BAYOU COCODRIE TMDL FOR DISSOLVED COPPER

SUBSEGMENTS 060201

Louisiana Department of Environmental Quality Office of Environmental Assessment Water Quality Assessment Division

December 22, 1999

First Revision 02/02/2000

Second Revision 10/13/2006

Third Revision 03/26/2007

Fourth Revision 12/06/2007

TABLE OF CONTENTS

Ex	ecutive Summary	.3
	Introduction	
1.		4
2.	Study Area Description	4
	2.1 Bayou Cocodrie	4
	2.2 Water Quality Standards	4
	2.3 Identification of Sources	5
3.	TMDL Load Calculations	5
	3.1 Seasonal Variation	6
	3.2 Margin of Safety	6
4.	Monitoring	7
Re	ferences	.9

EXECUTIVE SUMMARY

Section 303(d) of the Federal Clean Water Act requires states to identify waterbodies that are not meeting water quality standards and to develop total maximum daily pollutant loads for those waterbodies. A total maximum daily load (TMDL) is the amount of a pollutant that a waterbody can assimilate without exceeding the established water quality standard for that pollutant. Through a TMDL, pollutant loads can be distributed or allocated to point sources and nonpoint sources discharging to the waterbody.

Bayou Cocodrie flows from its headwaters, at the outlet of Cocodrie Lake in South Central Louisiana, to its confluence with the Bayou Boeuf / Cocodrie Diversion Canal. The Bayou Cocodrie subsegment 060201 is listed on the 1998 Section 303(d) List as not fully supporting the water quality standard for dissolved copper and dissolved lead. These parameters were assessed to be above the water quality standard, based on sampling and lab techniques that did not adhere to the "Clean Methods" guidelines. It was decided to retest the water body using the "Clean Method" procedures. Between the months of July and October in 1999, five metals samples were taken. The sample results showed that the dissolved copper exceeded the subsegment's water quality criterion based on the equation then in effect. The dissolved lead was meeting the water quality criterion. Thus a TMDL was developed for dissolved copper in Bayou Cocodrie. Since publication of the final TMDL in 2000, revisions have been made in the regulations to the equation used to determine the copper criterion and the stream has been reassessed as meeting the criterion. The revisions meet the Federal regulatory requirements for determining copper criterion.

For the purpose of TMDL development in 2006, the dissolved copper numerical criterion was calculated based on the freshwater chronic value for aquatic life protection using the minimum hardness of 25 from the LPDES Implementation Procedures and the equations and factors presented in the regulations. The dissolved copper numerical criterion value was determined to be 3.76 ug/l. The facility is planning a Water Effect Ratio study to verify that the criterion is appropriate for the stream.

A mass balance model was developed which addresses the headwater conditions, the CLECO outfalls from Mountain Bayou Lake and the CLECO cooling water intake on Bayou Cocodrie. The model was based on maintaining the copper criterion at the downstream from the cooling water intake. Since the CLECO plant is a merchant peak power plant with a wide variety of flows, an effluent discharge flow-based equation was developed to determine the permissible loading from CLECO.

CLECO Effluent Load in lbs/day = 0.0158*(CLECO flow in MGD) + 0.5108

Table 1. Total Maximum Daily Load of Dissolved Copper at CLECO Total Discharge Flow =
350 MGD

ALLOCATION		
	% Reduction Required	TMDL lbs/day
Point Source WLA	0	6.06
Point Source Reserve MOS = 50%		6.06
Nonpoint Source LA	0	0.06
Nonpoint Source Reserve MOS (not used)		0
TMDL		12.18

1. Introduction

The Bayou Cocodrie subsegment 060201 was tested during July through October of 1999, for metals using the "Clean Metals" techniques. The sample results showed an exceedance with dissolved copper thus requiring a TMDL for this parameter. A TMDL for dissolved copper was developed in accordance with the requirements of Section 303 of the federal Clean Water Act.

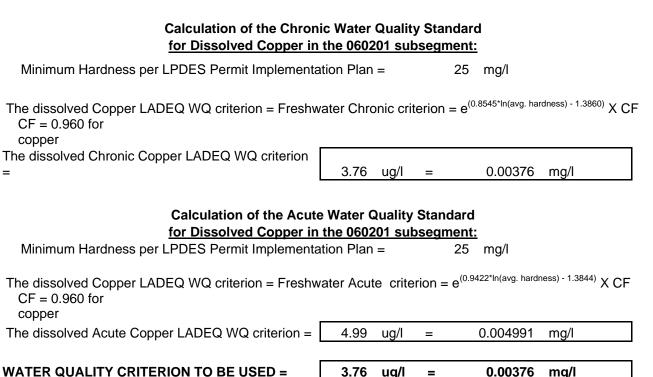
2. Study Area Description

2.1 Bayou Cocodrie, Subsegment 060201

Bayou Cocodrie flows from its headwaters at Cocodrie Lake through the town of St. Landry to the Bayou Bouef / Cocodrie Diversion Canal thence to Bayou Courtableau thence to Bayou Teche. A location map is shown as Attachment A.

Bayou Cocodrie is part of the Vermilion-Teche River Basin and lies in the Western Gulf Coastal Plain ecoregion. The Basin is characterized as plains/prairie, and the land is generally flat with a very gradual slope toward the Gulf of Mexico. The predominant land use in the Basin is agricultural.

Land use in Subsegment 060201, is shown in Table 2 and presented in a map in Attachment B. (LDEQ, GAP June 2000) Average annual rainfall in the Vermilion-Teche River Basin is near 60 inches, and average annual temperature is 68°F.


Land Use	Area (Acres)	% Land Use
Upland Forest Mixed	16120.20	15.48
Agriculture/Cropland/Grassland	14629.78	14.05
Wetland Forest Deciduous	13729.52	13.19
Upland Forest Evergreen	9644.14	9.26
Upland S/S Mixed	8449.17	8.11
Upland Forest Evergreen	7989.40	7.67
Wetland Forest Deciduous	7255.85	6.97
Upland Forest Deciduous	6354.26	6.10
Upland Forest Deciduous	6109.50	5.87
Upland Forest Mixed	3642.15	3.50
Upland S/S Mixed	2892.24	2.78
Agriculture/Cropland/Grassland	2308.83	2.22
Upland S/S Evergreen	1435.38	1.38
Wetland Forest Mixed	1023.48	0.98
Water	902.03	0.87
Dense Pine Thicket	639.03	0.61
Water	223.17	0.21
Vegetated Urban	197.62	0.19
Dense Pine Thicket	191.04	0.18
Wetland S/S Mixed	181.25	0.17

Land Use	Area (Acres)	% Land Use
Wetland S/S Deciduous	54.26	0.05
Upland S/S Evergreen	52.26	0.05
Fresh Marsh	50.71	0.05
Wetland Barren	31.23	0.03
Upland Barren	9.30	0.01

2.2 Water Quality Standards

The designated uses for Bayou Cocodrie include primary contact recreation, secondary contact recreation, propagation of fish and wildlife and outstanding natural resource water. From Louisiana's LPDES Implementation Plan: "Metals criterion for aquatic life protection are based on dissolved metals concentrations in ambient waters. They are a function of hardness (CaCO₃), which typically will be obtained from average two-year data compilations contained in the latest Louisiana Water Quality Data Summary (Units in mg/l). However, other comparable data compilations or reports or water body specific data provided by the applicant may be considered. The minimum hardness shall be 25 mg/l and the maximum hardness shall be 400 mg/l used in hardness dependent metal criterion calculations in accordance with 40 CFR 131.36 (c) (4) (i)." The hardness values from the ambient sampling record were less than 25 mg/l, so the minimum hardness of 25 mg/l was used. The criterion was calculated for both acute and chronic protection and the most stringent was established as the criterion. The resulting copper criterion is 3.76 ug/l and is applied as a daily maximum. The calculations are shown in Table 3.

Table 3. Calculation of the WQ Criterion for Dissolved Copper in Subsegment060201:

2.3 Identification of Sources

The suspected major source is the CLECO Evangeline, LLC plant located near the town of St. Landry. The facility has multiple discharges associated with the operation of a steam electric generating plant. The facility has revamped their piping system to eliminate as many sources of copper as possible with today's technology. Other point and non-point sources could also be contributing to the problem but none were located at this time. The discharger in this case is unique. Once through non-contact cooling water is withdrawn from Bayou Cocodrie and then discharged to Mountain Bayou Lake. The water discharges from the Lake back to Bayou Cocodrie at two points as shown by the map. Both discharge due to evaporative losses in the lakes. At critical conditions, this difference is 3.04MGD. CLECO has no control over rainfall runoff that flows to Mountain Bayou Lake from the Lake's watershed. The effluent discharge is therefore a combination of plant effluent and stormwater runoff at various times. The facility is planning to perform a Water Effects Ratio (WER) or similar sampling program to identify and quantify any remaining sources of copper in their effluent and measure the actual stream water quality. Current assessments show no copper problem in the stream.

3. **TMDL**

The dissolved copper TMDL is based on maintaining the water quality criterion downstream from the only known source of copper in the watershed. In accordance with current regulations, the criterion value is 3.76 ug/l. The WER will verify that the standard is appropriate for the stream.

The TMDL established in 2000 treated CLECO as a "black box" having a net effect on Bayou Cocodrie. This approach proved impractical for implementation purposes since there was actually a small distance along the Bayou where the flow was the total of the plant effluent flow, any stormwater flow to Mountain Bayou Lake, and the headwater flow. The resulting copper load was increased accordingly in this small reach.

For the purpose of TMDL development in 2006, a mass balance model was developed which addresses the headwater conditions, the CLECO outfalls from Mountain Bayou Lake and the CLECO cooling water intake on Bayou Cocodrie. The uncontrollable stormwater flow into Mountain Lake Bayou cannot be measured and is therefore not included in the TMDL, providing an implicit margin of safety. The model was based on maintaining the copper criterion downstream from the cooling water intake. Since the CLECO plant is a merchant peak power plant with a wide variety of flows, an effluent discharge flow-based equation was developed to determine the permissible loading from CLECO.

CLECO Effluent Load in lbs/day = 0.0158*(CLECO flow in MGD) + 0.5108

The TMDL shown in Table 4 is based on critical conditions in the bayou and peak flow from the plant. The headwater concentration of 0.02 ug/l dissolved Cu is identical to the Cu concentration out of Bayou Chicot and was thus assumed to be the natural background nonpoint source loading. There are no other man-made sources known to exist. A margin of safety of 50% was used in this case.

Table 4. Total Maximum Daily Load of Dissolved Copper at CLECO Total Discharge Flow =350 MGD

ALLOCATION		
	% Reduction Required	TMDL lbs/day
Point Source WLA	0	6.06
Point Source Reserve MOS = 50%		6.06
Natural Nonpoint Source LA	0	0.06
Natural Nonpoint Source Reserve MOS (not used)		0
TMDL		12.18

3.1 Seasonal Variability

The water quality criterion for dissolved copper is a year-round value thus the TMDL is applicable year round. No seasonal variability is expected or observed for copper concentrations in ambient waters.

3.2 Margin of Safety (MOS)

The Clean Water Act requires that TMDLs take into consideration a margin of safety. EPA guidance allows for the use of implicit or explicit expressions of the margin of safety or both. When conservative assumptions are used in the development of the TMDL or conservative factors are used in the calculations, the margin of safety is implicit. In this TMDL for dissolved copper, there is an explicit margin of safety of 50%.

4. Monitoring Plan

LDEQ has developed this TMDL to be consistent with the state antidegradation policy (LAC 33:IX.1109.A).

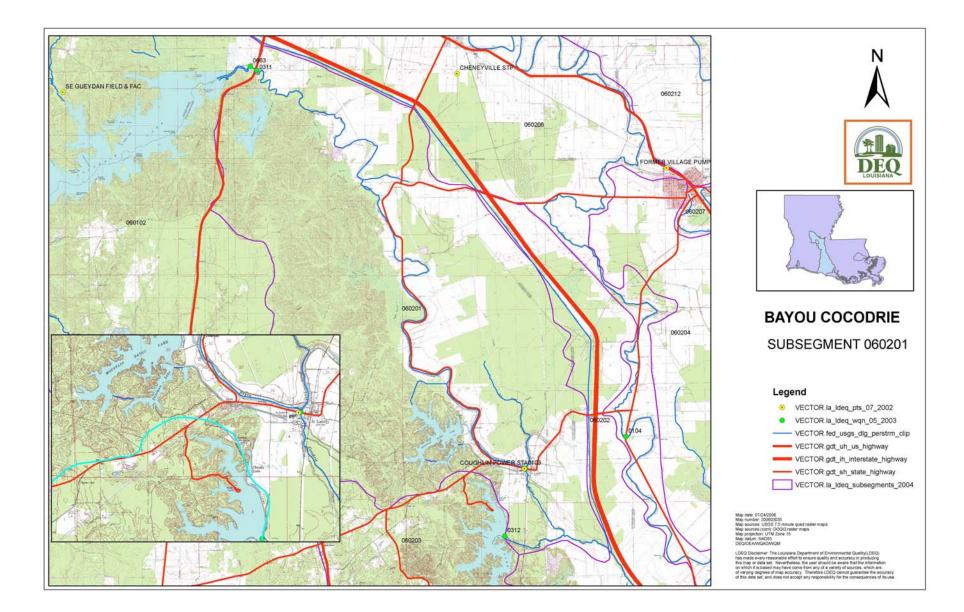
LDEQ will work with other agencies such as local Soil Conservation Districts to implement agricultural best management practices in the watershed through the 319 programs. LDEQ will also continue to monitor the waters to determine whether standards are being attained.

In accordance with Section 106 of the federal Clean Water Act and under the authority of the Louisiana Environmental Quality Act, the LDEQ has established a comprehensive program for monitoring the quality of the state's surface waters. The LDEQ Surveillance Section collects surface water samples at various locations, utilizing appropriate sampling methods and procedures for ensuring the quality of the data collected. The objectives of the surface water monitoring program are to determine the quality of the state's surface waters, to develop a long-term database for water quality trend analysis, and to monitor the effectiveness of pollution controls. The data obtained through the surface water monitoring program is used to develop the state's biennial 305(b) report (*Water Quality Inventory*) and the 303(d) list of impaired waters. This information is

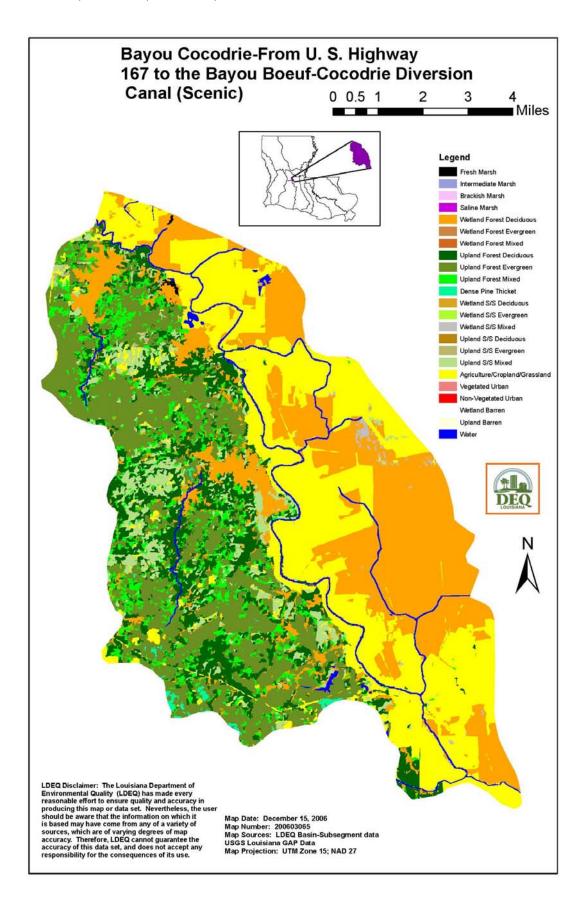
The LDEQ is continuing to implement a watershed approach to surface water quality monitoring. In 2004 a four year sampling cycle replaces the previous five year cycle. Approximately one quarter of the states watersheds will be sampled each year so that all of the state's watersheds will be sampled within the four year cycle. This will allow LDEQ to determine whether there has been any improvement in water quality following implementation of the TMDLs. As the monitoring results are evaluated at the end of each year, waterbodies may be added to or removed from the 303(d) list.

also utilized in establishing priorities for the LDEQ nonpoint source program.

REFERENCES


 Louisiana Department of Environmental Quality. Permitting Guidance Document For Implementing Louisiana Surface Water Quality Standards Water Quality Management Plan Volume 3. Louisiana Department of Environmental Quality, Office of Environmental Services, Baton Rouge, 2001.

Louisiana Department of Environmental Quality. *Environmental Regulatory Code, Part IX. Water Quality Regulations*. Louisiana Department of Environmental Quality, 2005


Lowflow on Streams in Louisiana. Fred N. Lee. Louisiana Department of Environmental Quality, Water Quality Assessment Division, WQ Modeling Section, 2000.

Bayou Cocodrie Watershed TMDL Report. ftn Associates, Ltd., December 22, 1999.

ATTACHMENT A

ATTACHMENT B

ATTACHMENT C

CLECO LOAD GRAPH

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

- M = CLECO monthly average mass limitation (lb/d)
- Q1 = Bayou Cocodrie upstream critical flow (mgd)
- Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls???, 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

- Q3 = CLECO intake rate from Bayou Cocodrie (mgd)
- Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $C^{*}(Q1+Q2-Q3)^{*}8.32 = (Y^{*}Q1^{*}8.34) + (X^{*}Q2^{*}8.34) - Q3^{*}8.34^{*}(Y^{*}Q1+X^{*}Q2)/(Q1+Q2)$ $C^{*}(Q1+Q2-Q3) = Y^{*}Q1 + X^{*}Q2 - Y^{*}Q1^{*}Q3/(Q1+Q2) + X^{*}Q2^{*}Q3/(Q1+Q2)$

$$X = \frac{C * (Q1 + Q2 - Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}}{Q2 - \frac{Q2 * Q3}{Q1 + Q2}}$$

2. Mass balance between CLECO discharge and intake: C*(Q1+Q2)*8.32 = (Y*Q1*8.34) + (X*Q2*8.34)

V -	$C^*(Q1+Q2)-Y^*Q1$
	Q2

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.60	34.00	0.06		lbs/d
Q2 =			350.00			
Q3 =			353.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0050					
% MOS =	20			3.1848		
L = X - MOS				0.0044	0.0044	mg/l
Μ				12.7393	12.7393	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

- M = CLECO monthly average mass limitation (lb/d)
- Q1 = Bayou Cocodrie upstream critical flow (mgd)
- Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls???, 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

Q3 = CLECO intake rate from Bayou Cocodrie (mgd)

Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^*(Q1+Q2-Q3)^*8.32 = (Y^*Q1^*8.34) + (X^*Q2^*8.34) - Q3^*8.34^*(Y^*Q1+X^*Q2)/(Q1+Q2) \\ C^*(Q1+Q2-Q3) = Y^*Q1 + X^*Q2 - Y^*Q1^*Q3/(Q1+Q2) + X^*Q2^*Q3/(Q1+Q2) \end{array}$

$$X = \frac{C * (Q1 + Q2 - Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}}{Q2 - \frac{Q2 * Q3}{Q1 + Q2}}$$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.32 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			226.00			
Q3 =			229.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0050					
% MOS =	20			2.1529		
L = X - MOS				0.0046	0.0046	mg/l
Μ				8.6118	8.6118	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

- L = CLECO monthly average concentration limitation (mg/l)
- M = CLECO monthly average mass limitation (lb/d)
- Q1 = Bayou Cocodrie upstream critical flow (mgd)
- Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)
- (Total for Outfalls???, 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)
- Q3 = CLECO intake rate from Bayou Cocodrie (mgd)
- Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^{*}(Q1+Q2-Q3)^{*}8.32 = (Y^{*}Q1^{*}8.34) + (X^{*}Q2^{*}8.34) - Q3^{*}8.34^{*}(Y^{*}Q1+X^{*}Q2)/(Q1+Q2) \\ C^{*}(Q1+Q2-Q3) = Y^{*}Q1 + X^{*}Q2 - Y^{*}Q1^{*}Q3/(Q1+Q2) + X^{*}Q2^{*}Q3/(Q1+Q2) \end{array}$

Y -	$C^{*}(Q1+Q2-Q3) - Y^{*}Q1 + \frac{Y^{*}Q1^{*}Q3}{(Q1+Q2)}$
Λ -	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake:

 $C^{*}(Q1+Q2)^{*}8.32 = (Y^{*}Q1^{*}8.34) + (X^{*}Q2^{*}8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.60	34.00	0.06		lbs/d
Q2 =			90.00			
Q3 =			93.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0050					
% MOS =	20			1.0208		
L = X - MOS				0.0054	0.0054	mg/l
Μ				4.0830	4.0830	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

M = CLECO monthly average mass limitation (lb/d)

Q1 = Bayou Cocodrie upstream critical flow (mgd)

Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls???, 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

Q3 = CLECO intake rate from Bayou Cocodrie (mgd)

Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^{*}(Q1+Q2-Q3)^{*}8.34 = (Y^{*}Q1^{*}8.34) + (X^{*}Q2^{*}8.34) - Q3^{*}8.34^{*}(Y^{*}Q1+X^{*}Q2)/(Q1+Q2) \\ C^{*}(Q1+Q2-Q3) = Y^{*}Q1 + X^{*}Q2 - Y^{*}Q1^{*}Q3/(Q1+Q2) + X^{*}Q2^{*}Q3/(Q1+Q2) \end{array}$

$C*(\underline{\zeta})$	$Q1 + Q2 - Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}$
A -	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			3.10			
Q3 =			6.14			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0050					
% MOS =	20			0.2977		lbs/d
L = X - MOS				0.0461	0.0461	mg/l
M				1.1907	1.1907	lbs/d

MEMORANDUM

TO:	Melani	e Connor
10.	wiciam	C COIIIIOI

FROM: Brian Baker

DATE: August 22, 2006

RE: Stream Flow and Water Quality Characteristics for Bayou Cocodrie, receiving water for CLECO Power Evangeline Plant (Permit No. LA0002879, AI: 1906)

Determinations of water quality characteristics for the outfalls were taken from ambient monitoring station No. 103 on Bayou Cocodrie at a bridge on Hwy 106 in St. Landry about 8 miles southwest of Bunkie, LA.

The following results were obtained:

Average hardness	=	18.0 mg/l
15 th percentile TSS	=	6 mg/l

The critical (7Q10) and harmonic mean flow of Bayou Cocodrie was obtained from a USGS Station number 07382000 near Clearwater, Louisiana. The calculations yielded the following information;

Critical Flow (7Q10)	= 52.6 CFS
Harmonic Mean Flow	= 191.0 CFS

If you have additional questions or comments, please contact me at 2-3466.

BMB:bb

Flow determinations for the dissolved Copper TMDL on Bayou Cocodrie (Subsegment 060201):

Flow description	Flow value (cfs)	Justification
Headwater	52.872	Note 1
Incremental (nonpoint)	0	Note 2
Flow Losses	-4.7	Note 3
Total Flow for system	48.2	

- Note 1 Headwater to system is outflow from Cocodrie Lake. This was determined from the published "Lowflow Statistics from USGS Database Through 1993". This excerpt from the attached document calculates a 7Q10 on Bayou Cocodrie near Clearwater, LA(USGS station 07382000).
- Note 2 This value was taken from the summer projection of the Bayou Cocodrie water quality model for dissolved oxygen. This model was performed by ftn Associates, Ltd. in December, 1999.
- Note 3 This value was taken from the summer projection of the Bayou Cocodrie water quality model for dissolved oxygen. This model was performed by ftn Associates, Ltd. in December, 1999. This accounts for the evaporative losses from CLECO operations and is based on the surface area of cooling lake and Aug-Sep evaporation.

07382000 BAYOU COCODRIE NEAR CLEARWATER	07382000	BAYOU	COCODRIE	NEAR	CLEARWATER	
---	----------	-------	----------	------	------------	--

Analysis	for	 12 month period	
		starting April	1
		ending March	31
		1940-1999	

Parameter is 7-day low value.

0 zero values in data

59 non-zero values	s in data			
65.571	84.714	129.143	77.286	76.857
85.000	93.571	92.000	76.571	60.000
82.286	84.571	64.000	52.000	82.000
58.286	75.000	60.000	82.143	31.429
81.429	52.857	98.571	84.857	55.143
64.286	64.286	83.714	78.714	91.286
78.857	56.857	71.000	78.571	139.143
95.857	102.714	76.571	72.286	46.429
131.000	61.000	58.57 1	72.571	105.143
132.429	128.429	102.000	43.143	68.571
80.000	73.571	94.143	109.286	97.857
117.7 14	113.714	57.000	53.143	

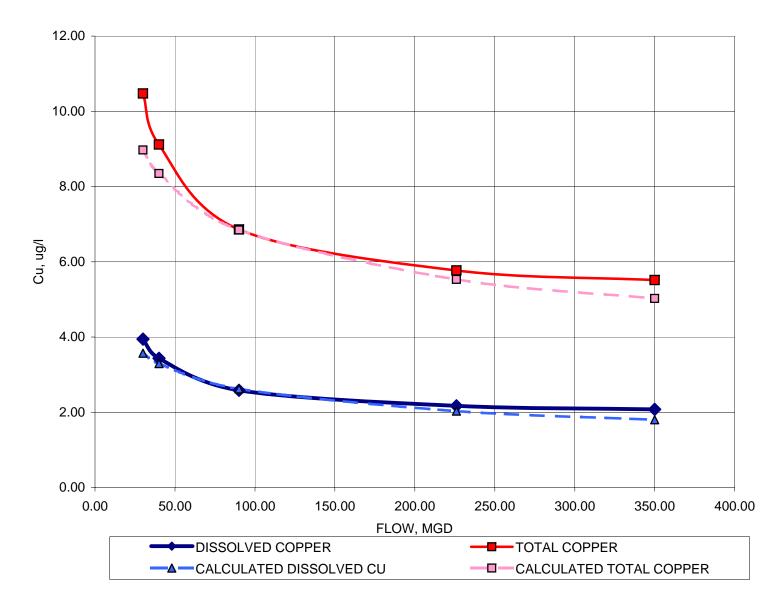
The following 7 statistics are based on non-zero values.

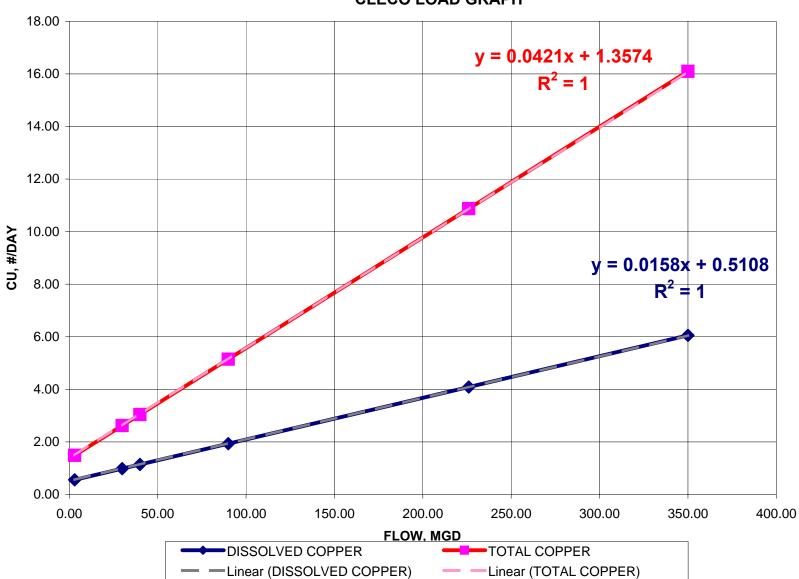
Mean (logs)	1.891
Variance (logs)	0.017
Standard Deviation (logs)	0.129
Skewness (logs)	-0.300
Standard Error of Skewness (logs)	0.311
Serial Correlation Coefficient (logs)	0.149
Coefficient of Variation (logs)	0.068

1

07382000 BAYOU COCODRIE NEAR CLEARWATER

Non-exceedance Probability	Recurrence Interval	Parameter Value
0.0100	100.00	36.449
0.0200	50.00	40.252
0.0500	20.00	46.507
0.1000	10.00	52.643
0.2000	5.00	60.831
0.5000	2.00	78,902
0.8000	1.25	100.207
0.9000	1.11	112.621
0.9600	1.04	126.792
0.9800	1.02	136.438
0.9900	1.01	145.428


								1					
												Sum of Absolute value Diff.	Sum of Diff. squared
TOTAL	CONCENTRATION	CONCENTRATION	LOAD									3.02	3.16
CLECO	TOTAL	TOTAL	TOTAL				[Cu] ua	/1-/	AQ ^B + C			0.02	00
DISCHARGE	-	COPPER	COPPER				[00] 09/	1					
	mg/l		#/day									ABSOLUTE VALUE OF DIFFERENCE	ABSOLUTE VALUE OF DIFFERENCE SQUARED
										CALC			
						_	-			[Cu]			
0.40	0.0575			A		В	С		Q, MGD	ug/l	[Cu] ug/l	delta	delta
3.10	0.0575				24	0 20000	1 1		20	0.07	10.47	1.50	2.20
30.00 40.00	0.0105				21 21	-0.30000			30 40	8.97 8.34	10.47 9.12		2.26
90.00	0.0091				21	-0.30000			90	6.84			0.00
226.00	0.0058		10.87		21	-0.30000		_	226	5.53			0.06
350.00	0.0055		16.09		21			_	350	5.02	5.51		
				т	DTAL C		ITRATIO	ON	EQUATION	I FOR Q	≥30 MGD		
					WHERE Q IS THE COMBINED FLOWS FROM OUTF					FALLS 002	2 AND 003		
				[C	u] ug/l =	= 21 Q ^{- 0.30}	+ 1.4						
				тс	OTAL C	U MASS E	QUATIO	N	FOR ALL F	LOWS			
				ΓC	u] LB/D	AY = 0.042	1Q + 1.3	357	74				
					-								
				Q	IN MG)							


		permit		
FLOW	DISSOLVED	TOTAL		
	CU	CU		
MGD	mg/l	mg/L		
3.10	0.021659	0.057550		
30.00	0.003942	0.010474		
40.00	0.003431	0.009117		
90.00	0.002581	0.006857		
226.00	0.002171	0.005769		
350.00	0.002075	0.005514		
		permit		
FLOW		TOTAL		
		CU		
MGD		ug/l		
3.10		57.550		
30.00		10.474		
40.00		9.117		
90.00		6.857		
226.00		5.769		
350.00		5.514		
		permit		
FLOW		TOTAL		
		CU		
MGD		LB/DAY		
3.10		1.488		
30.00		2.621		
40.00		3.042		
90.00		5.147		
226.00		10.873		
350.00		16.094		
II				I

CONVERT	DISSOLVED METALS	TO TOTAL METALS: (TION PLAN)					
The formul	a for streams and lakes	s is as follows:							
		_o x TSS ^a							
	K _n = Linear	r partition coefficient							
		pended solids concentr	ation receiving stream	, units in mg/l					
		d from Table 1 - Implem		Ŭ					
		rom Table 1 - Implemer							
	C _D	=	1						
	C _T	$1 + (K_{D})$	(TSS)(10 ⁻⁶)						
		· · · · · · · · · · · · · · · · ·							
		action of metal dissolve							
	C _r = Dissol	ved Criteria Value = 0.0	003757 mg/l						
	Total M	etal Criteria = C _r /	(C_D/C_T)						
	From Table	e 1 for streams:							
	Metal	K _{po}	а						
	ivictar	Гро	α				-		
	Copper	1.04 x 10 ⁶	-0.74						
	From Data				PERMITS CALC				
	15th Perce	entile TSS			6				
	K _p =				276185.8				
	P								
	C _D								
	U D =				0.376348				
					0.0700-0				
	C _T								
	Total Metal Cr	itoria =			0.00002				
					0.009983 mg/l				
L									

													Sum of Absolute	Sum of Diff.
													value Diff.	squared
_	CONCENTRATION	CONCENTRATION	LOAD							_			0.97	0.26
	DISSOLVED	DISSOLVED	DISSOLVED					[Cu]	ug/l=	AQ ^B +C				
DISCHARGE	COPPER	COPPER	COPPER											
MOD													ABSOLUTE VALUE OF	ABSOLUTE VALUE OF DIFFERENCE
MGD	mg/l	ug/l	#/day								CALC [Cu]		DIFFERENCE	SQUARED
					А	в		с		Q, MGD	ug/l	[Cu] ug/l	delta	delta
3.10	0.0217	21.66	0.5	3							ug/i			
30.00					9	9.3	-0.29000)	0.1	30	3.57	3.94	0.37	0.14
40.00						9.3	-0.29000		0.1	40				
90.00		2.58	1.9	1		9.3	-0.29000		0.1	90				0.00
226.00		2.17				9.3	-0.29000		0.1	22				
350.00	0.0021	2.08	6.0	5		9.3	-0.29000)	0.1	350	0 1.80	2.08	0.27	0.08
							CU CONCEN	TDAT						
							THE COMBI						003	
							3 Q ^{-0.29} + 0.1							
					DISS	OLVED	CU MASS EC	QUAT		FOR ALL F	LOWS			
					[Cu] I	B/DAY	= 0.0158Q + (0.5108	3					
							- 0.0100321 (-					
					Q IN	MGD								

CLECO CONCENTRATION GRAPH

CLECO LOAD GRAPH

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

- M = CLECO monthly average mass limitation (lb/d)
- Q1 = Bayou Cocodrie upstream critical flow (mgd)
- Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

- Q3 = CLECO intake rate from Bayou Cocodrie (mgd)
- Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

C*(Q1+Q2-Q3)*8.32 = (Y*Q1*8.34) + (X*Q2*8.34) - Q3*8.34*(Y*Q1+X*Q2)/(Q1+Q2) C*(Q1+Q2-Q3) = Y*Q1 + X*Q2 - Y*Q1*Q3/(Q1+Q2) - X*Q2*Q3/(Q1+Q2)

$$X = \frac{C * (Q1 + Q2 - Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}}{Q2 - \frac{Q2 * Q3}{Q1 + Q2}}$$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.32 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

Y -	$C^*(Q1+Q2)-Y^*Q1$
Λ -	Q2

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			350.00			
Q3 =			353.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0038					
% MOS =	50			6.0569		
L = X - MOS				0.0021	0.0021	mg/l
Μ				6.0569	6.0569	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

- M = CLECO monthly average mass limitation (lb/d)
- Q1 = Bayou Cocodrie upstream critical flow (mgd)
- Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

Q3 = CLECO intake rate from Bayou Cocodrie (mgd)

Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^*(Q1+Q2-Q3)^*8.32 = (Y^*Q1^*8.34) + (X^*Q2^*8.34) - Q3^*8.34^*(Y^*Q1+X^*Q2)/(Q1+Q2) \\ C^*(Q1+Q2-Q3) = Y^*Q1 + X^*Q2 - Y^*Q1^*Q3/(Q1+Q2) - X^*Q2^*Q3/(Q1+Q2) \\ \end{array}$

Y -	$C^{*}(Q1+Q2-Q3) - Y^{*}Q1 + \frac{Y^{*}Q1^{*}Q3}{(Q1+Q2)}$
Λ –	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.32 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			226.00			
Q3 =			229.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0038					
% MOS =	50			4.0920		
L = X - MOS				0.0022	0.0022	mg/l
Μ				4.0920	4.0920	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

- L = CLECO monthly average concentration limitation (mg/l)
- M = CLECO monthly average mass limitation (lb/d)
- Q1 = Bayou Cocodrie upstream critical flow (mgd)
- Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)
- (Total for Outfalls 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)
- Q3 = CLECO intake rate from Bayou Cocodrie (mgd)
- Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^{*}(Q1+Q2-Q3)^{*}8.32 = (Y^{*}Q1^{*}8.34) + (X^{*}Q2^{*}8.34) - Q3^{*}8.34^{*}(Y^{*}Q1+X^{*}Q2)/(Q1+Q2) \\ C^{*}(Q1+Q2-Q3) = Y^{*}Q1 + X^{*}Q2 - Y^{*}Q1^{*}Q3/(Q1+Q2) - X^{*}Q2^{*}Q3/(Q1+Q2) \end{array}$

Y -	$C^{*}(Q1+Q2-Q3) - Y^{*}Q1 + \frac{Y^{*}Q1^{*}Q3}{(Q1+Q2)}$
Λ -	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake:

 $C^{*}(Q1+Q2)^{*}8.32 = (Y^{*}Q1^{*}8.34) + (X^{*}Q2^{*}8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			90.00			
Q3 =			93.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0038					
% MOS =	50			1.9370		
L = X - MOS				0.0026	0.0026	mg/l
M				1.9370	1.9370	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

M = CLECO monthly average mass limitation (lb/d)

Q1 = Bayou Cocodrie upstream critical flow (mgd)

Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

Q3 = CLECO intake rate from Bayou Cocodrie (mgd)

Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^*(Q1+Q2-Q3)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34) - Q3^*8.34^*(Y^*Q1+X^*Q2)/(Q1+Q2) \\ C^*(Q1+Q2-Q3) = Y^*Q1 + X^*Q2 - Y^*Q1^*Q3/(Q1+Q2) - X^*Q2^*Q3/(Q1+Q2) \end{array}$

C * (Q1 + Q2)	$(-Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}$
Λ	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			40.00			
Q3 =			43.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0038					
% MOS =	50			1.1447		lbs/d
L = X - MOS				0.0034	0.0034	mg/l
M				1.1447	1.1447	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

M = CLECO monthly average mass limitation (lb/d)

Q1 = Bayou Cocodrie upstream critical flow (mgd)

Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

Q3 = CLECO intake rate from Bayou Cocodrie (mgd)

Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^*(Q1+Q2-Q3)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34) - Q3^*8.34^*(Y^*Q1+X^*Q2)/(Q1+Q2) \\ C^*(Q1+Q2-Q3) = Y^*Q1 + X^*Q2 - Y^*Q1^*Q3/(Q1+Q2) - X^*Q2^*Q3/(Q1+Q2) \end{array}$

C * (Q1 + Q2)	$(-Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}$
Λ	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			30.00			
Q3 =			33.04			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0038					
% MOS =	50			0.9862		lbs/d
L = X - MOS				0.0039	0.0039	mg/l
Μ				0.9862	0.9862	lbs/d

MASS BALANCE MODEL FOR CLECO ALLOCATIONS

X = CLECO monthly average discharge concentration which causes the downstream concentration to equal the criteria (mg/l)

L = CLECO monthly average concentration limitation (mg/l)

M = CLECO monthly average mass limitation (lb/d)

Q1 = Bayou Cocodrie upstream critical flow (mgd)

Q2 = CLECO discharge rate from Mountain Bayou Lake to Bayou Cocodrie (mgd)

(Total for Outfalls 002 and 003)(Equivalent to Q3 less 4.7 cfs in evaporative losses)

Q3 = CLECO intake rate from Bayou Cocodrie (mgd)

Y = Bayou Cocodrie upstream Cu concentration (mg/l)

C = Cu criteria (mg/l)

MOS = % Margin of safety

A mass balance at any point in Bayou Cocodrie between the CLECO discharge and the CLECO intake should yield the same mg/l allocation as a mass balance in Bayou Cocodrie below the CLECO intake. The latter implements a net CLECO discharge of copper. The former takes advantage of the fact that the in-stream concentration of copper will be the same above and below the CLECO withdrawal.

1. Mass balance downstream of CLECO intake:

 $\begin{array}{l} C^*(Q1+Q2-Q3)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34) - Q3^*8.34^*(Y^*Q1+X^*Q2)/(Q1+Q2) \\ C^*(Q1+Q2-Q3) = Y^*Q1 + X^*Q2 - Y^*Q1^*Q3/(Q1+Q2) - X^*Q2^*Q3/(Q1+Q2) \\ \end{array}$

C * (Q1 + Q2)	$-Q3) - Y * Q1 + \frac{Y * Q1 * Q3}{(Q1 + Q2)}$
Λ	$Q2 - \frac{Q2 * Q3}{Q1 + Q2}$

2. Mass balance between CLECO discharge and intake: $C^*(Q1+Q2)^*8.34 = (Y^*Q1^*8.34) + (X^*Q2^*8.34)$

$$X = \frac{C * (Q1 + Q2) - Y * Q1}{Q2}$$

3. CLECO mass limitation:

 $M = X^*Q2^*8.34$

				Mass	Mass	
		cfs	mgd	Balance 1	Balance 2	Units
Q1 =		52.64	34.03	0.06		lbs/d
Q2 =			3.10			
Q3 =			6.14			
Y (mg/l) =	0.0002					
C (mg/l) =	0.0038					
% MOS =	50			0.5600		lbs/d
L = X - MOS				0.0217	0.0217	mg/l
M				0.5600	0.5600	lbs/d

TOTAL		CONCENTRATION	CONCENTRATION	LOAD		
CLECO		DISSOLVED	DISSOLVED	DISSOLVED		
DISCHARC	GE	COPPER	COPPER	COPPER		
MGD		mg/l	ug/l	#/day		
3.10		0.0461	46.05	1.19		
90.00		0.0054	5.44	4.08		
226.00		0.0046	4.57	8.61		
350.00		0.0044	4.36	12.74		
The equite is still less stringent then shrenin an shrenin explice						
The acute I	The acute is still less stringent than chronic, so chronic applies.					