NORTH LOUISIANA TERRACE AQUIFER SUMMARY, 2019 AQUIFER SAMPLING AND ASSESSMENT PROGRAM

APPENDIX 6 TO THE 2021 TRIENNIAL SUMMARY REPORT PARTIAL FUNDING PROVIDED BY THE CWA

Contents

BACKGROUND	4
GEOLOGY	4
HYDROGEOLOGY	5
PROGRAM PARAMETERS	5
INTERPRETATION OF DATA	6
Field and Conventional Parameters	6
Inorganic Parameters	7
Volatile Organic Compounds	7
Semi-Volatile Organic Compounds	7
Pesticides and PCBs	
WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA	8
SUMMARY AND RECOMMENDATIONS	8
Table 6-1: List of Wells Sampled, North Louisiana Terrace Aquifer–FY 2019	
Table 6-2: Summary of Field and Conventional Data, North Louisiana Terrace Aquifer–FY 201	
Table 6-3: Summary of Inorganic Data, North Louisiana Terrace Aquifer–FY 2019	
Table 6-4: FY 2019 Field and Conventional Statistics, ASSET Wells	
Table 6-5: FY 2019 Inorganic Statistics, ASSET Wells	12
Table 6-6: Triennial Field and Conventional Statistics, ASSET Wells	13
Table 6-7: Triennial Inorganic Statistics, ASSET Wells	13
Table 6-8: VOC Analytical Parameters	14
Table 6-9: SVOC Analytical Parameters	15
Table 6-10: Pesticides and PCBs	17
Figure 6-1: Location Plat, North Louisiana Terrace Aquifer	18
18	
Chart 6-1: Temperature Trend	19
Chart 6-2: pH Trend	20
Chart 6-3: Specific Conductance Trend	21
Chart 6-4: Field Salinity Trend	22
Chart 6-5: Chloride Trend	23
Chart 6-6: Alkalinity Trend	
Chart 6-7: Color Trend	
Chart 6-8: Sulfate Trend	26

Chart 6-9: Total Dissolved Solids Trend	27
Chart 6-10: Hardness Trend	28
Chart 6-11: Ammonia Trend	29
Chart 6-12: Nitrate – Nitrite Trend	30
Chart 6-13: Total Kjeldahl Nitrogen Trend	31
Chart 6-14: Total Phosphorus Trend	32
Chart 6-15: Barium Trend	33
Chart 6-16: Copper Trend	34
Chart 6-17: Iron Trend	35
Chart 6-18: Zinc Trend	36

BACKGROUND

The Louisiana Department of Environmental Quality's (LDEQ) Aquifer Sampling and Assessment Program (ASSET) is an ambient monitoring program established to determine and monitor the quality of groundwater produced from Louisiana's major freshwater aquifers. The ASSET Program samples approximately 200 water wells located in 14 aquifers across the state. The sampling process is designed so that all 14 aquifers are monitored on a rotating basis, within a three-year period so that each well is monitored every three years.

In order to better assess the water quality of a particular aquifer, an attempt is made to sample all ASSET Program wells producing from it in a narrow time frame. To more conveniently and economically promulgate those data collected, a summary report on each aquifer is prepared separately. Collectively, these aquifer summaries make up, in part, the ASSET Program's Triennial Summary Report.

Analytical and field data contained in this summary were collected from wells producing from the North Louisiana Terrace aquifer, during the 2019 state fiscal year (July 1, 2018 - June 30, 2019). This summary will become Appendix 6 of ASSET Program Triennial Summary Report for 2021.

These data show that nine wells were sampled which produce from the North Louisiana Terrace aquifer. Seven of these wells are classified as public supply, and two as domestic. The wells are located in five parishes in the central, northeast, and northwest areas of the state.

Figure 6-1 shows the geographic locations of the North Louisiana Terrace aquifer and the associated wells, whereas Table 6-1 lists the wells in the aquifer along with their total depths, use made of produced waters, and date sampled.

Well data for registered water wells were obtained from the Louisiana Department of Natural Resources water well registration data file.

GEOLOGY

The Pleistocene Terrace aquifers that make up the North Louisiana Terrace aquifer occur as blanket terrace deposits in central Louisiana and as erosional remnants of dissected terraces northward. The Prairie, intermediate, and high terraces typically consist of unconsolidated, fining upward sequences of gravel, sand, silt, and clay and are overlain by Holocene alluvium in the valleys of the larger streams. The older terraces generally have a coarser texture and the fine-grained top stratum is often eroded. The aquifer deposits are typically poorly to well sorted and consist of coarse sand and gravel in the lower parts grading to fine sand toward the top. The North Louisiana Terrace is unconfined in most areas, but may be confined by silt and clay locally.

HYDROGEOLOGY

Recharge is primarily from the direct infiltration of rainfall in interstream, upland outcrop areas and can be relatively rapid where the overlying silts and clays are thin or missing. Water in the terrace aquifers moves downgradient and laterally and is discharged into streams that have eroded valleys into the aquifer units. Water levels typically reflect variations in precipitation and seasonal withdrawals by wells. The hydraulic conductivity of the North Louisiana Terrace varies between 150 and 270 feet/day.

The maximum depths of occurrence of freshwater in the North Louisiana Terrace range from 100 feet above sea level, to 100 feet below sea level. The range of thickness of the fresh water interval in the North Louisiana Terrace is 50 to 150 feet. The depths of the North Louisiana Terrace wells that were monitored in conjunction with the ASSET Program range from 85 to 154 feet.

PROGRAM PARAMETERS

The field parameters checked at each ASSET well sampling site and the list of conventional parameters analyzed in the laboratory are shown in Table 6-2. The inorganic parameters analyzed in the laboratory are listed in Table 6-3. These tables also show the field and analytical results determined for each analyte. For quality control, a duplicate sample was taken for each parameter at well RR-254.

In addition to the field, conventional, and inorganic analytical parameters, the target analyte list includes three other categories of compounds: volatiles, semi-volatiles, and pesticides/PCBs. Due to the large number of analytes in these categories, tables were not prepared showing the analytical results for these compounds. A discussion of any detections from any of these three categories, if necessary, can be found in their respective sections. Tables 6-8, 6-9 and 6-10 list the target analytes for volatiles, semi-volatiles and pesticides/PCBs, respectively.

Tables 6-4 and 6-5 provide a statistical overview of field and conventional data, and inorganic data for the North Louisiana Terrace aquifer, listing the minimum, maximum, and average results for these parameters. Tables 6-6 and 6-7 compare these same parameter averages to historical ASSET-derived data for the North Louisiana Terrace aquifer, from previous fiscal years.

The average values listed in the above referenced tables are determined using all valid, reported results, including those reported as non-detect, or less than the detection limit (< DL). The average values listed in the above referenced tables are determined using all valid, reported results, including those reported as non-detect, or less than the detection limit (< DL). The method used to generate the descriptive statistics varies, depending on the dataset and the proportion of values that are <DL. When estimating a dataset with more than 50 observations, the Maximum Likelihood Estimation (MLE) method is used. This is used to describe Upper and Lower confidence intervals or historical descriptive statistics. For datasets of less than 50 observations, the Kapan-Meier method is used. This is used to calculate descriptive statistics of

a single sampling round. If all values for a particular analyte are reported as < DL, then the minimum, maximum, and average values are all reported as < DL.

Charts 6-1 through 6-18 represent the trend of the graphed parameter, based on the averaged value of that parameter for each three-year reporting period. Discussion of historical data and related trends is found in the **Water Quality Trends and Comparison to Historical ASSET Data** section.

INTERPRETATION OF DATA

Under the Federal Safe Drinking Water Act, EPA has established maximum contaminant levels (MCLs) for pollutants that may pose a health risk in public drinking water. An MCL is the highest level of a contaminant that EPA allows in public drinking water. MCLs ensure that drinking water does not pose either a short-term or long-term health risk. While not all wells sampled were public supply wells, the ASSET Program does use the MCLs as a benchmark for further evaluation.

EPA has set secondary standards, which are defined as non-enforceable taste, odor, or appearance guidelines. Field and laboratory data contained in Tables 6-2 and 6-3 show that one or more secondary MCL (SMCL) was exceeded in six of the nine wells sampled in the North Louisiana Terrace aquifer, with a total of eight SMCLs exceeded.

Field and Conventional Parameters

Table 6-2 shows the field and conventional parameters for which samples are collected at each well and the analytical results for those parameters. Table 6-4 provides an overview of this data for the North Louisiana Terrace aquifer, listing the minimum, maximum, and average results for these parameters.

<u>Federal Primary Drinking Water Standards:</u> A review of the analysis listed in Table 6-2 shows that no primary MCL was exceeded for field or conventional parameters for this reporting period. Those ASSET wells reporting turbidity levels greater than 1.0 NTU do not exceed the Primary MCL of 1.0, as this standard applies to public supply water wells that are under the direct influence of surface water. The Louisiana Department of Health has determined that no public water supply well in Louisiana was in this category.

<u>Federal Secondary Drinking Water Standards:</u> A review of the analysis listed in Table 6-2 shows that two wells exceeded the SMCL for pH and one well exceeded the SMCL for chloride. Laboratory results override field results in exceedance determinations, thus only lab results will be counted in determining SMCL exceedance numbers for total dissolved solids. Following is a list of SMCL parameter exceedances with well number and results:

pH (SMCL = 6.5 – 8.5 Standard Units):

MO-124 6.08 SU

RR-254 6.30 SU (Duplicate = 6.30 SU)

Chloride (SMCL = 250 mg/L):

Mo-364 335 mg/L

Inorganic Parameters

Table 6-3 shows the inorganic parameters for which samples are collected at each well and the analytical results for those parameters. Table 6-5 provides an overview of inorganic data for the North Louisiana Terrace aquifer, listing the minimum, maximum, and average results for these parameters.

<u>Federal Primary Drinking Water Standards:</u> A review of the analyses listed in Table 6-3 shows that no primary MCL was exceeded for inorganics.

<u>Federal Secondary Drinking Water Standards:</u> Laboratory data contained in Table 6-3 shows that five wells exceeded the secondary MCL for iron:

Iron (SMCL = $300 \mu g/L$):

BO-578	738 µg/L
BO-7896Z	1430 µg/L
MO-124	8520 µg/L
MO-364	567 µg/L
OU-5524Z	355 µg/L

Volatile Organic Compounds

Table 6-8 shows the volatile organic compound (VOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however detections of VOCs are discussed in this section.

No VOC was detected at or above its detection limit during the FY 2019 sampling of the North Louisiana Terrace aguifer.

Semi-Volatile Organic Compounds

Table 6-9 shows the semi-volatile organic compound (SVOC) parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however any detection of a SVOC would be discussed in this section.

No SVOC was detected at or above its detection limit during the FY 2019 sampling of the North Louisiana Terrace aguifer.

Pesticides and PCBs

Table 6-10 shows the pesticide and PCB parameters for which samples are collected at each well. Due to the number of analytes in this category, analytical results are not tabulated; however any detection of a pesticide or PCB would be discussed in this section.

No pesticide or PCB was detected at or above its detection limit during the FY 2019 sampling of the North Louisiana Terrace aquifer.

WATER QUALITY TRENDS AND COMPARISON TO HISTORICAL ASSET DATA

Analytical and field data show that the quality and characteristics of groundwater produced from the North Louisiana Terrace aquifer exhibit some changes when comparing current data to that of the seven previous sampling. These comparisons can be found in Tables 6-6 and 6-7, and in Charts 6-1 to 6-18 of this summary. Increasing or decreasing trend statements made here are based on an R-square value of 0.03 or greater and a p-value of < 0.05.

Over the 24 year period specific conductivity exhibits an upward trend. Three analytes have exhibited a downward trend. These analytes are temperature, color, and ammonia.

Current sample results show that six wells reported one or more SMCL exceedances with a total of eight exceedances. Historical data show that in the FY 2016 sampling of the North Louisiana Terrace aquifer, there were seven wells with one or more SMCL exceedances for a total of 11 SMCL exceedances.

SUMMARY AND RECOMMENDATIONS

In summary, the data show that the groundwater produced from this aquifer is moderately hard and is of good quality when considering short-term or long-term health risk guidelines. Laboratory data show that no ASSET well that was sampled during the Fiscal Year 2019 monitoring of the North Louisiana Terrace aquifer exceeded an MCL. The data also show that this aquifer is of fair to good quality when considering taste, odor or appearance guidelines, with eight SMCLs exceeded in six wells.

Comparison to historical ASSET-derived data shows some change in the quality or characteristics of the North Louisiana Terrace aquifer, with one parameter showing consistent increasing trend in average concentration, three parameters decreasing in average concentration, while remaining parameters show no consistent change or remained below detection limits.

It is recommended that the wells assigned to the North Louisiana Terrace aquifer be resampled as planned, in approximately three years. In addition, several wells should be added to the nine currently in place to increase the well density for this aquifer.

¹ Classification based on hardness scale from: Peavy, H. S. et al. *Environmental Engineering*. New York: McGraw-Hill. 1985.

Table 6-1: List of Wells Sampled, North Louisiana Terrace Aquifer–FY 2019

Well ID	Parish	Date	Owner	Depth (Feet)	Well Use
BI-52	Bossier	5/9/2019	Town of Ringgold	112	Public Supply
BO-434	Bossier	5/20/2019	Red Chute Utilities	94	Public Supply
BO-578	Bossier	5/20/2019	Village Water System	85	Public Supply
BO-7896Z	Bossier	5/21/2019	Private Owner	96	Domestic
LS-264	La Salle	1/24/2019	City of Jena	105	Public Supply
MO-124	Morehouse	10/31/2018	Texas Gas	133	Public Supply
MO-364	Morehouse	10/31/2018	People Water Service	154	Public Supply
OU-5524Z	Ouachita	10/31/2018	Private Owner	95	Domestic
RR-254	Red River	5/9/2019	East Cross Water System	93	Public Supply

Table 6-2: Summary of Field and Conventional Data, North Louisiana Terrace Aquifer–FY 2019

Well ID	pH SU	Sal ppt	Sp Cond mmhos/cm	Temp Deg C	TDS g/L	Alk mg/L	CI mg/L	Color PCU	Hard mg/L	Nitrite- Nitrate (as N) mg/L	NH3 mg/L	Tot P mg/L	Sp Cond µmhos/cm	SO4 mg/L	TDS mg/L	TKN mg/L	TSS mg/L	Turb NTU
	L	_aborat	ory Reporting	Limits \rightarrow		2	1	5	5	0.05	0.1	0.05	1	1	10	0.1	4	0.1
		F	ield Paramet	ers							Lab	oratory F	Parameters					
BI-52	8.32	0.17	0.36	17.85	0.24	169	6.90	10	50	< DL	0.92	NA	348	1.50	190	0.82	< DL	0.20
BO-434	6.67	0.11	0.23	15.55	0.15	95	14.50	7	78	0.55	< DL	0.44	237	4.60	105	0.54	< DL	0.11
BO-578	7.57	0.20	0.41	16.38	0.27	211	28.60	13	116	< DL	0.33	0.31	429	< DL	185	0.76	< DL	2.30
BO-7896Z	7.48	0.32	0.65	15.97	0.43	285	40.70	< DL	280	< DL	0.22	0.29	713	11.80	285	0.50	4	11.60
LS-264	NA	NA	NA	NA	NA	72	10.50	< DL	26	0.64	< DL	0.71	206	6.60	185	< DL	< DL	0.32
MO-124	6.08	0.16	0.33	18.33	0.21	105	38.50	< DL	146	0.98	< DL	0.46	308	< DL	300	0.20	20	29.20
MO-364	7.19	0.83	1.64	17.85	1.07	270	335	< DL	220	< DL	< DL	0.70	1550	38.90	140	0.11	< DL	4.60
OU-5524Z	6.78	0.06	0.14	16.18	0.09	30	19.30	< DL	26	0.12	< DL	0.12	127	2.60	105	< DL	< DL	1.50
RR-254	6.30	0.10	0.21	17.06	0.14	69	59.40	5	30	0.52	0.10	NA	346	11.50	220	0.17	< DL	0.20
RR-254*	6.30	0.10	0.21	17.06	0.14	75	71.60	6	32	0.48	0.14	NA	309	5.10	150	0.10	< DL	0.20

^{*}Denotes Duplicate Sample

NA - Not Analyzed

Shaded cells exceed EPA Secondary Standards

Table 6-3: Summary of Inorganic Data, North Louisiana Terrace Aquifer–FY 2019

Well ID	Antimony ug/L	Arsenic ug/L	Barium ug/L	Beryllium ug/L	Cadmium ug/L	Chromium ug/L	Copper ug/L	Iron ug/L	Lead ug/L	Mercury ug/L	Nickel ug/L	Selenium ug/L	Silver ug/L	Thallium ug/L	Zinc ug/L
Laboratory Reporting Limits	1	1	1	0.5	1	1	3	50	1	0.2	1	1	0.5	0.5	5
BI-52	< DL	< DL	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
BO-434	< DL	1.30	76	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL
BO-578	< DL	< DL	261	< DL	< DL	< DL	< DL	738	< DL	< DL	< DL	< DL	< DL	< DL	< DL
BO-7896Z	< DL	2.50	451	< DL	< DL	< DL	< DL	1430	< DL	< DL	< DL	< DL	< DL	< DL	< DL
LS-264	< DL	1.00	26	< DL	< DL	1.30	3.90	< DL	< DL	< DL	1.10	< DL	< DL	< DL	9.10
MO-124	< DL	2.10	197	< DL	< DL	2.20	57.20	8520	4	< DL	< DL	< DL	< DL	< DL	11.70
MO-364	< DL	< DL	625	< DL	< DL	1.30	5.50	567	< DL	< DL	7.00	< DL	< DL	< DL	17.80
OU-5524Z	< DL	< DL	52	< DL	< DL	< DL	36.30	355	< DL	< DL	1.10	< DL	< DL	< DL	10.80
RR-254	< DL	< DL	46	< DL	< DL	< DL	16.60	151	< DL	< DL	1.40	< DL	< DL	< DL	18.60
RR-254*	< DL	< DL	45	< DL	< DL	< DL	14.90	154	< DL	< DL	1.40	< DL	< DL	< DL	15.30

^{*}Denotes Duplicate Sample

NA – Not Analyzed

Shaded cell exceed EPA Secondary Standards

Table 6-4: FY 2019 Field and Conventional Statistics, ASSET Wells

	PARAMETER	MINIMUM	MAXIMUM	AVERAGE
	pH (SU)	6.08	8.32	6.97
Q	Salinity (ppt)	0.06	0.83	0.23
ᇜ	Specific Conductance (mmhos/cm)	0.14	1.64	0.47
Ē	Temperature (°C)	15.55	18.33	16.91
	Total Dissolved Solids (g/L)	0.14	1.07	0.30
	Alkalinity (mg/L)	30.20	270.00	138.12
	Chloride (mg/L)	6.90	335.00	62.50
	Color (PCU)	< DL	13	6.60
	Hardness (mg/L)	26.00	280.00	100.40
RY	Nitrite - Nitrate, as N (mg/L)	< DL	0.98	0.35
TOF	Ammonia, as N (mg/L)	< DL	0.92	0.22
RA	Total Phosphorus (mg/L)	0.12	0.71	0.43
BO	Specific Conductance (µmhos/cm)	127.00	1550.00	469.44
LA	Sulfate (mg/L)	< DL	38.90	8.46
	Total Dissolved Solids (mg/L)	105.00	300.00	186.11
	Total Kjeldahl Nitrogen (mg/L)	< DL	0.82	0.34
	Total Suspended Solids (mg/L)	< DL	20.00	< DL
	Turbidity (NTU)	0.20	29.20	5.02

Table 6-5: FY 2019 Inorganic Statistics, ASSET Wells

PARAMETER	MINIMUM	MAXIMUM	AVERAGE
Antimony (μg/L)	< DL	< DL	< DL
Arsenic (µg/L)	< DL	2.50	1.29
Barium (µg/L)	26.30	451	191.08
Beryllium (µg/L)	< DL	< DL	< DL
Cadmium (µg/L)	< DL	< DL	< DL
Chromium (µg/L)	< DL	2.20	1.18
Copper (µg/L)	< DL	57.20	14.64
Iron (μg/L)	< DL	8520	1206.50
Lead (µg/L)	< DL	4.00	< DL
Mercury (µg/L)	< DL	< DL	< DL
Nickel (μg/L)	< DL	< DL	< DL
Selenium (µg/L)	< DL	< DL	< DL
Silver (µg/L)	< DL	< DL	< DL
Thallium (µg/L)	< DL	< DL	< DL
Zinc (μg/L)	< DL	18.60	10.33

Table 6-6: Triennial Field and Conventional Statistics, ASSET Wells

			AVERAGE VALUES BY FISCAL YEAR									
PARAMETER		FY 1995	FY 1998	FY 2001	FY 2004	FY 2007	FY 2010	FY 2013	FY 2016	FY 2019		
	pH (SU)	6.27	5.88	6.81	6.51	6.19	6.55	6.63	6.68	6.97		
۵	Salinity (ppt)	0.12	0.13	0.15	0.27	0.16	0.23	0.12	0.20	0.23		
FIELD	Specific Conductance (mmhos/cm)	0.280	0.260	0.320	0.550	0.320	0.460	0.250	0.399	0.47		
ш.	Temperature (°C)	20.18	19.79	18.97	19.43	19.43	18.71	17.84	14.54	16.91		
	Total Dissolved Solids (g/L)	-	1	-	0.360	0.210	0.300	0.162	0.259	0.30		
	Alkalinity (mg/L)	82	70	98	112	75	126	61	98	138.12		
	Chloride (mg/L)	22.7	21.1	25.0	80.7	44.3	67.5	27.0	47.8	62.50		
	Color (PCU)	18	6	9	< DL	-	9	2	5	6.60		
	Hardness (mg/L)	49	64	90	152	75	124	71	111	100.40		
≿	Nitrite - Nitrate, as N (mg/L)	0.67	1.27	0.68	0.43	0.88	0.48	0.67	0.69	0.35		
RATORY	Ammonia, as N (mg/L)	0.19	0.25	0.18	0.18	< DL	< DL	0.08	0.13	0.22		
R.	Total Phosphorus (mg/L)	0.24	0.14	0.15	0.15	0.12	0.19	0.15	0.19	0.43		
ABOI	Specific Conductance (µmhos/cm)	278	268	353	558	315	477	-	214	469.44		
4	Sulfate (mg/L)	26.0	33.0	42.0	38.3	13.0	18.6	14.4	9.1	8.46		
	Total Dissolved Solids (mg/L)	220	192	239	331	202	435	250	221	186.11		
	Total Kjeldahl Nitrogen (mg/L)	0.69	0.36	0.24	0.25	0.11	0.28	0.42	0.29	0.34		
	Total Suspended Solids (mg/L)	7	< DL	< DL	8	< DL	8	< DL	< DL	< DL		
	Turbidity (NTU)	11.08	9.49	3.09	35.05	1.44	4.75	1.30	5.41	5.02		

Table 6-7: Triennial Inorganic Statistics, ASSET Wells

	AVERAGE VALUES BY FISCAL YEAR										
PARAMETER	FY 1995	FY 1998	FY 2001	FY 2004	FY 2007	FY 2010	FY 2013	FY 2016	FY 2019		
Antimony (μg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL		
Arsenic (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	1.29		
Barium (µg/L)	117.3	90.5	93.9	202.2	166.6	256.0	113.0	154.3	191.08		
Beryllium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL		
Cadmium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL		
Chromium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	1.18		
Copper (µg/L)	6.6	55.8	11.8	27.5	16.4	6.9	4.6	6.2	14.64		
Iron (µg/L)	2244	1077	522	3624	453	839	377	737	1206.50		
Lead (µg/L)	< DL	< DL	< DL	3.6	3.2	1.4	1.4	2.5	< DL		
Mercury (µg/L)	0.07	< DL									
Nickel (µg/L)	7.2	3.4	6.9	< DL	< DL	< DL	< DL	1.2	< DL		
Selenium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL		
Silver (µg/L)	< DL	< DL	< DL	-	< DL						
Thallium (µg/L)	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL		
Zinc (µg/L)	25.0	46.4	119.2	33.8	11.1	7.6	6.8	6.2	10.33		

Table 6-8: VOC Analytical Parameters

VOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (µg/L)
1,1,1-TRICHLOROETHANE	624	0.50
1,1,2,2-TETRACHLOROETHANE	624	0.50
1,1,2-TRICHLOROETHANE	624	0.50
1,1-DICHLOROETHANE	624	0.50
1,1-DICHLOROETHENE	624	0.50
1,2-DICHLOROBENZENE	624	0.50
1,2-DICHLOROETHANE	624	0.50
1,2-DICHLOROPROPANE	624	0.50
1,3-DICHLOROBENZENE	624	0.50
1,4-DICHLOROBENZENE	624	0.50
BENZENE	624	0.50
BROMODICHLOROMETHANE	624	0.50
BROMOFORM	624	0.50
BROMOMETHANE	624	1.0
CARBON TETRACHLORIDE	624	0.50
CHLOROBENZENE	624	0.50
CHLOROETHANE	624	0.50
CHLOROFORM	624	0.50
CHLOROMETHANE	624	1.0
CIS-1,3-DICHLOROPROPENE	624	1.0
DIBROMOCHLOROMETHANE	624	0.50
ETHYL BENZENE	624	0.50
METHYLENE CHLORIDE	624	1.0
O-XYLENE (1,2-DIMETHYLBENZENE)	624	0.50
STYRENE	624	0.50
TERT-BUTYL METHYL ETHER	624	0.50
TETRACHLOROETHYLENE (PCE)	624	0.50
TOLUENE	624	0.50
TRANS-1,2-DICHLOROETHENE	624	0.50
TRANS-1,3-DICHLOROPROPENE	624	0.50
TRICHLOROETHYLENE (TCE)	624	0.50
TRICHLOROFLUOROMETHANE (FREON-11)	624	0.50
VINYL CHLORIDE	624	0.50
XYLENES, M & P	624	1.0

Table 6-9: SVOC Analytical Parameters

SVOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (µg/L)
1,2,4-TRICHLOROBENZENE	625	5.0
2,4,6-TRICHLOROPHENOL	625	5.0
2,4-DICHLOROPHENOL	625	5.0
2,4-DIMETHYLPHENOL	625	5.0
2,4-DINITROPHENOL	625	20.0
2,4-DINITROTOLUENE	625	5.0
2,6-DINITROTOLUENE	625	5.0
2-CHLORONAPHTHALENE	625	5.0
2-CHLOROPHENOL	625	5.0
2-NITROPHENOL	625	5.0
3,3'-DICHLOROBENZIDINE	625	5.0
4,6-DINITRO-2-METHYLPHENOL	625	10.0
4-BROMOPHENYL PHENYL ETHER	625	5.0
4-CHLORO-3-METHYLPHENOL	625	5.0
4-CHLOROPHENYL PHENYL ETHER	625	5.0
4-NITROPHENOL	625	20.0
ACENAPHTHENE	625	0.20
ACENAPHTHYLENE	625	0.20
ANTHRACENE	625	0.20
BENZIDINE	625	20.0
BENZO(A)ANTHRACENE	625	0.20
BENZO(A)PYRENE	625	0.20
BENZO(B)FLUORANTHENE	625	0.20
BENZO(G,H,I)PERYLENE	625	0.20
BENZO(K)FLUORANTHENE	625	0.20
BENZYL BUTYL PHTHALATE	625	5.0
BIS(2-CHLOROETHOXY) METHANE	625	5.0
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	625	5.0
BIS(2-ETHYLHEXYL) PHTHALATE	625	5.0
CHRYSENE	625	0.20
DIBENZ(A,H)ANTHRACENE	625	0.20
DIETHYL PHTHALATE	625	5.0
DIMETHYL PHTHALATE	625	5.0
DI-N-BUTYL PHTHALATE	625	5.0
DI-N-OCTYLPHTHALATE	625	5.0
FLUORANTHENE	625	0.20
FLUORENE	625	0.20

SVOC ANAYTICAL PARAMETERS	METHOD	REPORTING LIMIT (μg/L)
HEXACHLOROBENZENE	625	5.0
HEXACHLOROBUTADIENE	625	5.0
HEXACHLOROCYCLOPENTADIENE	625	10.0
HEXACHLOROETHANE	625	5.0
INDENO(1,2,3-C,D)PYRENE	625	0.20
ISOPHORONE	625	5.0
NAPHTHALENE	625	0.20
NITROBENZENE	625	5.0
N-NITROSODIMETHYLAMINE	625	5.0
N-NITROSODI-N-PROPYLAMINE	625	5.0
N-NITROSODIPHENYLAMINE	625	5.0
PENTACHLOROPHENOL	625	5.00
PHENANTHRENE	625	0.20
PHENOL	625	5.0
PYRENE	625	0.20



Table 6-10: Pesticides and PCBs

Pest/PCB Analytical Parameters	METHOD	REPORTING LIMIT (μg/L)
ALDRIN	608	0.025
ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	608	0.025
ALPHA ENDOSULFAN	608	0.025
ALPHA-CHLORDANE	608	0.025
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	608	0.025
BETA ENDOSULFAN	608	0.025
CHLORDANE	608	0.20
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	608	0.025
DIELDRIN	608	0.025
ENDOSULFAN SULFATE	608	0.025
ENDRIN	608	0.025
ENDRIN ALDEHYDE	608	0.025
ENDRIN KETONE	608	0.025
GAMMA-CHLORDANE	608	0.025
HEPTACHLOR	608	0.025
HEPTACHLOR EPOXIDE	608	0.025
METHOXYCHLOR	608	0.25
P,P'-DDD	608	0.025
P,P'-DDE	608	0.025
P,P'-DDT	608	0.025
PCB-1016 (AROCHLOR 1016)	608	0.80
PCB-1221 (AROCHLOR 1221)	608	0.80
PCB-1232 (AROCHLOR 1232)	608	0.80
PCB-1242 (AROCHLOR 1242)	608	0.80
PCB-1248 (AROCHLOR 1248)	608	0.80
PCB-1254 (AROCHLOR 1254)	608	0.80
PCB-1260 (AROCHLOR 1260)	608	0.80
TOXAPHENE	608	1.0

Figure 6-1: Location Plat, North Louisiana Terrace Aquifer

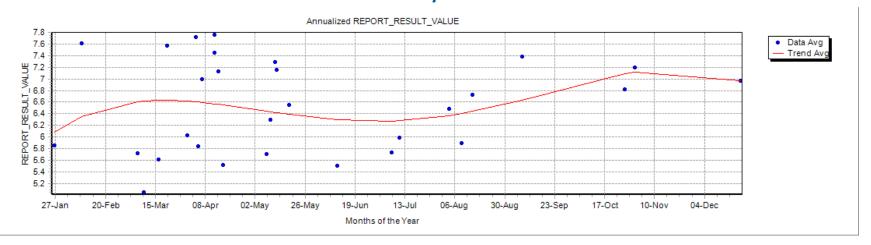

Chart 6-1: Temperature Trend



Chart 6-2: pH Trend

Chart 6-3: Specific Conductance Trend

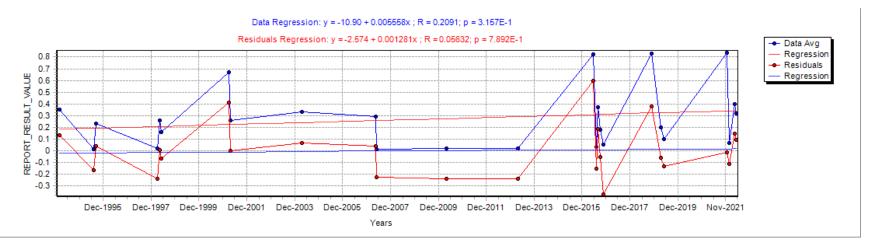
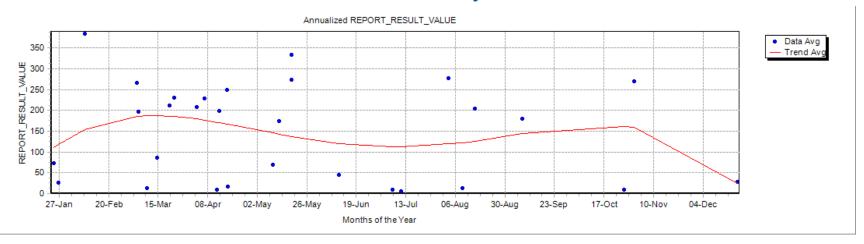


Chart 6-4: Field Salinity Trend


Chart 6-5: Chloride Trend

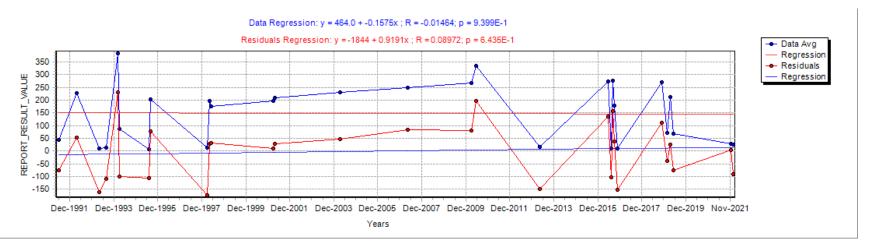
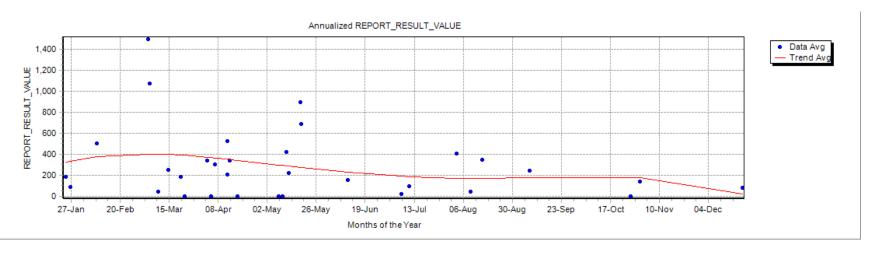
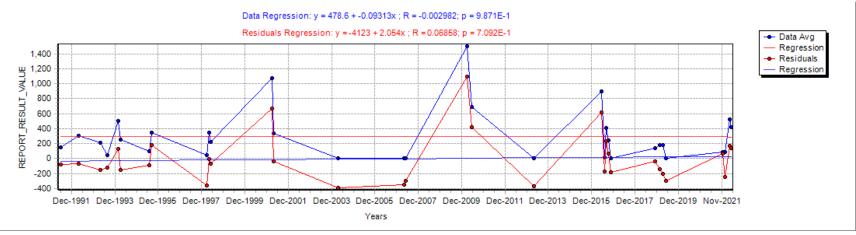


Chart 6-6: Alkalinity Trend

Chart 6-7: Color Trend


Chart 6-8: Sulfate Trend



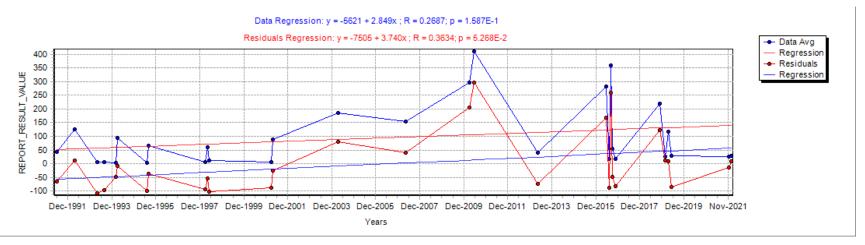

Chart 6-9: Total Dissolved Solids Trend

Chart 6-10: Hardness Trend

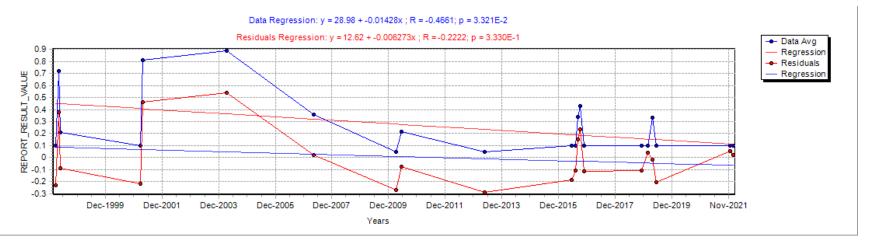


Chart 6-11: Ammonia Trend

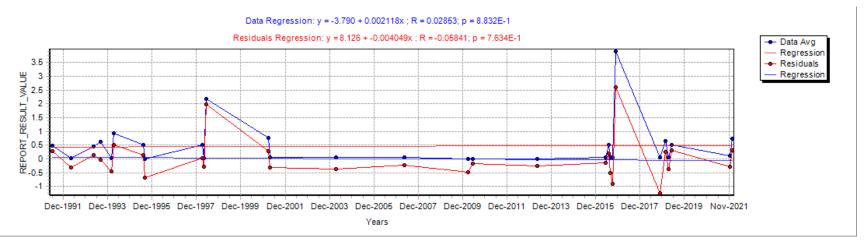


Chart 6-12: Nitrate - Nitrite Trend

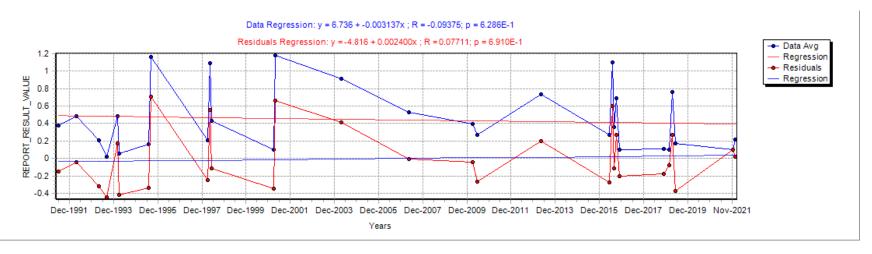
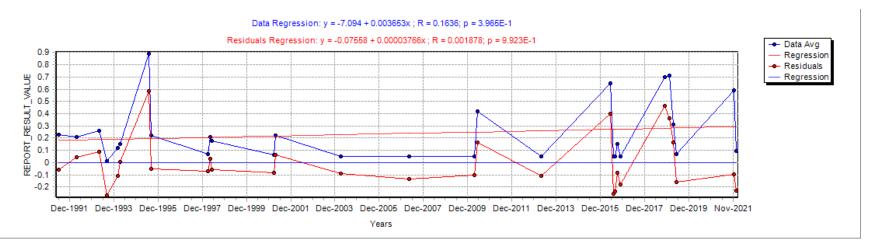
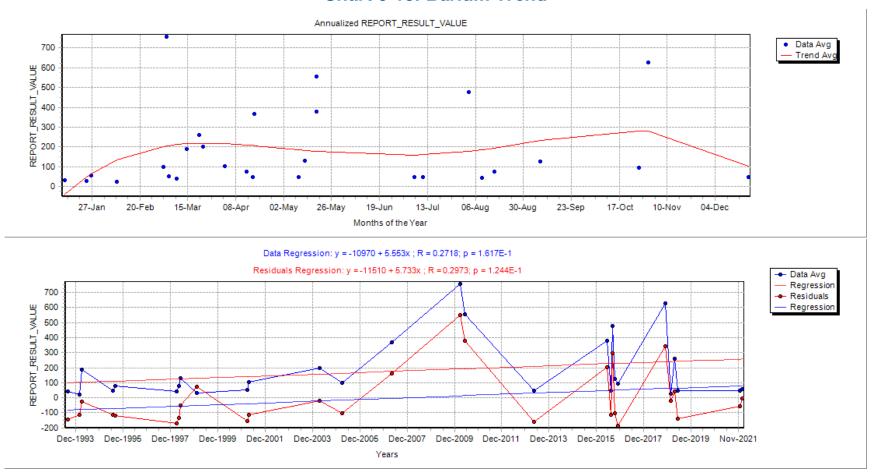
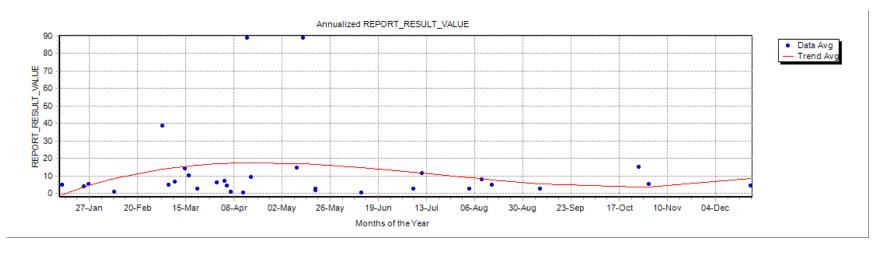


Chart 6-13: Total Kjeldahl Nitrogen Trend




Chart 6-14: Total Phosphorus Trend



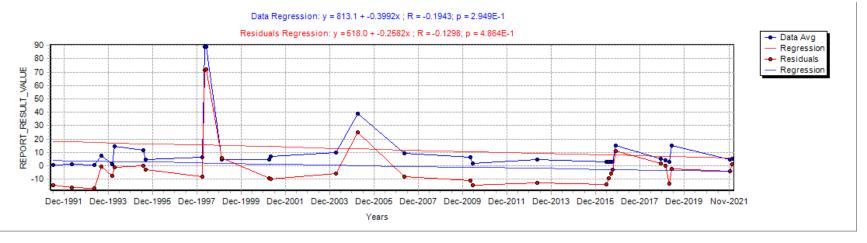
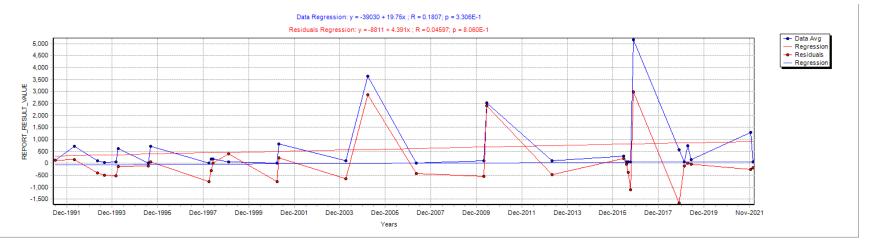


Chart 6-15: Barium Trend

Chart 6-16: Copper Trend



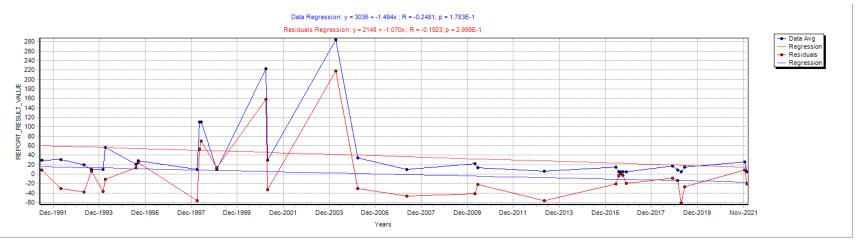

Chart 6-17: Iron Trend

Chart 6-18: Zinc Trend

