APPENDIX 2

MISSISSIPPI RIVER ALLUVIAL AQUIFER SUMMARY

BASELINE MONITORING PROJECT, EPA FY'99

(July 1998 Through June 1999)

PART I

OF

TRIENNIAL SUMMARY REPORT

FOR THE

ENVIRONMENTAL EVALUATION DIVISION

OF

LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY

PARTIAL FUNDING PROVIDED THROUGH CWA 106 GRANT

MISSISSIPPI RIVER ALLUVIAL AQUIFER SUMMARY

TABLE OF CONTENTS

BACKGR	DUND	1
PROJECT	FIELD AND ANALYTICAL PARAMETERS	1
DISCUSSI	ON OF WATER QUALITY DATA	1
SUMMAR	Y AND RECOMMENDATIONS	4
Table I-1	List of Project Wells Sampled	5
Table I-2	Summary of Water Quality Data	6
Table I-3	Summary of Inorganic Data	8
Table I-4	List of VOC Analytical Parameters	. 10
Table I-5	List of Semi-volatile Analytical Parameters	. 12
Table I-6	List of Pesticide and PCB Analytical Parameters	. 15
Table I-7	Summary of Resample Data	. 16
Figure I-1	Location Plat, Mississippi River Alluvial Aquifer	. 17
Figure I-2	Map of pH Data	. 18
Figure I-3	Map of TDS Data	. 19
Figure I-4	Map of Chloride Data	. 20
Figure I-5	Nap of Iron Data	. 21
0	•	

BACKGROUND

To better assess the water quality of a particular aquifer at a given point in time, an attempt was made during the project year to sample all project wells producing from a common aquifer in a narrow time frame. Also, to more conveniently and economically promulgate those data collected, these aquifer summaries will make up the project Triennial Summary Report.

Figure I-1 shows the geographic locations of the Mississippi River Alluvial Aquifer and the associated project wells, whereas Table I-1 lists the wells in the aquifer along with their total depths and the use made of produced waters and the date sampled.

These data show that in July, August, September, and October of 1998, twenty-four project wells were sampled which produce from the Mississippi River Alluvial Aquifer. Of these twenty-four wells, nine are classified as Public Supply, eight are classified as Irrigation, and seven are Domestic. The wells are located in fifteen parishes that are situated along or near the Mississippi River in Louisiana.

PROJECT FIELD AND ANALYTICAL PARAMETERS

The field parameters that are checked at each sampling site and the list of water quality parameters that are analyzed in the laboratory are shown in Table I-2. Those project inorganic (total metals) parameters analyzed in the laboratory are listed in Table I-3. These tables also show the field and analytical results determined for each analyte.

In addition to the analytical parameters mentioned above, a list of project analytical parameters that include three other categories of compounds (Volatiles, Semi-volatiles, and Pesticides/PCB's) is included. Due to the large number of analytes in these three categories, tables were not prepared for each well. However, in order for the reader to be aware of the total list of analytes, Tables I-4, I-5, and I-6 were included in this summary. These tables list the project analytes along with their Practical Quantitation Limits (PQLs) used during processing.

All results from resampling events done in the course of evaluating the quality of the Mississippi River Alluvial Aquifer are listed in Table I-7.

DISCUSSION OF WATER QUALITY DATA

<u>FEDERAL PRIMARY DRINKING WATER STANDARDS</u>: Under the Federal Safe Drinking Water Act, EPA has established Maximum Contaminant Levels (MCL) for pollutants that may pose a health risk in public drinking water. An MCL is the highest level of a contaminant that EPA allows in public drinking water. MCLs ensure that drinking water does not pose either a short-term or long-term health risk. While not all wells sampled were public supply wells, this Office does use the MCLs as a benchmark for further evaluation. Laboratory data show that three project water wells in the Mississippi River Alluvial Aquifer exceeded the Federal Maximum Contaminant Level (MCL) of 50 parts per billion (ppb) for Arsenic.

CO-47 exceeded the MCL with a concentration of 56.5 ppb for Arsenic. However, in the subsequent resampling of this well, Arsenic was not detected at or above its detection limit of 1.0 ppb. Based on these further analyses, it is believed that the elevated arsenic concentration was due to field/laboratory contamination.

SL-5477Z exceeded the MCL with a concentration of 81.8 ppb for Arsenic. It is this Office's opinion that this concentration is due to the existence of Arsenic in the groundwater at this well's location. The Baseline Monitoring Project has historically found concentrations of Arsenic from this well. In April of 1992, regular Baseline Monitoring Project sampling revealed a concentration of 56.2 ppb for Arsenic. Subsequent resampling done in August of 1992 showed an Arsenic concentration of 45.5 ppb. Then, on November 14, 1995, Baseline Monitoring Project sampling revealed a concentration of 67.8 ppb for Arsenic.

IB-5427Z exceeded the MCL with a concentration of 56.5 ppb for Arsenic. It is this Office's opinion that this concentration is due to the existence of Arsenic in the groundwater at this well's location. The Baseline Monitoring Project has historically found

Page 2 of 21

concentrations of Arsenic from this well. In August of 1991, analyses showed levels of Arsenic at 35.2 ppb. In November of 1995, analyses showed Arsenic at 46.7 ppb, an increase of 11.5 ppb. The 56.5 ppb concentration found in this most recent sampling event is an increase of 9.8 ppb from the previously exhibited concentration.

Laboratory data also show that ten project water wells in the Mississippi River Alluvial Aquifer exceeded the MCL of 5 ppb for Cadmium.

CO-YAKEY - 5.1 ppb	IB-289 - 5.1 ppb
AV-5135Z - 7.2 ppb, 6.4 (duplicate sample)	FR-368 - 11.0 ppb
RI-469 - 11.2 ppb, 12.6 ppb (duplicate sample)	CT-241 - 11.0 ppb
AV-DELTA - 7.3 ppb	TS-60 - 13.6 ppb
SL-5477Z - 11.6 ppb	TS-FORTENB - 15.2 ppb

In sampling events subsequent to those above and on the previous page, a trace metal grade acid was used to preserve the samples. This is because it was this Office's opinion that the exceedances were due to the grade of acid that was being used to preserve the samples. The laboratory analyses from these subsequent sampling events did not reveal the same exceedances. Also, project wells FR-368 and RI-469, two of the wells which reported Cadmium results above Cadmium's MCL, were resampled using this trace metal grade of acid as a preservative. The results for both of these sampling events showed Cadmium levels less than the detection limit of 1.0 ppb. In addition, RI-843, a well that is not in the Baseline Monitoring Project but is nearby and of similar depth to RI-469, was sampled during the resampling episodes. Cadmium was found to be less than the detection limit in the analyses for this well also. Therefore, it is the opinion of this Office that the Cadmium exceedances exhibited in the sample results from the wells mentioned above were due to the grade of acid that was being used to preserve the samples at that time.

Those project wells reporting Turbidity levels of >1 NTU, do not exceed the MCL of 1.0, as this primary standard applies to surface water systems only.

<u>FEDERAL SECONDARY DRINKING WATER STANDARDS</u>: EPA has set secondary standards which are defined as nonenforceable taste, odor or appearance guidelines. Field and laboratory data contained in Tables I-2 and I-3 show that twenty of the wells sampled in the Mississippi River Alluvial Aquifer exceeded the Secondary Maximum Contaminant Level (SMCL) for Iron. Ten of the wells exceeded the SMCL for Total Dissolved Solids (TDS) and thirteen wells exceeded the SMCL for Color.

IRON (SMCL=300 ppb):

CO-47 - 1,051 ppb	CO-YAKEY - 5,325 ppb
AV-CHAT - 1,355 ppb	CT-241 - 8,651 ppb
AV-DELTA - 4,783 ppb	SL-5477Z - 21,339 ppb
SMN-33 - 2,049 ppb, 1,270 ppb (duplicate sample)	IB-COM - 3,608 ppb
IB-5427Z - 1,051 ppb	IB-289 - 4,770 ppb
EB-885 -1,355 ppb	FR-368 - 5,687 ppb (from resample)
TS-60 - 9,816 ppb	TS-FORTENB - 11,017 ppb
IRON (continued):	
MA-28 - 17,556 ppb	EC-370 - 14,338 ppb

WC-BRAN - 2,143 ppb	Page 3 of 21 WC-91 - 3,591 ppb, 769 ppb (duplicate sample)
MO-871 - 2,115 ppb	OU-134 - 4,510 ppb
<u>TDS (SMCL=500 ppm):</u>	
CO-YAKEY - 616 ppm	AV-CHAT - 708 ppm
AV-5135Z - 756 ppm, 756 (duplicate sample)	CT-241 -578 ppm
AV-DELTA - 1,073 ppm	FR-368 - 726 ppm
TS-60 - 532 ppm	MA-28 -554 ppm
WC-BRAN - 762 ppm	WC-91 - 580 ppm, 578 (duplicate sample)
COLOR (SMCL=15 PCU):	
CO-YAKEY - 20 PCU	AV-CHAT - 20 PCU
CT-241 - 20 PCU	AV-DELTA - 20 PCU
SL-5477Z - 30 PCU	SMN-33 - 30 PCU, 30 PCU (duplicate sample)
IB-COM - 20 PCU	IB-5427Z - 20 PCU
IB-289 - 30 PCU	EB-885 - 20 PCU
TS-60 - 20 PCU	EC-370 - 20 PCU

MO-871 - 20 PCU

<u>FEDERAL LEAD ACTION LEVEL:</u> Under the Federal Safe Drinking Water Act, EPA has established an Action Level of 15 ppb for Lead to ensure that this contaminant does not pose either a short-term or long-term health risk in drinking water. Laboratory data contained in Table I-3 show that thirteen of the wells sampled in the Mississippi River Alluvial Aquifer exceeded the Action Level for Lead.

CO-YAKEY - 24.9 ppb	AV-CHAT - 18.7 ppb
AV-5135Z - 17.4 ppb, 16 ppb (duplicate sample)	CT-241 - 22.4 ppb
AV-DELTA - 18.4 ppb	SL-5477Z - 29.1 ppb
IB-COM - 18.2 ppb	IB-289 - 24.9 ppb
EB-885 - 18.7 ppb	FR-368 - 39.7 ppb
RI-469 - 38.8 ppb, 45.5 ppb (duplicate sample)	TS-60 - 37.4 ppb

TS-FORTENB - 43.7 ppb

In sampling events subsequent to those during which the above results were found, a trace metal grade acid was used to preserve the samples. This is because it was this Office's opinion that the exceedances were due to the grade of acid that was being used to preserve the samples. The laboratory analyses from these subsequent sampling events did not reveal the same exceedances. Also, project well RI-469, which had reported Lead results above Lead's MCL, was resampled using this trace metal grade of acid as a preservative. The sample results showed Lead levels less than the detection limit of 10.0 ppb. In addition, RI-843, a well that is not in the Baseline Monitoring Project but is nearby and of similar depth to RI-469, was sampled

during the resampling episodes. Lead was found to be < 10.0 ppb in the analyses for this well also. Therefore, it is the opinion of this Office that the Lead exceedances exhibited in the sample results from the wells mentioned above were due to the grade of acid that was being used to preserve the samples at that time.

<u>QUANTIFIABLE CADMIUM AND LEAD VALUES:</u> Table I-3 shows that twenty-three quantifiable values for Lead were found in the laboratory analyses. These values are shaded in Table I-3. It is the opinion of this Office that these values are due to the grade of acid that was being used to preserve the samples at that time. For more discussion on this matter please refer to the prior sections on Cadmium and Lead MCL exceedances.

<u>SELECTED WATER QUALITY MAPS:</u> For the reader's convenience, maps showing the contoured values for pH, TDS, Chloride, and Iron are included in this summary report in Figures I-2 through I-5.

SUMMARY AND RECOMMENDATIONS

In summary, the analytical data show that, with the exception of the arsenic concentrations found in the ground water located at project wells SL-5477Z and IB-5427Z, the ground water from this aquifer is of good quality when considering short-term or long-term health risks. However, this aquifer is of fair quality when considering taste, odor or appearance guidelines.

It is recommended that the several project wells assigned to the Mississippi River Alluvial Aquifer be resampled as planned, in approximately three years. In addition, several wells should be added to those currently sampled to increase the well density for this aquifer.

Page 5 of 21

Table I-1 List of Project Wells Sampled

MISSISSIPPI RIVER ALLUVIAL										
AQUIFER PROJECT WELLS										
PROJECT NUMBER	PARISH	WELL NUMBER	DATE SAMPLED	WELL OWNER	DEPTH (feet) WELL USE		AQUIFER			
199518	AVOYELLES AV-5135Z 07/14/1998 PRIVATE OWNER 110 DOMESTIC MISS. RIVER									
199517	AVOYELLES	AV-CHAT	07/14/1998	PRIVATE OWNER	75	IRRIGATION	MISS. RIVER ALLUVIAL			
199802	AVOYELLES	AV-DELTA	07/21/1998	LA DELTA PLANTATION	135	IRRIGATION	MISS. RIVER ALLUVIAL			
199321	CONCORDIA	CO-47	07/13/1998	CITY OF VIDALIA	310	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199519	CONCORDIA	CO-YAKEY	07/13/1998	PRIVATE OWNER	150	DOMESTIC	MISS. RIVER ALLUVIAL			
199207	CATAHOULA	CT-241	07/21/1998	LA DELTA PLANTATION	134	IRRIGATION	MISS. RIVER ALLUVIAL			
199601	CATAHOULA	CT-DENNIS	09/14/1998	PRIVATE OWNER	30	DOMESTIC	MISS. RIVER ALLUVIAL			
199522	EAST BATON ROUGE	EB-885	08/11/1998	LA STATE UNIVERSITY	352	IRRIGATION	MISS. RIVER ALLUVIAL			
199603	EAST CARROLL	EC-370	10/12/1998	HOLLYBROOK LAND	119	IRRIGATION	MISS. RIVER ALLUVIAL			
198805	FRANKLIN	FR-368	09/14/1998	CITY OF WINNSBORO	79	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199803	IBERVILLE	IB-289	08/11/1998	IBERVILLE WTR. DIST. #2	209	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199520	IBERVILLE	IB-5427Z	08/10/1998	PRIVATE OWNER	160	DOMESTIC	MISS. RIVER ALLUVIAL			
199521	IBERVILLE	IB-COM	08/10/1998	PRIVATE OWNER	185	DOMESTIC	MISS. RIVER ALLUVIAL			
199322	MADISON	MA-28	09/15/1998	PEOPLES WATER SERVICE	128	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199804	MOREHOUSE	MO-871	10/12/1998	PRIVATE OWNER	80	IRRIGATION	MISS. RIVER ALLUVIAL			
199604	OUACHITA	OU-134	10/13/1998	PRIVATE OWNER	74	IRRIGATION	MISS. RIVER ALLUVIAL			
199401	RICHLAND	RI-469	09/14/1998	LIDDIEVILLE WATER SYSTEM	90	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199210	RICHLAND	RI-48	10/13/1998	RAYVILLE WATER DEPARTMENT	115	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199204	ST LANDRY	SL-5477Z	08/10/1998	PRIVATE OWNER	110	DOMESTIC	MISS. RIVER ALLUVIAL			
199524	ST MARTIN	SMN-33	08/10/1998	LDOTD/LAFAYTTE DISTRICT	125	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199310	TENSAS	TS-60	09/15/1998	TOWN OF ST. JOSEPH	140	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199602	TENSAS	TS-FORTENB	09/15/1998	PRIVATE OWNER	UNKNOWN	DOMESTIC	MISS. RIVER ALLUVIAL			
199209	WEST CARROLL	WC-91	10/12/1998	N.E.W. CARROLL WTR. ASSN.	110	PUBLIC SUPPLY	MISS. RIVER ALLUVIAL			
199605	WEST CARROLL	WC-BRAN	10/12/1998	PRIVATE OWNER	80	IRRIGATION	MISS. RIVER ALLUVIAL			

Table I-2	Summary	of Water	Quality Data
-----------	---------	----------	---------------------

	MISSISSIPPI RIVER ALLUVIAL AQUIFER																	
	WATER QUALITY PARAMETERS																	
FIELD PARAMETERS																		
WELL NUMBER	<i>TEMP.</i> ℃	pH SU	COND. mmhos/cm	SAL. ppt	<i>T</i> SS ppm	<i>TDS</i> ppm	ALK. ppm	HARD. ppm	<i>turb.</i> Ntu	COND. umhos/cm	<i>COLOR</i> PCU	<i>CI</i> ppm	SO₄ ppm	TOT. P ppm	<i>TKN</i> ppm	TOC ppm	NH ₃ (as N) ppm	<i>NITRITE-</i> <i>NITRATE</i> (as N) ppm
AV-5135Z	20.56	6.6	0.956	0.47	<4.0	756.0	334.0	416.0	<1.0	1067.0	<5.0	108.0	86.30	0.13	1.20	3.90	0.26	0.08
AV-5135Z*	20.56	6.6	0.956	0.47	<4.0	756.0	334.0	415.0	<1.0	1069.0	<5.0	104.0	80.20	0.14	0.32	2.30	0.32	0.08
AV-CHAT	20.52	6.49	0.946	0.47	25.0	708.0	542.0	450.0	95.0	1022.0	20.0	39.8	<1.25	1.22	1.58	5.90	1.33	0.07
AV-DELTA	20.55	6.66	1.575	0.79	8.0	1073.0	399.0	351.0	45.0	1612.0	20.0	113.0	296.00	0.34	0.31	3.40	0.33	0.05
CO-47	19.53	6.42	0.465	0.22	<4.0	388.0	225.0	207.0	14.0	517.0	10.0	16.6	30.10	0.19	0.93	3.00	0.72	0.11
CO-YAKEY	20.87	6.43	1.091	0.52	40.0	616.0	474.0	408.0	160.0	905.0	20.0	32.7	<1.25	1.31	5.44	9.70	0.33	0.29
CT-241	20.63	6.36	0.909	0.45	22.0	578.0	473.0	399.0	110.0	1076.0	20.0	23.2	<1.25	1.08	1.52	8.80	1.27	0.05
CT-DENNIS	20.71	5.76	0.203	0.10	<4.0	178.0	81.9	70.0	<1.0	211.0	10.0	34.0	9.10	0.10	< 0.05	2.70	0.10	0.07
EB-885	24.04	7.05	0.813	0.38	<4.0	466.0	446.0	402.0	5.0	801.0	20.0	11.0	<1.25	0.08	1.57	6.10	1.55	0.07
EC-370	19.28	6.24	0.738	0.36	36.0	414.0	399.0	375.0	160.0	722.0	20.0	7.6	<2.00	0.99	1.10	6.10	0.84	<0.02
FR-368	19.58	6.48	1.301	0.65	12.0	726.0	306.0	366.0	70.0	1252.0	5.0	216.0	25.60	0.37	0.51	3.40	0.50	<0.02
IB-289	20.08	6.95	0.539	0.26	12.0	304.0	262.0	244.0	19.0	542.0	30.0	20.8	5.30	0.02	1.60	7.60	1.58	<0.02
IB-5427Z	22.14	7.29	0.37	0.18	<4.0	212.0	151.0	136.0	4.4	381.0	20.0	24.3	10.60	0.27	1.13	3.50	1.10	0.02
IB-COM	23.18	6.99	1.374	0.69	10.0	752.0	331.0	372.0	35.0	1394.0	20.0	245.0	<1.25	0.09	0.39	3.60	0.47	<0.02
MA-28	19.80	6.75	0.98	0.49	34.5	554.0	479.0	380.0	165.0	911.0	10.0	30.1	<2.00	1.10	1.77	8.60	1.34	<0.02
MO-871	19.10	6.6	0.477	0.23	6.0	296.0	216.0	196.0	8.9	492.0	20.0	17.2	22.10	0.30	0.26	2.90	0.26	<0.02
OU-134	18.94	6.75	0.675	0.33	30.0	410.0	335.0	267.0	85.0	707.0	20.0	31.7	4.90	1.02	1.34	2.20	0.91	<0.02
RI-469	20.10	6.13	0.23	0.11	<4.0	178.0	57.7	69.8	<1.0	232.0	5.0	27.4	2.70	0.12	0.55	<2.00	0.40	3.08
RI-469*	20.10	6.13	0.23	0.11	<4.0	175.0	57.7	69.5	<1.0	230.0	5.0	27.2	2.80	0.11	0.27	<2.00	0.30	2.98
RI-48	19.77	7.28	0.599	0.29	<4.0	362.0	251.0	262.0	1.3	642.0	<5.0	41.2	29.30	0.09	2.33	<2.00	0.37	0.02
SL-5477Z	21.83	6.39	0.842	0.41	60.0	470.0	422.0	366.0	250.0	805.0	30.0	21.1	<1.25	1.89	7.17	7.50	6.53	<0.02
SMN-33	20.83	6.94	0.502	0.24	5.0	296.0	247.0	212.0	13.0	516.0	30.0	<1.25	<1.25	0.24	1.00	3.20	1.20	<0.02
SMN-33*	20.83	6.94	0.502	0.24	4.5	300.0	246.0	211.0	14.0	512.0	30.0	21.7	<1.25	0.24	1.06	5.00	1.04	<0.02
TS-60	19.88	6.66	0.912	0.45	24.0	532.0	447.0	380.0	120.0	866.0	20.0	31.6	<2.00	0.66	1.16	5.30	1.24	<0.02
TS-FORTENB	21.87	6.81	0.849	0.42	31.0	498.0	439.0	374.0	140.0	810.0	10.0	15.2	<2.00	1.37	1.25	8.80	0.91	0.17

Table I-2 (Cont'd)

WELL NUMBER	<i>TEMP.</i> ℃	pH SU	COND. mmhos/cm	SAL. ppt	7SS ppm	<i>TDS</i> ppm	ALK. ppm	HARD. ppm	<i>turb.</i> Ntu	COND. umhos/cm	COLOR PCU	<i>CI</i> ppm	SO₄ ppm	TOT. P ppm	<i>TKN</i> ppm	TOC ppm	NH ₃ (as N) ppm	<i>NITRITE-</i> <i>NITRATE</i> (as N) ppm
WC-91	19.23	7.06	1.022	0.51	4.0	580.0	316.0	410.0	5.5	1067.0	5.0	152.0	12.00	0.13	0.33	2.40	0.31	0.05
WC-91*	19.23	7.06	1.022	0.51	2.0	578.0	311.0	409.0	5.5	1071.0	5.0	153.0	12.10	0.10	0.76	<2.00	0.17	0.05
WC-BRAN	19.28	6.58	1.287	0.65	8.0	762.0	487.0	550.0	50.0	1326.0	10.0	135.0	45.30	0.18	0.84	2.90	0.51	0.02

* Denotes duplicate sample.

Page 7 of 21

Table I-3Summary of Inorganic Data

	MISSISSIPPI RIVER ALLUVIAL AQUIFER INORGANIC (TOTAL METALS) PARAMETERS														
WELL NUMBER	ARSENIC	SILVER	BARIUM	BERYLLIUM	CADMIUM	CHROMIUM	COPPER ppb	IRON	MERCURY	NICKEL	ANTIMONY	SELENIUM	LEAD	THALLIUM	ZINC
AV/ 51257	FF~	_{۲۲} ~	100.0	۲۲~ ۱۰	7.2	~5 O	FF~	05.0	0.06	~5 O	~5 O	×۶۹ ح5 0	17 /	~5 O	<10.0
AV-51352	-5.0	1.0	190.0	<1.0	6.4	<5.0	-5.0	144.0	0.00	<5.0	<5.0	<5.0	16.0	<5.0	<10.0
	20.0	1.2	1001.0	<1.0	5.0	<5.0	<0.0 5.9	1 255 0	0.07	<0.0	<5.0	<5.0	10.0	<5.0	20.2
	29.9	1.0	57.1	<1.0	5.0	<5.0	-5.0	1,355.0	0.00	-5.0	<5.0	<5.0	10.7	<5.0	17.6
AV-DELTA	<0.0	1.0	252.0	<1.0	1.3	<0.0	< 5.0	4,703.0	0.00	< 5.0	< 5.0	< 0.0	10.4	< 5.0	160.0
	50.5	<1.0	075.0	<1.0	5.9	<0.0	< 0.0	1,001.0	0.05	5.1	< 0.0	<0.0	24.0	< 0.0	165.0
	50.0	<1.0	875.0	<1.0	5.1	<5.0	0.00	5,325.0	0.06	5.8	<5.0	<5.0	24.9	<5.0	165.9
CT-241	<5.0	<1.0	422.0	<1.0	11.0	<5.0	6.1	8,651.0	0.05	<5.0	<5.0	<5.0	22.4	<5.0	20.2
CT-DENNIS	<5.0	<1.0	72.7	<1.0	2.3	<5.0	<5.0	20.7	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	100.0
EB-885	29.9	<1.0	798.0	<1.0	5.0	<5.0	5.8	1,355.0	<0.05	6.1	<5.0	<5.0	18.7	<5.0	293.0
EC-370	<5.0	<1.0	671.0	<1.0	1.1	<5.0	<5.0	14,338.0	< 0.05	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0
FR-368	<5.0	<1.0	202.0	<1.0	11.0	<5.0	11.6	104.5	<0.05	<5.0	<5.0	<5.0	39.7	<5.0	170.1
IB-289	50.0	<1.0	688.0	<1.0	5.1	1.6	56.0	4,770.0	< 0.05	5.8	<5.0	<5.0	24.9	<5.0	166.0
IB-5427Z	56.5	<1.0	275.0	<1.0	3.9	<5.0	<5.0	1,051.0	< 0.05	5.1	<5.0	<5.0	12.7	<5.0	160.4
IB-COM	7.7	<1.0	1017.0	<1.0	4.4	<5.0	<5.0	3,608.0	< 0.05	5.0	<5.0	<5.0	18.2	<5.0	110.2
MA-28	<5.0	<1.0	574.0	<1.0	3.5	<5.0	<5.0	17,556.0	< 0.05	<5.0	<5.0	<5.0	<10.0	<5.0	23.6
MO-871	<5.0	<1.0	225.0	<1.0	<1.0	<5.0	<5.0	2,115.0	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	41.4
OU-134	<5.0	<1.0	94.6	<1.0	<1.0	<5.0	<5.0	4,510.0	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	42.5
RI-469	<5.0	<1.0	32.5	<1.0	11.2	5.6	5.0	7.6	< 0.05	<5.0	<5.0	<5.0	38.8	<5.0	199.0
RI-469*	<5.0	<1.0	895.0	<1.0	12.6	8.5	7.8	65.3	< 0.05	5.2	<5.0	<5.0	45.5	<5.0	175.0
RI-48	<5.0	<1.0	420.0	<1.0	<1.0	<5.0	<5.0	188.0	< 0.05	<5.0	<5.0	<5.0	<10.0	<5.0	<10.0
SL-5477Z	81.8	<1.0	811.0	<1.0	11.6	<1.0	<5.0	21,339.0	< 0.05	8.0	<5.0	<5.0	29.1	<5.0	45.4
SMN-33	<5.0	<1.0	694.0	<1.0	4.3	<5.0	<5.0	2,049.0	< 0.05	<5.0	<5.0	<5.0	12.5	<5.0	28.4
SMN-33*	<5.0	<1.0	654.0	<1.0	4.2	<5.0	<5.0	1,270.0	< 0.05	6.2	<5.0	<5.0	11.1	<5.0	37.6
TS-60	5.8	<1.0	695.0	<1.0	13.6	<5.0	6.6	9,816.0	< 0.05	<5.0	<5.0	<5.0	37.4	<5.0	49.5
TS-FORTENB	21.5	<1.0	40.0	<1.0	15.2	<5.0	23.0	11,017.0	< 0.05	5.0	<5.0	<5.0	43.7	<5.0	1126.0

Page 8 of 21

Table I-3 (Cont'd)

WELL NUMBER	ARSENIC ppb	SILVER ppb	BARIUM ppb	BERYLLIUM ppb	CADMIUM ppb	CHROMIUM ppb	COPPER ppb	IRON ppb	MERCURY ppb	NICKEL ppb	ANTIMONY ppb	SELENIUM ppb	<i>LEAD</i> Ppb	THALLIUM ppb	ZINC ppb
WC-91	<5.0	<1.0	166.0	<1.0	1.0	<5.0	<5.0	3,591.0	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	<10.0
WC-91*	<5.0	<1.0	162.0	<1.0	<1.0	<5.0	<5.0	769.0	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	29.4
WC-BRAN	<5.0	<1.0	392.0	<1.0	<1.0	<5.0	<5.0	2,143.0	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	<10.0

* Denotes duplicate sample.

** For an explanation of the shaded Cadmium and Lead values refer to Quantifiable Cadmium and Lead Values on page 4.

Page 9 of 21

Table I-4List of VOC Analytical ParametersBASELINE MONITORING PROJECT

COMPOUNDS	PQL (ppb)
DICHLOROFLUOROMETHANE	5
CHLOROMETHANE	5
VINYL CHLORIDE	5
BROMOMETHANE	5
CHLOROETHANE	5
TRICHLOROFLUOROMETHANE	5
1,1-DICHLOROETHENE	5
METHYLENE CHLORIDE	5
TRANS-1,2-DICHLOROETHENE	5
1,1-DICHLOROETHANE	5
2,2 DICHLOROPROPANE	5
CIS-1,2 DICHLOROETHENE	5
BROMOCHLOROMETHANE	5
CHLOROFORM	5
1,1,1-TRICHLOROETHANE	5
1,1 DICHLOROPROPENE	5
CARBON TETRACHLORIDE	5
BENZENE	5
1,2-DICHLOROETHANE	5
TRICHLOROETHENE	5
1,2-DICHLOROPROPANE	5
BROMODICHLOROMETHANE	5
DIBROMOMETHANE	5
CIS-1,3-DICHLOROPROPENE	5
TOLUENE	5
TRANS-1,3-DICHLOROPROPENE	5
1,1,2-TRICHLOROETHANE	5
1,3DICHLOROPROPANE	5
TETRACHLOROETHENE	5
1,2-DIBROMOETHANE	5
DIBROMOCHLOROMETHANE	5
CHLOROBENZENE	5
ETHYLBENZENE	5
1,1,1,2-TETRACHLOROETHANE	5
P&M XYLENE	10
O-XYLENE	5
STYRENE	5
BROMOFORM	5
ISOPROPYLBENZENE	5

VOLATILE ORGANICS BY EPA METHOD 8260

COMPOUNDS	PQL (ppb)
1,1,2,2-TETRACHLOROMETHANE	5
1,2,3,-TRICHLOROPROPANE	5
BROMOBENZENE	5
n-PROPYLBENZENE	5
2-CHLOROTOLUENE	5
4-CHLOROTOLUENE	5
1,3,5-TRIMETHYLBENZENE	5
TERT-BUTYLBENZENE	5
1,2,4-TRIMETHYLBENZENE	5
SEC-BUTYLBENZENE	5
P-ISOPROPYLTOLUENE	5
1,3-dichlorobenzene	5
1,4-dichlorobenzene	5
n-BUTYLBENZENE	5
1,2-DIBROMO-3-CHLOROPROPANE	5
NAPHTHALENE	5
1,2,4-TRICHLOROBENZENE	5
HEXACHLOROBUTADIENE	5
1,2-DICHLOROBENZENE	5
1,2,3-TRICHLOROBENZENE	5

Table I-4 (Cont'd)Volatile Organic (VOC) Parameters

PQL = Practical Quantitation Limit ppb = parts per billion

Table I-5List of Semi-volatile Analytical ParametersBASELINE MONITORING PROJECT

COMPOUNDS	PQL (ppb)
N-Nitrosodimethylamine	10
2-Picoline	10
Methyl methanasulfonate	10
Ethyl methanesulfonate	20
Phenol	10
Aniline	10
Bis(2-chloroethyl)ether	10
2-Chlorophenol	10
1,3-Dichlorobenzene	10
1,4-Dichlorobenzene	10
Benzyl alcohol	10
1,2-Dichlorobenzene	10
2-Methylphenol	10
Bis(2-chloroisopropyl)ether	10
4-Methylphenol	10
N-Nitroso-di-n-propylamine	10
Hexachloroethane	20
Acetophenone	10
Nitrobenzene	10
N-Nitrosopiperidine	20
Isophorone	10
2,4-Dimethylphenol	10
2-Nitrophenol	10
Benzoic acid	50
Bis(2-chloroethoxy)methane	10
2,4-Dichlorophenol	10
a,a-Dimethylphenethylamine	10
1,2,4-trichlorobenzene	10
Benzidine	50
Pyrene	10
p-Dimethylaminoazobenzene	10
Butylbenzylphthalate	10
Bis(2-ethylhexyl)phthalate	10

SEMIVOLATILE ORGANICS BY EPA METHOD 8270

Table I-5 (Cont'd)

Semivolatile Parameters

COMPOUNDS	PQL (ppb)
3,3'-Dichlorobenzidine	20
Benzo(a)anthracene	10
Chrysene	10
Di-n-octylphthalate	10
7,12-Dimetnylbenz(a)anthracine	10
Benzo(b)fluoranthene	10
Benzo(k)fluoranthene	10
Benzo(a)pyrene	10
3-Methylcholanthrene	10
Dibenz(a,j)acridine	10
Indeno(1,2,3-cd)pyrene	10
Dibenz(a,h)anthracene	10
Benzo(g,h,i)perylene	10
Napthalene	10
4-Chloroaniline	10
2,6-Dichlorophenol	10
Hexachlorobutadiene	10
N-Nitrose-di-n-butylamine	10
4-Chloro-3-methylphenol	20
2-Methylnapthalene	10
Hexachlorocyclopentadiene	10
1,2,4,5-Tetrachlorobenzene	10
2,4,6-Trichlorophenol	10
2,4,5-Trichlorophenol	10
2-Chloronapthalene	10
1-Chloronapthalene	10
2-Nitroaniline	50
Dimethylphthalate	10
2,6-Dinitrotoluene	10
Acenaphthylene	10
3-Nitroaniline	50
4-Nitrophenol	50
2,4-Dinitrophenol	50
Acenaphthene	10

Table I-5 (Cont'd)Semivolatile Parameters

COMPOUNDS	(dga) JOS
2,4-Dinitrotoluene	10
Pentachlorobenzene	10
Dibenzofuran	10
1-Naphthylamine	10
Diethylphthalate	10
2,3,4,6-Tetrachlorophenol	10
2-Naphthylamine	10
4-Chlorophenyl phenyl ether	10
4-Nitroaniline	50
Fluorene	10
4,6-Dinitro-2-methylphenol	50
4-Aminobiphenyl	20
1,2-Diphenylhydrazine	10
Phenacetin	20
4-Bromophenyl phenyl ether	10
Hexachlorobenzene	10
Pronamide	10
N-Nitrosodiphenylamine/Diphenylamine	10
Pentachlorophenol	50
Pentachloronitrobenzene	20
Phenathrene	10
Anthracene	10
Di-n-butylphthalate	10
Fluoranthene	10

Table I-6List of Pesticide and PCB Analytical ParametersBASELINE MONITORING PROJECT

	/
COMPOUNDS	PQL (ppb)
Alpha BHC	2
Beta BHC	2
Gamma BHC	2
Delta BHC	2
Heptachlor	2
Aldrin	2
Heptachlor epoxide	2
Chlordane	2
Endosulfan I	2
4,4'-DDE	2
Dieldrin	2
4,4'DDD	2
Endrin	2
Toxaphene	75, 2*
Endosulfan II	2
Endrin Aldehyde	2
4,4'DDT	2
Endosulfan Sulfate	2

SEMIVOLATILE ORGANICS BY EPA METHOD 8270

* The first toxaphene PQL denotes the PQL for the July-September sampling events, while the second PQL denotes the PQL for the October sampling event.

COMPOUNDS	PQL (ppb)
PCB 1221/ PCB 1232	10
PCB 1016/ PCB 1242	10
PCB 1254	10
PCB 1248	10
PCB 1260	10

SEMIVOLATILE ORGANICS BY EPA METHOD 8270

Page 16 of 21

Table I-7 Summary of Resample Data

MISSISSIPPI RIVER ALLUVIAL AQUIFER INORGANIC (TOTAL METALS) PARAMETERS RESAMPLED															
WELL NUMBER	ARSENIC ppb	SILVER ppb	BARIUM ppb	BERYLLIUM ppb	CADMIUM ppb	CHROMIUM ppb	COPPER ppb	IRON ppb	MERCURY ppb	NICKEL ppb	ANTIMONY ppb	SELENIUM ppb	LEAD ppb	THALLIUM ppb	ZINC ppb
CO-47	<1.0	<5.0	402	<1.0	<1.0	<1.0	5.3	2,596	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	<10.0
FR-368	<5.0	<1.0	210.5	<1.0	<1.0	<5.0	<5.0	5,687	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	13.0
RI-469	<5.0	<1.0	33.3	<1.0	<1.0	<5.0	5.8	25.3	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	1,758
RI-843	<5.0	<1.0	32.7	<1.0	<1.0	<5.0	6.3	74.5	<0.05	<5.0	<5.0	<5.0	<10.0	<5.0	40.7

BASELINE MONITORING PROJECT WELLS OF THE MISSISSIPPI RIVER ALLUVIAL AQUIFER

Aquifer bondary digitized from Louisiana Hydrologic Map No. 2: Areal extent of Freshwater in Major Aquifers of Louisiana. Smoot, 1988; USGS/LDOTD Report 86-4150

Figure I-1 Location Plat, Mississippi River Alluvial Aquifer

Page 18 of 21

MISSISSIPPI RIVER ALLUVIAL AQUIFER - pH (SU)

Baseline Monitoring Project, FY98-99

Page 19 of 21

MISSISSIPPI RIVER ALLUVIAL AQUIFER - TDS (ppm)

Baseline Monitoring Project, FY98-99

MISSISSIPPI RIVER ALLUVIAL AQUIFER - CHLORIDE (ppm) Baseline Monitoring Project, FY98-99

Page 21 of 21

MISSISSIPPI RIVER ALLUVIAL AQUIFER - IRON (ppb)

Baseline Monitoring Project, FY98-99

