: Salinity Trend	21
Chart 9-5: Chloride Trend	22
Chart 9-6: Total Dissolved Solids Trend	22
Chart 9-7: Alkalinity Trend	23
Chart 9-8: Hardness Trend	23

Chart 9-9: Sulfate Trend	24
Chart 9-10: Color Trend	24
Chart 9-11: Ammonia Trend	25
Chart 9-12: Nitrite - Nitrate Trend	26
Chart 9-13: Total Kjeldahl Nitrogen Trend	26
Chart 9-14: Total Phosphorus Trend	27
Chart 9-15: Barium Trend	27
Chart 9-16: Copper Trend	28
Chart 9-17: Iron Trend	28
Chart 9-18: Zinc Trend	29

BACKGROUND

The Louisiana Department of Environmental Quality's (LDEQ) Aquifer Sampling and Assessment Program (ASSET) is an ambient monitoring program established to determine and monitor the quality of groundwater produced from Louisiana's major freshwater aquifers. The ASSET Program samples approximately 200 water wells located in 14 aquifers across the state. The sampling process is designed so that all 14 aquifers are monitored on a rotating basis, within a three-year period so that each well is monitored every three years.

In order to better assess the water quality of a particular aquifer, an attempt is made to sample all ASSET Program wells producing from it in a narrow time frame. To more conveniently and economically promulgate those data collected, a summary report on each aquifer is prepared separately. Collectively, these aquifer summaries make up, in part, the ASSET Program's Triennial Summary Report.

Analytical and field data contained in this summary were collected from wells producing from the Cockfield aquifer, during the 2017 state fiscal year (July 1, 2016 - June 30, 2017), and in July 2017. This summary will become Appendix 9 of ASSET Program Triennial Summary Report for 2018.

These data show that beginning in November of 2016 and continuing through July of 2017, 13 wells were sampled which produce from the Cockfield aquifer. Nine of these 13 are classified as public supply, three are classified as domestic use, and one is classified as irrigation. The wells are located in 10 parishes in the northeast and north-central to western Louisiana.

Figure 9-1 shows the geographic locations of the Cockfield aquifer and the associated wells, whereas Table 9-1 lists the wells in the aquifer along with their total depths, use made of produced waters and date sampled.

Well data for registered water wells were obtained from the Louisiana Department of Natural Resource's Water Well Registration Data file.

GEOLOGY

The Cockfield aquifer is within the Eocene Cockfield formation of the Claiborne Group, which consists of sands, silts, clays, and some lignite. The aquifer units consist of fine sand with interbedded silt, clay, and lignite, becoming more massive and containing less silt and clay with depth. Beneath the Ouachita River, the Cockfield aquifer has been eroded by the ancestral Ouachita River and replaced by alluvial sands and gravels. The regional confining clays of the overlying Vicksburg and Jackson Groups confine the Cockfield.

HYDROGEOLOGY

In the Mississippi River valley, the Cockfield is overlain by and hydraulically connected to the alluvial aquifers. Recharge to the Cockfield aquifer occurs primarily by the direct infiltration of rainfall in interstream, upland outcrop-subcrop areas, the movement of water through the alluvial

and terrace deposits, and vertical leakage from the underlying Sparta aquifer. The Cockfield contains fresh water in north-central and northeast Louisiana in a narrowing diagonal band extending toward Sabine Parish. Saltwater ridges under the Red River valley and the eastern Ouachita River valley divide areas containing fresh water in the Cockfield aquifer. The hydraulic conductivity varies between 25 and 100 feet/day.

The maximum depths of occurrence of freshwater in the Cockfield range from 200 feet above sea level, to 2,150 feet below sea level. The range of thickness of the fresh water interval in the Cockfield is 50 to 600 feet. The depths of the Cockfield wells that were monitored in conjunction with the ASSET Program range from 80 to 445 feet.

PROGRAM PARAMETERS

The field parameters checked at each ASSET well sampling site and the list of conventional parameters analyzed in the laboratory are shown in Table 9-2. The inorganic (total metals) parameters analyzed in the laboratory are listed in Table 9-3. These tables also show the field and analytical results determined for each analyte. For quality control, duplicate samples were taken for each parameter at wells RI-127, RI-450; additionally, a duplicate metals sample was taken from well un-5332Z

In addition to the field, conventional, and inorganic analytical parameters, the target analyte list includes three other categories of compounds: volatiles, semi-volatiles, and pesticides/PCBs. Due to the large number of analytes in these categories, tables were not prepared showing the analytical results for these compounds. A discussion of any detections from any of these three categories, if necessary, can be found in their respective sections. Tables 9-8, 9-9 and 9-10 list the target analytes for volatiles, semi-volatiles and pesticides/PCBs, respectively.

Tables 9-4 and 9-5 provide a statistical overview of field and conventional data, and inorganic data for the Cockfield aquifer, listing the minimum, maximum, and average results for these parameters collected in the FY 2017 sampling. Tables 9-6 and 9-7 compare these same parameter averages to historical ASSET-derived data for the Cockfield aquifer, from fiscal years 1996, 1999, 2002, 2005, 2008, 2011, and 2014.

The average values listed in the above referenced tables are determined using all valid, reported results, including those reported as non-detect, or less than the detection limit (< DL). Per Departmental policy concerning statistical analysis (including contouring purposes), one-half the DL is used in place of zero when non-detects are encountered. However, the minimum value is reported < DL, not one-half the DL. If all values for a particular analyte are reported as < DL, then the minimum, maximum, and average values are all reported as < DL.

Due to the variability in the laboratory's reporting detection limits caused by dilution factors, whenever an analyte in question is not detected, the standard reporting detection limit value for each analytical method is used as the DL when performing statistical calculations.

Charts 9-1 through 9-18 represent the trend of the graphed parameter, based on the averaged value of that parameter for each three-year reporting period. Discussion of historical data and

related trends is found in the Water Quality Trends and Comparison to Historical ASSET Data section.

INTERPRETATION OF DATA

Under the Federal Safe Drinking Water Act, EPA has established primary standards, or maximum contaminant levels (MCLs), for pollutants that may pose a health risk in public drinking water. An MCL is the highest level of a contaminant that EPA allows in public drinking water. MCLs ensure that drinking water does not pose either a short-term or long-term health risk. While not all wells sampled were public supply wells, the ASSET Program does use the MCLs as a benchmark for further evaluation.

EPA has set secondary standards, which are defined as non-enforceable taste, odor, or appearance guidelines. Field and laboratory data contained in Tables 9-2 and 9-3 show that one or more secondary MCLs (SMCLs) were exceeded in nine of the 13 wells sampled in the Cockfield aquifer, with 14 SMCLs being exceeded.

Field and Conventional Parameters

Table 9-2 shows the field and conventional parameters for which samples are collected at each well and the analytical results for those parameters. Table 9-4 provides an overview of this data for the Cockfield aquifer, listing the minimum, maximum, and average results for these parameters.

<u>Federal Primary Drinking Water Standards:</u> A review of the analysis listed in Table 9-2 shows that no primary MCL was exceeded for field or conventional parameters for this reporting period. Those ASSET wells reporting turbidity levels greater than 1.0 NTU do not exceed the Primary MCL of 1.0, as this standard applies to public supply water wells that are under the direct influence of surface water. The Louisiana Department of Health has determined that no public water supply well in Louisiana is in this category.

<u>Federal Secondary Drinking Water Standards:</u> A review of the analysis listed in Table 9-2 shows that three wells exceeded the SMCL for pH, three wells exceeded the SMCL for color, and four wells exceeded the SMCL for total dissolved solids. Laboratory results override field results in exceedance determination, thus only laboratory results are counted in determining SMCL exceedance numbers for total dissolved solids. Following is a list of SMCL parameter exceedances with well number and results:

pH (SMCL = 6.5 – 8.5 Standard Units):

CA-35 5.94 SU NA-5449Z 8.85 SU W-198 8.53 SU

Color (SMCL = 15 color units (PCU)):

NA-5449Z 45 PCU SA-BYRD 30 PCU W-198 40 PCU

Total Dissolved Solids (SMCL = 500 mg/L or 0.5 g/L):

	LAB RESULTS (in mg/L)	FIELD MEASURES (in g/L)
RI-127	545 mg/L, Duplicate - 540 mg/L	0.578 g/L (Original and Duplicate)
SA-BYRD	765 mg/L	0.788 g/L
W-192	585 mg/L	0.590 g/L
WC-187	780 mg/L	0.898 g/L

Inorganic Parameters

Table 9-3 shows the inorganic (total metals) parameters for which samples are collected at each well and the analytical results for those parameters. Table 9-5 provides an overview of inorganic data for the Cockfield aquifer, listing the minimum, maximum, and average results for these parameters.

<u>Federal Primary Drinking Water Standards:</u> A review of the analyses listed on Table 9-3 shows that no primary MCL was exceeded for total metals.

<u>Federal Secondary Drinking Water Standards:</u> Laboratory data contained in Table 9-3 shows that four wells exceeded the secondary MCL for iron:

Iron (SMCL = 300 ug/L):

/	<u> </u>	
RI-450	2100 μg/L	Duplicate – 3510 μg/L
SA-BYRD	1630 μg/L	
UN-5332Z	2690 μg/L	Duplicate – 2620 μg/L
WC-187	639 µg/L	

Volatile Organic Compounds

Table 9-8 shows the volatile organic compound (VOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however, any detection of a VOC would be discussed in this section.

The domestic use well, NA-5449Z, reported detections of three VOCs at low levels. Methylene chloride, toluene, and trichloroethylene were detected at 3.7 μ g/L, 1.3 μ g/L, and 0.72 μ g/L, respectively. This well historically has had detections of VOCs at similar levels, which remain well below any drinking water limits established by the US EPA. As with the previous sampling, close attention will be given to this well in future ASSET operations. No other wells had confirmed detections of a VOC at or above its detection limit during the FY 2017 sampling of the Cockfield aquifer.

Semi-Volatile Organic Compounds

Table 9-9 shows the semi-volatile organic compound (SVOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however, any detection of a SVOC would be discussed in this section.

There were no confirmed detections of a SVOC at or above its detection limit during the FY 2017 sampling of the Cockfield aquifer.

Pesticides and PCBs

Table 9-10 shows the pesticide and PCB parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however, any detection of a pesticide or PCB would be discussed in this section.

There were no confirmed detections of a pesticide or PCB at or above its detection limit during the FY 2017 sampling of the Cockfield aquifer.

WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA

Analytical and field data show that the quality and characteristics of ground water produced from the Cockfield aquifer exhibit some changes when comparing current data to that of the seven previous sampling rotations. These comparisons can be found in Tables 9-6 and 9-7, and in Charts 9-1 to 9-18 of this summary. Increasing or decreasing trend statements made here are based on an R-square value (slope) of 0.03 or greater. An R-square value of less than 0.03 is considered to have only a slight or no change.

Over the 21-year period, nine analytes have shown a general increase in average concentration. These analytes are pH, specific conductance (field and lab), salinity, chloride, total dissolved solids (field and lab), alkalinity, hardness, total phosphorus, and barium. For this same period, the following seven analytes have demonstrated a decrease in average concentration: temperature, color, sulfate, ammonia, total Kjeldahl nitrogen, iron, and copper.

The current total number of secondary exceedances have decreased since the previous sampling event in FY 2014. Current sample results show that nine wells reported one or more secondary exceedances with 14 SMCL exceedances. The FY 2014 sampling of the Cockfield aguifer shows that nine wells reported one or more SMCL exceedances with 17 exceedances.

SUMMARY AND RECOMMENDATIONS

In summary, the data show that the ground water produced from this aquifer is moderately hard¹, but is of good quality when considering short or long-term health risk guidelines given that no primary MCL was exceeded. The data also show that this aquifer is of poor quality when considering taste, odor, or appearance guidelines, with 14 Secondary MCLs exceeded in nine of the 13 wells sampled.

Comparison to historical ASSET-derived data shows some change in the quality or characteristics of the Cockfield aquifer, with nine parameters showing consistent increases in concentration, seven parameters decreasing in concentration, while remaining parameters have shown no consistent change or have remained below detection levels over the 21-year period.

It is recommended that the wells assigned to the Cockfield aquifer be re-sampled as planned, in approximately three years, with close attention given to the occurrence of VOCs in domestic well NA-5332Z. In addition, several wells should be added to the 13 currently in place to increase the well density for this aquifer.

¹ Classification based on hardness scale from: Peavy, H. S. et al. Environmental Engineering. New York: McGraw-Hill, 1985.

Table 9-1: List of Wells Sampled, Cockfield Aquifer–FY 2017

Well ID	Parish	Date	Owner	Depth (Feet)	Well Use
CA-35	Caldwell	11/16/2016	City of Columbia	298	Public Supply
EC-233	East Carroll	1/24/2017	Town of Lake Providence	371	Public Supply
MO-479	Morehouse	11/16/2016	Bayou Bonne Idee Water System	258	Public Supply
NA-5449Z	Natchitoches	10/26/2016	Private Owner	170	Domestic
OU-FRITH	Ouachita	11/16/2016	Private Owner	80	Domestic
RI-127	Richland	1/24/2017	Delhi Water Works	416	Public Supply
RI-450	Richland	11/17/2016 6/6/2017	River Road Waterworks	283	Public Supply
SA-BYRD	Sabine	10/26/2016	Private Owner	150	Domestic
UN-5332Z	Union	11/16/2016 7/24/2017	Private Owner	160	Irrigation
W-192	Winn	10/26/2016	Red Hill Water System	210	Public Supply
W-198	Winn	10/26/2016	Atlanta Water System	445	Public Supply
WC-187	West Carroll	12/13/2016	New Carroll Water System	110	Public Supply
WC-487	West Carroll	1/24/2017	Town of Oak Grove	396	Public Supply

Table 9-2: Summary of Field and Conventional Data, Cockfield Aquifer–FY 2017

Well ID	pH SU	Sal ppt	Sp Cond mmhos/cm	Temp Deg C	TDS g/L	Alk mg/L	CI mg/L	Color PCU	Hard mg/L	Nitrite- Nitrate (as N) mg/L	NH3 mg/L	Tot P mg/L	Sp Cond µmhos/cm	SO4 mg/L	TDS mg/L	TKN mg/L	TSS mg/L	Turb NTU
	L	.aborat	ory Reporting	Limits \rightarrow		2	1	5	5	0.05	0.1	0.05	1	1	10	0.1	4	0.1
Field Parameters										Lab	oratory F	Parameters						
CA-35	5.94	0.19	0.400	11.33	0.260	79	25.1	5	118	< DL	0.19	0.29	380	61.3	310	0.14	15	30.5
EC-233	7.70	0.41	0.832	9.81	0.541	465	44.8	< DL	116	< DL	1.00	12.10	822	< DL	490	1.10	< DL	1.0
MO-479	6.91	0.36	0.735	11.56	0.478	302	42.4	5	322	< DL	0.36	0.08	671	10.1	415	0.32	6	27.1
NA-5449Z	8.85	0.43	0.859	12.33	0.559	334	22.9	45	8	< DL	0.48	0.90	411	68.3	495	0.72	< DL	0.7
OU-FRITH	7.57	0.26	0.538	10.42	0.350	291	3.8	< DL	44	< DL	0.46	< DL	515	< DL	320	0.54	< DL	0.4
RI-127	7.31	0.44	0.889	11.54	0.578	454	71.2	12	6	< DL	0.92	0.24	878	< DL	545	1.20	< DL	0.4
RI-127*	7.31	0.44	0.889	11.54	0.578	391	70.3	11	7	< DL	1.00	0.09	749	< DL	540	0.59	< DL	0.9
RI-450	7.30	0.24	0.500	11.66	0.325	258	8.1	< DL	206	< DL	0.23	0.09	466	< DL	310	0.27	< DL	6.0
RI-450**	7.11	0.24	0.495	17.26	0.321					CON	IVENTION	NI DARAME	TERS NOT RESAM	ADI ED				
RI-450***	7.11	0.24	0.495	17.26	0.321					CON	IVENTION	AL PARAIVIL	TERS NOT RESAM	VIFLED				
SA-BYRD	8.26	0.61	1.212	14.63	0.788	344	60.3	30	6	< DL	1.20	0.22	890	176.0	765	1.30	< DL	2.4
UN-5332Z	6.75	0.10	0.201	12.14	0.131	84	4.3	< DL	50	< DL	0.22	0.72	188	< DL	140	0.20	< DL	6.5
W-192	8.26	0.45	0.908	11.72	0.590	295	74.0	15	10	0.07	0.72	0.42	616	42.3	585	0.75	< DL	0.5
W-198	8.53	0.20	0.408	13.86	0.265	177	12.4	40	< DL	< DL	0.52	1.90	273	< DL	260	0.32	< DL	0.4
WC-187	7.21	0.70	1.381	9.41	0.898	304	237.0	< DL	438	0.14	0.15	0.11	1450	14.7	780	0.32	< DL	5.9
WC-487	7.44	0.38	0.779	10.70	0.506	454	45.0	7	258	< DL	0.50	< DL	757	< DL	445	1.10	< DL	1.5

^{*} Duplicate sample **Resample

Shaded cells exceed EPA Secondary Standards

^{***}Resample duplicate

Table 9-3: Summary of Inorganic Data, Cockfield Aquifer-FY 2014

Well ID	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L	Cadmium ug/L	Chromium ug/L	Copper ug/L	Iron ug/L	Lead ug/L	Mercury ug/L	Nickel ug/L	Selenium ug/L	Silver ug/L	Thallium ug/L	Zinc ug/L
Laboratory Reporting Limits	1	1	1	0.5	1	1	3	50	1	0.2	1	1	0.5	0.5	5
EC-233	< DL	< DL	256.0	< DL	< DL	1.1	< DL	60	< DL	< DL	< DL	< DL	< DL	< DL	37.6
NA-5449Z	< DL	< DL	11.4	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
RI-127	< DL	< DL	40.9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
RI-127*	< DL	< DL	41.6	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
RI-450	< DL	< DL	170.0	< DL	< DL	< DL	< DL	2100	2.9	< DL	< DL	< DL	< DL	< DL	< DL
RI-450*	< DL	< DL	220.0	< DL	< DL	< DL	< DL	3510	3.9	< DL	< DL	< DL	< DL	< DL	< DL
SA-BYRD	< DL	< DL	50.1	< DL	< DL	10.1	103.0	1630	1.1	< DL	1.8	< DL	< DL	< DL	72.8
UN-5332Z	< DL	< DL	130.0	< DL	< DL	< DL	< DL	2690	< DL	< DL	< DL	< DL	< DL	< DL	6.9
UN-5332Z*	< DL	< DL	130.0	< DL	< DL	< DL	< DL	2620	< DL	< DL	< DL	< DL	< DL	< DL	6.3
W-192	< DL	< DL	11.3	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
W-198	< DL	< DL	5.2	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
WC-187	< DL	5.4	216.0	< DL	< DL	< DL	< DL	639	< DL	< DL	< DL	1.9	< DL	< DL	< DL
WC-487	< DL	< DL	352.0	< DL	< DL	< DL	< DL	239	< DL	< DL	< DL	< DL	< DL	< DL	< DL

*Duplicate Sample

Exceeds EPA Secondary Standards.

Table 9-4: FY 2017 Field and Conventional Statistics, ASSET Wells

	PARAMETER	MINIMUM	MAXIMUM	AVERAGE
	pH (SU)	5.94	8.85	7.47
	Salinity (ppt)	0.10	0.70	0.36
ELD	Specific Conductance (mmhos/cm)	0.201	1.381	0.720
Ε	Temperature (°C)	9.41	17.26	12.32
	Total Dissolved Solids (g/L)	0.131	0.898	0.468
	Alkalinity (mg/L)	79	465	302
	Chloride (mg/L)	3.8	237.0	51.5
	Color (PCU)	< DL	45	13
	Hardness (mg/L)	< DL	438	114
\	Nitrite - Nitrate, as N (mg/L)	< DL	0.14	< DL
TORY	Ammonia, as N (mg/L)	0.15	1.20	0.57
RA.	Total Phosphorus (mg/L)	< DL	12.40	1.23
BORA	Specific Conductance (µmhos/cm)	188	1450	648
LA	Sulfate (mg/L)	< DL	176.0	26.9
	Total Dissolved Solids (mg/L)	140	780	457
	Total Kjeldahl Nitrogen (mg/L)	0.14	1.30	0.63
	Total Suspended Solids (mg/L)	< DL	15	< DL
	Turbidity (NTU)	0.4	30.5	6.0

Table 9-5: FY 2017 Inorganic Statistics, ASSET Wells

PARAMETER	MINIMUM	MAXIMUM	AVERAGE
Antimony (µg/L)	< DL	< DL	< DL
Arsenic (µg/L)	< DL	5.4	< DL
Barium (µg/L)	5.2	352.0	126
Beryllium (µg/L)	< DL	< DL	< DL
Cadmium (µg/L)	< DL	< DL	< DL
Chromium (µg/L)	< DL	10.1	1.3
Copper (µg/L)	< DL	103.0	9.3
Iron (μg/L)	< DL	3510	1047
Lead (µg/L)	< DL	3.9	< DL
Mercury (µg/L)	< DL	< DL	< DL
Nickel (μg/L)	< DL	1.8	< DL
Selenium (µg/L)	< DL	1.9	< DL
Silver (µg/L)	< DL	< DL	< DL
Thallium (µg/L)	< DL	< DL	< DL
Zinc (µg/L)	< DL	72.8	11.2

Table 9-6: Triennial Field and Conventional Statistics, ASSET Wells

		AVERAGE VALUES BY FISCAL YEAR									
PARAMETER -		FY 1996	FY 1999	FY 2002	FY 2005	FY 2008	FY 2011	FY 2014	FY 2017		
	pH (SU)	6.77	6.99	7.39	7.46	7.38	7.17	7.54	7.47		
Q	Salinity (ppt)	0.27	0.30	0.32	0.35	0.32	0.33	0.38	0.36		
ᆸ	Specific Conductance (mmhos/cm)	0.564	0.613	0.647	0.700	0.650	0.668	0.770	0.720		
H	Temperature (°C)	19.91	19.76	20.30	19.82	19.90	18.08	18.59	12.32		
	Total Dissolved Solids (g/L)	-		ı	0.460	0.430	0.430	0.498	0.468		
	Alkalinity (mg/L)	219	224	262	294	257	258	283	302		
	Chloride (mg/L)	35.9	52.0	42.2	52.5	48.6	41.3	58.9	51.5		
	Color (PCU)	38	12	12	11	15	16	17	13		
	Hardness (mg/L)	115	79	90	140	112	130	211	114		
*	Nitrite - Nitrate, as N (mg/L)	0.11	0.08	0.30	0.50	0.44	0.60	0.06	< DL		
TORY	Ammonia, as N (mg/L)	0.66	0.50	0.62	0.36	0.40	0.51	0.55	0.57		
RA	Total Phosphorus (mg/L)	0.32	0.59	0.30	0.30	0.38	0.36	0.34	1.23		
BO	Specific Conductance (µmhos/cm)	561	619	643	737	641	590	741	648		
LA	Sulfate (mg/L)	33.4	35.5	98.9	21.9	22.0	22.2	23.9	26.9		
	Total Dissolved Solids (mg/L)	320	430	396	438	402.	485	481	457		
	Total Kjeldahl Nitrogen (mg/L)	0.80	0.71	0.94	0.47	0.53	0.54	0.43	0.63		
	Total Suspended Solids (mg/L)	5	< DL	2	< DL						
	Turbidity (NTU)	7.1	9.7	4.7	5.4	3.9	6.3	3.7	6.0		

Table 9-7: Triennial Inorganic Statistics, ASSET Wells

2.2	AVERAGE VALUES BY FISCAL YEAR								
PARAMETER	FY 1996	FY 1999	FY 2002	FY 2005	FY 2008	FY 2011	FY 2014	FY 2017	
Antimony (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	
Arsenic (µg/L)	5.4	< DL	1.1	< DL					
Barium (µg/L)	121	124	141	162	112	144	145	126	
Beryllium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	
Cadmium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	
Chromium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	10.6	1.3	
Copper (µg/L)	39.6	5.9	11.8	8.3	5.1	4.0	10.9	9.3	
Iron (µg/L)	1,836	1,623	1,320	1,084	1,324	1,470	951	1047	
Lead (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	1.0	< DL	
Mercury (µg/L)	< DL	< DL	< DL	< DL	0.08	< DL	< DL	< DL	
Nickel (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	8.1	< DL	
Selenium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	
Silver (µg/L)	< DL	< DL	< DL	4.72	< DL	< DL	< DL	< DL	
Thallium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	
Zinc (µg/L)	117.5	34.1	30.7	< DL	25.6	93.8	141.7	11.2	

Table 9-8: Volatile Organic Compound List

VOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (µg/L)
1,1,1-TRICHLOROETHANE	624	0.50
1,1,2,2-TETRACHLOROETHANE	624	0.50
1,1,2-TRICHLOROETHANE	624	0.50
1,1-DICHLOROETHANE	624	0.50
1,1-DICHLOROETHENE	624	0.50
1,2-DICHLOROBENZENE	624	0.50
1,2-DICHLOROETHANE	624	0.50
1,2-DICHLOROPROPANE	624	0.50
1,3-DICHLOROBENZENE	624	0.50
1,4-DICHLOROBENZENE	624	0.50
BENZENE	624	0.50
BROMODICHLOROMETHANE	624	0.50
BROMOFORM	624	0.50
BROMOMETHANE	624	1.0
CARBON TETRACHLORIDE	624	0.50
CHLOROBENZENE	624	0.50
CHLOROETHANE	624	0.50
CHLOROFORM	624	0.50
CHLOROMETHANE	624	1.0
CIS-1,3-DICHLOROPROPENE	624	1.0
DIBROMOCHLOROMETHANE	624	0.50
ETHYL BENZENE	624	0.50
METHYLENE CHLORIDE	624	1.0
O-XYLENE (1,2-DIMETHYLBENZENE)	624	0.50
STYRENE	624	0.50
TERT-BUTYL METHYL ETHER	624	0.50
TETRACHLOROETHYLENE (PCE)	624	0.50
TOLUENE	624	0.50
TRANS-1,2-DICHLOROETHENE	624	0.50
TRANS-1,3-DICHLOROPROPENE	624	0.50
TRICHLOROETHYLENE (TCE)	624	0.50
TRICHLOROFLUOROMETHANE (FREON-11)	624	0.50
VINYL CHLORIDE	624	0.50
XYLENES, M & P	624	1.0

Table 9-9: Semi-Volatile Organic Compound List

SVOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (µg/L)
1,2,4-TRICHLOROBENZENE	625	5.0
2,4,6-TRICHLOROPHENOL	625	5.0
2,4-DICHLOROPHENOL	625	5.0
2,4-DIMETHYLPHENOL	625	5.0
2,4-DINITROPHENOL	625	20.0
2,4-DINITROTOLUENE	625	5.0
2,6-DINITROTOLUENE	625	5.0
2-CHLORONAPHTHALENE	625	5.0
2-CHLOROPHENOL	625	5.0
2-NITROPHENOL	625	5.0
3,3'-DICHLOROBENZIDINE	625	5.0
4,6-DINITRO-2-METHYLPHENOL	625	10.0
4-BROMOPHENYL PHENYL ETHER	625	5.0
4-CHLORO-3-METHYLPHENOL	625	5.0
4-CHLOROPHENYL PHENYL ETHER	625	5.0
4-NITROPHENOL	625	20.0
ACENAPHTHENE	625	0.20
ACENAPHTHYLENE	625	0.20
ANTHRACENE	625	0.20
BENZIDINE	625	20.0
BENZO(A)ANTHRACENE	625	0.20
BENZO(A)PYRENE	625	0.20
BENZO(B)FLUORANTHENE	625	0.20
BENZO(G,H,I)PERYLENE	625	0.20
BENZO(K)FLUORANTHENE	625	0.20
BENZYL BUTYL PHTHALATE	625	5.0
BIS(2-CHLOROETHOXY) METHANE	625	5.0
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	625	5.0
BIS(2-ETHYLHEXYL) PHTHALATE	625	5.0
CHRYSENE	625	0.20
DIBENZ(A,H)ANTHRACENE	625	0.20
DIETHYL PHTHALATE	625	5.0
DIMETHYL PHTHALATE	625	5.0
DI-N-BUTYL PHTHALATE	625	5.0
DI-N-OCTYLPHTHALATE	625	5.0
FLUORANTHENE	625	0.20
FLUORENE	625	0.20

SVOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (μg/L)
HEXACHLOROBENZENE	625	5.0
HEXACHLOROBUTADIENE	625	5.0
HEXACHLOROCYCLOPENTADIENE	625	10.0
HEXACHLOROETHANE	625	5.0
INDENO(1,2,3-C,D)PYRENE	625	0.20
ISOPHORONE	625	5.0
NAPHTHALENE	625	0.20
NITROBENZENE	625	5.0
N-NITROSODIMETHYLAMINE	625	5.0
N-NITROSODI-N-PROPYLAMINE	625	5.0
N-NITROSODIPHENYLAMINE	625	5.0
PENTACHLOROPHENOL	625	5.00
PHENANTHRENE	625	0.20
PHENOL	625	5.0
PYRENE	625	0.20

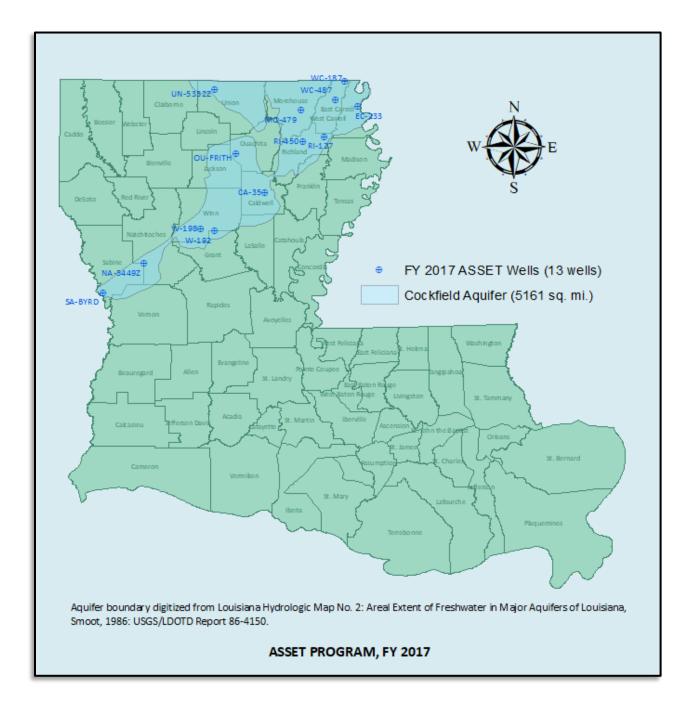


Table 9-10: Pesticides and PCB List

Pest/PCB Analytical Parameters	METHOD	REPORTING LIMIT (μg/L)
ALDRIN	608	0.025
ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	608	0.025
ALPHA ENDOSULFAN	608	0.025
ALPHA-CHLORDANE	608	0.025
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	608	0.025
BETA ENDOSULFAN	608	0.025
CHLORDANE	608	0.20
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	608	0.025
DIELDRIN	608	0.025
ENDOSULFAN SULFATE	608	0.025
ENDRIN	608	0.025
ENDRIN ALDEHYDE	608	0.025
ENDRIN KETONE	608	0.025
GAMMA-CHLORDANE	608	0.025
HEPTACHLOR	608	0.025
HEPTACHLOR EPOXIDE	608	0.025
METHOXYCHLOR	608	0.25
P,P'-DDD	608	0.025
P,P'-DDE	608	0.025
P,P'-DDT	608	0.025
PCB-1016 (AROCHLOR 1016)	608	0.80
PCB-1221 (AROCHLOR 1221)	608	0.80
PCB-1232 (AROCHLOR 1232)	608	0.80
PCB-1242 (AROCHLOR 1242)	608	0.80
PCB-1248 (AROCHLOR 1248)	608	0.80
PCB-1254 (AROCHLOR 1254)	608	0.80
PCB-1260 (AROCHLOR 1260)	608	0.80
TOXAPHENE	608	1.0

Figure 9-1: Location Plat, Cockfield Aquifer

Chart 9-1: Temperature Trend

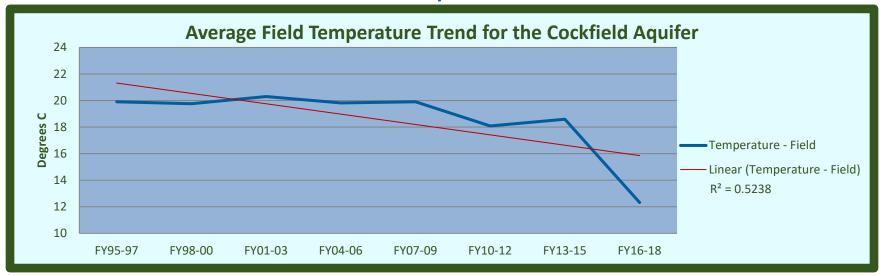


Chart 9-2: pH Trend

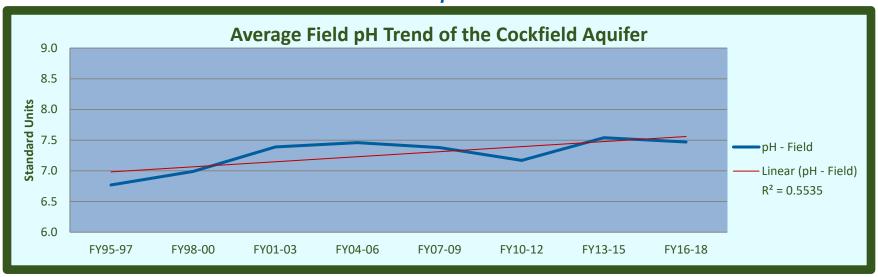


Chart 9-3: Specific Conductance Trend

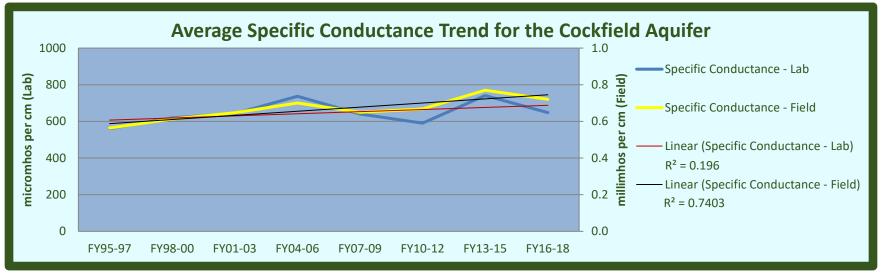


Chart 9-4: Salinity Trend

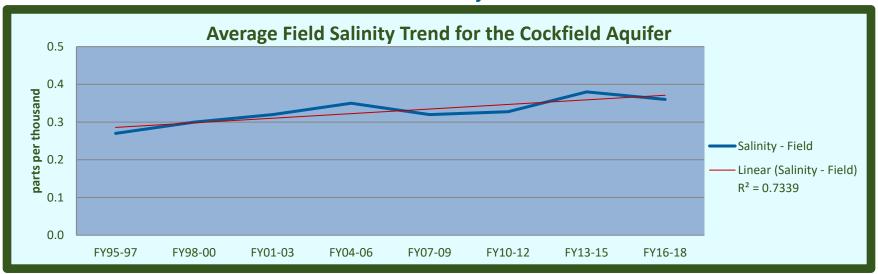


Chart 9-5: Chloride Trend

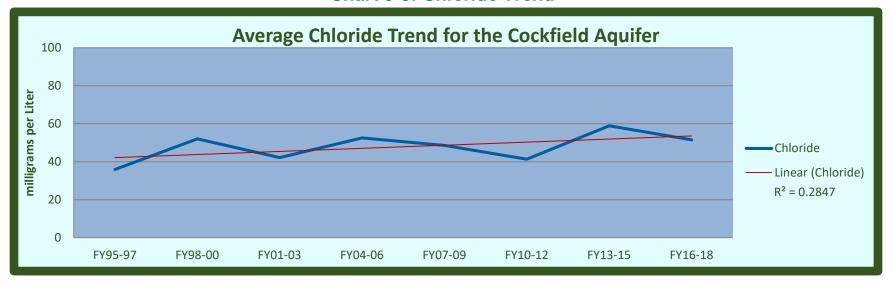
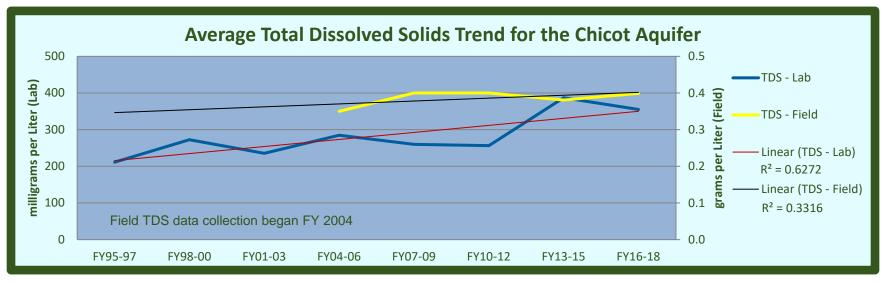



Chart 9-6: Total Dissolved Solids Trend

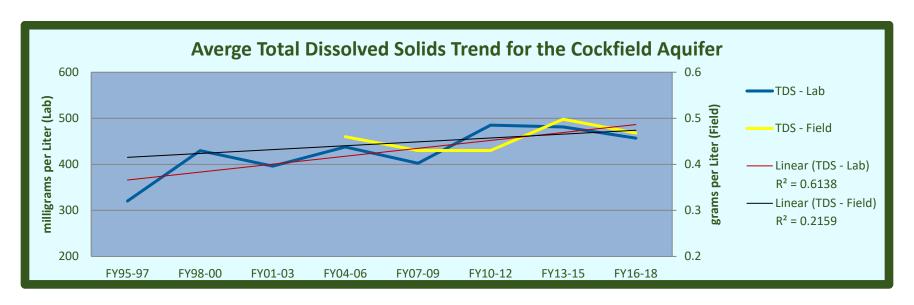


Chart 9-7: Alkalinity Trend

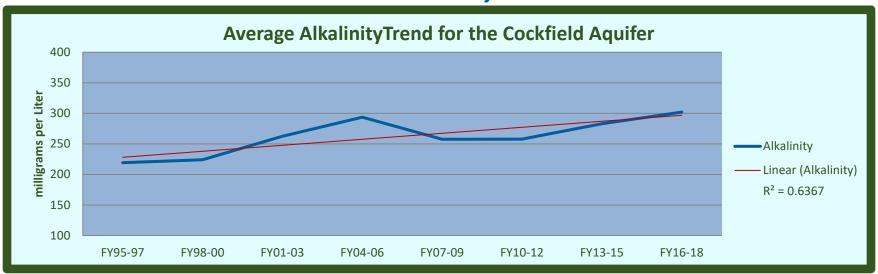


Chart 9-8: Hardness Trend

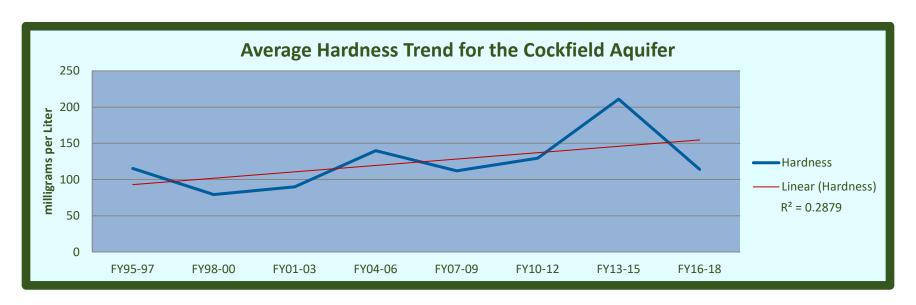


Chart 9-9: Sulfate Trend

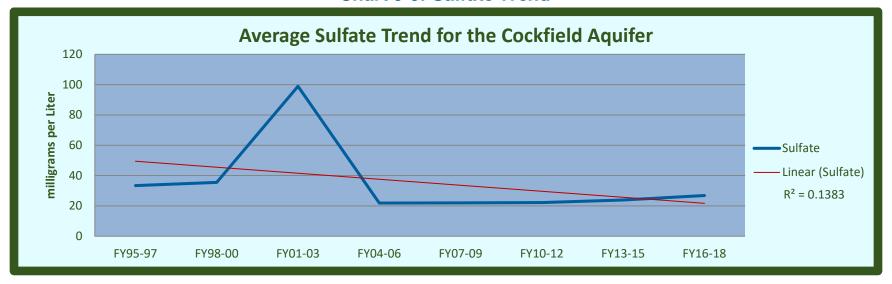


Chart 9-10: Color Trend

Chart 9-11: Ammonia Trend

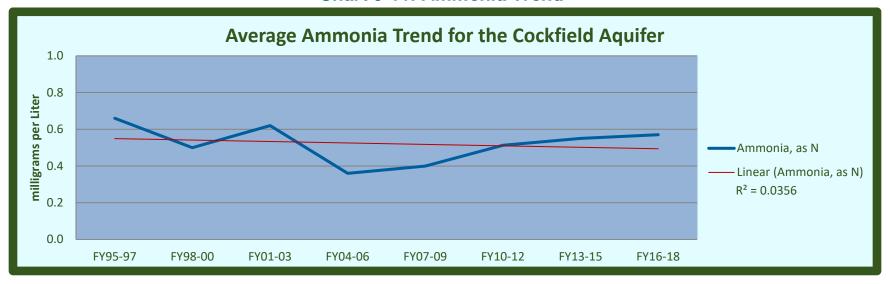


Chart 9-12: Nitrite - Nitrate Trend

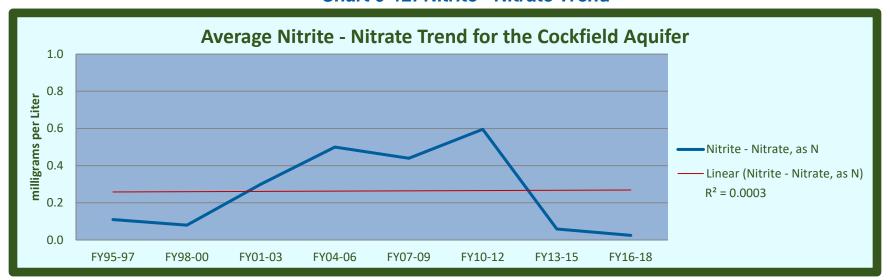


Chart 9-13: Total Kjeldahl Nitrogen Trend

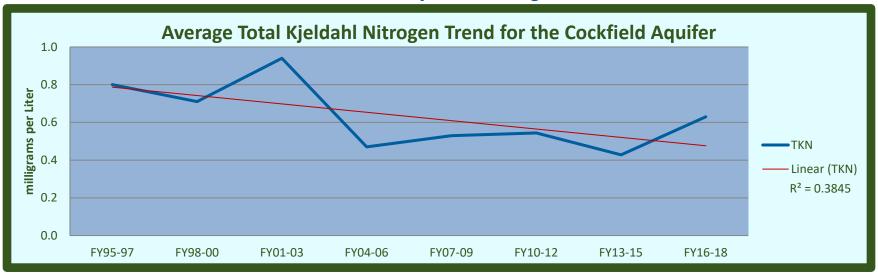


Chart 9-14: Total Phosphorus Trend

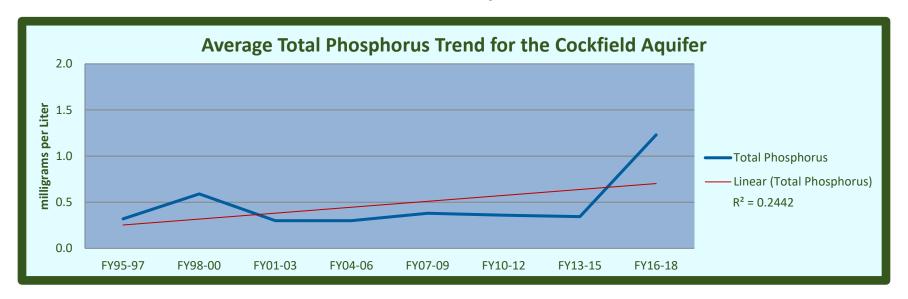


Chart 9-15: Barium Trend

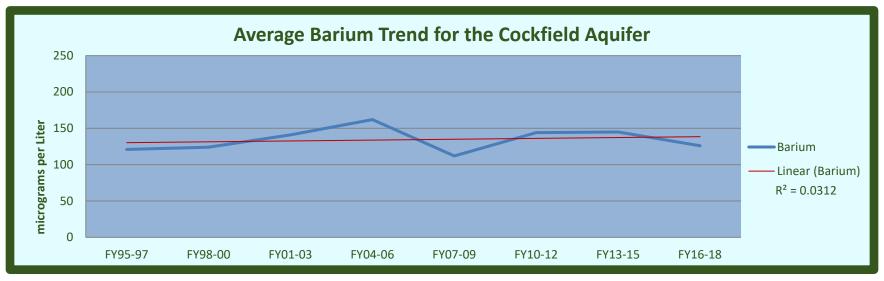


Chart 9-16: Copper Trend

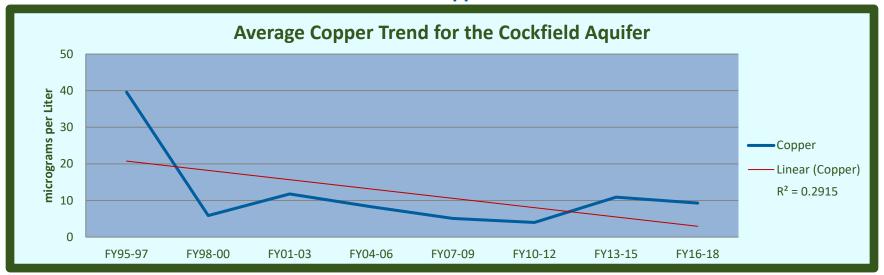


Chart 9-17: Iron Trend

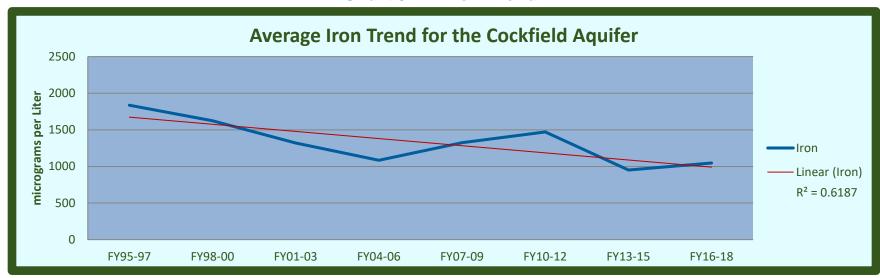
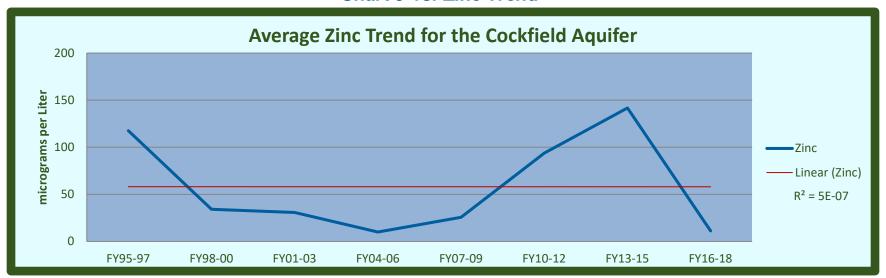



Chart 9-18: Zinc Trend

