

Loading & Concentration Calculations

Monthly Average (all of the samples in a month)
Weekly Average (samples within a certain week)

C= concentration
F=flow
L= loading

NOT Continuous Recorder

Concentration

Concentration Average =

$$\frac{C_1 + C_2 + C_3 + C_4}{4}$$

Loadings

Loading Average =

$$\frac{L_1 + L_2 + L_3 + L_4}{4}$$

Day 1
Day 1
Day 1
Day 1

$L_1 = (F_1)(C_1)(8.34 \text{ lbs/day})$
 $L_2 = (F_2)(C_2)(8.34 \text{ lbs/day})$
 $L_3 = (F_3)(C_3)(8.34 \text{ lbs/day})$
 $L_4 = (F_4)(C_4)(8.34 \text{ lbs/day})$

WITH Continuous Recorder

Concentration

Concentration Average (C^{fw}) =

$$\frac{C_1(F_1) + C_2(F_2) + C_3(F_3) + C_4(F_4)}{F_1 + F_2 + F_3 + F_4}$$

Loadings

Loading Average =

$$C^{fw} \times \frac{F_1 + F_2 + F_3 + F_4}{4} \times 8.34 \text{ lbs/day}$$

Fecal Coliform Geometric Average

Geometric Mean (Average) = $\sqrt[n]{(C_1)(C_2)(C_3)(C_4) \dots \dots \dots}$

Geometric Mean (Average) is the product of all the sample values followed by taking the n^{th} root of the resulting value where n equals the number of samples

Example: 4 samples of 150, 75, 200, 24
Multiplied together equals 54,000,000
The 4th root equals 85.72