

BAYOU CANE WATERSHED TMDL FOR BIOCHEMICAL OXYGEN-DEMANDING SUBSTANCES—PHASE I

SUBSEGMENTS 040903 and 040904

SURVEYED June 16 – 20, 2008

TMDL REPORT

By:

Water Quality Modeling/TMDL Section
Water Permits Division
Office of Environmental Services
Louisiana Department of Environmental Quality

FEBRUARY 4, 2011

TECHNICAL SUMMARY

Bayou Cane, located in St. Tammany Parish in subsegments 040903 and 040904, was listed in the 2006 Integrated Report and the consent decree. Bayou Cane was subsequently scheduled for TMDL development with other listed waters in the Lake Pontchartrain Basin. Bayou Cane is also listed in the Draft 2008 Integrated Report which is currently under review by EPA and has not yet been approved. This TMDL report addresses the organic enrichment/low DO impairment.

Subsegment 040903 was assessed using Louisiana's Ambient Water Quality Monitoring Site number 0302 which is on Bayou Cane at the U.S. 190 bridge. There is no other ambient monitoring site located on Bayou Cane. Subsegment 040904 was assessed using ambient monitoring site number 1046 which is on Bayou Castine at Prieto Marina. Ambient monitoring site 1046 was previously selected by LDEQ to represent the Subsegment 040904. However, site 1046 may not be an appropriate assessment site for Bayou Cane since Bayou Cane has been designated as an Outstanding Natural Resource Water (ONRW). Historical data from site 1046 was not used in the development of these TMDLs.

Subsegment 040903 was found to be "not supporting" any of its designated uses of Primary Contact Recreation, Fish and Wildlife Propagation, and Outstanding Natural Resource Waters.

Subsegment 040904 was found to be "not supporting" any of its designated uses of Primary Contact Recreation, Secondary Contact Recreation, Fish and Wildlife Propagation, and Outstanding Natural Resource Waters.

This TMDL establishes load limitations for oxygen-demanding substances for the Bayou Cane watershed in subsegments 040903 and 040904. Oxygen-demanding parameters modeled included CBOD, NBOD, and DO.

LDEQ is utilizing a phased TMDL approach for Bayou Cane as shown in the Table 1. This approach will allow LDEQ to meet its TMDL commitments, revise the subsegments, revise the dissolved oxygen criteria, develop nutrient criteria, and develop meaningful and implementable TMDL reports based on appropriate DO criteria. At the same time, it will lead to improved water quality while providing local governments, businesses, and stakeholders the opportunity to prepare and adjust to new permit requirements that will be required as a result of the TMDLs developed in Phases I and II.

Phase I consists of the implementation of a permitting strategy and the calculation of the TMDL. The TMDL calculation was based on the nonpoint and point source loading values that meet the current DO criteria for Bayou Cane. The nonpoint reductions and the limits for the hospital were acquired through the modeling process. Phase I will serve as the first step towards meeting the DO criteria for Bayou Cane.

Table 1. Bayou Cane Phased TMDL Approach

Stage / Phase	DO Criteria (mg/L)	Implementation Date
Phase I	5.0 (Subsegment 040903)	Phase I implementation required
	4.0 (Subsegment 040904)	upon EPA approval of the
		TMDL and subsequent update
		of the Louisiana's Water Quality
		Management Plan
Ecoregion-based UAA		
developed and DO criteria		
revised and promulgated		
Phase II	Appropriate DO criteria based on	Phase II implementation
	UAA	required upon EPA approval of
		Phase II of the TMDL and
		subsequent update of the
		Louisiana's Water Quality
		Management Plan

LDEQ has designated Bayou Cane to be an Outstanding Natural Resource Water (ONRW). A review of point source dischargers and modeling results indicate that the impairments under the existing criteria may be caused largely by natural conditions. The only point source having a significant impact on Bayou Cane is the Southeast Louisiana State hospital. The permitting strategy for the Bayou Cane TMDL is intended to protect the ONRW status of Bayou Cane by improving the water quality at this time and preventing the degradation of the water quality in the future.

The implementation of permit limits will occur according to the following strategy:

Phase I Permit Implementation

All TMDL, permitting, and enforcement activities will be conducted in accordance with the Clean Water Act, the Louisiana Environmental Regulatory Code, and applicable state laws.

1. New Discharges of oxygen-demanding loads:

Due to the ONRW status of Bayou Cane, the waterbody is afforded Tier 3 protection according to 40 CFR 131.12 (a)(3). New or increased discharges that will cause degradation, as defined in LAC 33:IX.1119.C.4, will not be approved. However, in the event that such a discharge will not cause degradation and one of the following requirements can be attained, LDEQ may permit the new discharge. Such new facilities may be required to submit an environmental impact assessment to LDEQ's permitting staff which will conduct a thorough evaluation of the proposed facility based on environmental impacts, economic benefits, an analysis of alternatives, and other pertinent factors. The typical permit limits will be 5 mg/L BOD₅ / 2 mg/L NH₃ / 5 mg/L DO.

- a. The facility demonstrates that it will provide a significant load reduction of man-made oxygen-demanding constituents to the impaired watershed(s) serviced by the facility. The facility must also contribute to a reduction in the number of facilities discharging to the watershed(s). Facilities that may be considered for permits under this provision include, but are not limited to:
 - i. A facility that will provide improved sewage treatment to multiple subdivisions previously serviced by wastewater treatment plants that are incapable of treating to tertiary limits.
 - ii. A facility that will provide sewage treatment to previously unsewered areas in which many of the sanitary discharges from permitted facilities and individual home treatment units were entering an impaired watershed. As a result, the facility would be expected to provide more efficient treatment to the wastewater and reduce the net loading of oxygen-demanding substances in the watershed.
- b. The facility demonstrates that its wastewater will not leave the facility or its property. Significant stormwater events do not apply to this provision. For the purpose of this provision, a significant stormwater event is defined as the 25 year, 24 hour rainfall event or its numerical equivalent, as defined by the Southern Regional Climate Center.
 - i. Facilities that may be considered under this provision include, but are not limited to:
 - a. Effluent reduction systems that have been approved by the Louisiana Department of Health and Hospitals.
 - b. Wastewater treatment plants equipped with overland flow systems in which the effluent will not leave the facility.
 - c. Wastewater treatment plants equipped with holding ponds that will retain the effluent such that the effluent will not leave the facility.
 - ii. LDEQ recognizes that some local governments are in the process of building or expanding regional sewage collection and treatment systems. In such areas, LDEQ may, on a limited basis, grant permits to facilities that agree to tie into a regional collection and treatment system when it becomes available. LDEQ must have reasonable assurance that the facility will connect to the regional collection system. Reasonable assurance may include a formal agreement

between the facility, the owner and operator of the regional wastewater treatment system, and LDEQ. The regional system must have the capacity to treat the additional wastewater. Such a permit may have a duration of less than five years or it may have a five year duration with interim permit limits. The facility will be required to cease all wastewater discharges to Bayou Cane and transfer the discharge to the regional collection system once the permit or interim limits expire or the collection system is available to the facility, whichever comes first. Such new facilities will be required to submit an environmental impact assessment to LDEQ's permitting staff which will conduct a thorough evaluation of the proposed facility based on environmental impacts, economic benefits, an analysis of alternatives, and other pertinent factors.

- c. LDEQ reassesses Subsegments 040903 and/or 040904 (Bayou Cane). LDEQ determines that Subsegments 040903 and/or 040904 are meeting the appropriate DO criteria and designated uses.
- 2. Existing Discharges of oxygen-demanding loads:

Below are the reductions for existing dischargers in the Bayou Cane TMDL. Facilities discharging oxygen-demanding loads without LPDES permits as of the TMDL approval date are to be permitted in accordance with the limits established for existing facilities with permits. Unpermitted facilities that are newly activated or reactivated after the TMDL approval date may be subjected to enforcement actions and will be required to tie into regional collection and treatment systems once they are available.

- a. The Southeast Louisiana State Hospital (AI# 9371) will receive a compliance schedule of up to 3 years with final limitations of 5 mg/L BOD $_5$ / 2 mg/L NH $_3$ / 5 mg/L DO (with post reaeration).
- b. All other facilities within the Bayou Cane Watershed will keep existing permits limits for Phase I of the TMDL.
- 3. Nutrient monitoring (i.e. reporting for Total Nitrogen and Total Phosphorus) will be required for individual permits. Nutrient monitoring will be added to the general permit series (LAG530000, LAG540000, LAG560000, and LAG570000) upon the next scheduled renewal of each series.

Phase II will be developed based on the outcome of an ecoregion-based use attainability analysis (UAA) planned for the watershed. Based on existing data for the Lower Mississippi River Alluvial Plains Ecoregion, many of the Lake Pontchartrain Basin TMDLs that are currently being developed may be candidates for DO criteria revisions. TMDL survey data and modeling also indicate that existing DO criteria may be inappropriate. These TMDLs have an interim (state) deadline of March

31, 2011 and a final deadline of March 31, 2012. New ecoregion data is being collected in order to evaluate the need to revise the DO criteria. If needed, such revisions are expected to occur within the next three to five years.

In the event the new criteria are not developed and promulgated within five years from the TMDL approval date for each individual waterbody, LDEQ intends to proceed in the following manner:

Case 1: UAA study indicates that the current DO criteria are appropriate - the TMDL will be fully implemented based on the existing DO criteria.

Case 2: The UAA is not likely to be completed and/or approved - the TMDL will be fully implemented based on the existing DO criteria.

Case 3: The UAA is in progress and is expected to be approved – Phase II of the TMDL will be postponed for a maximum period of 2 years, at which time the UAA status will be reviewed again according to the criteria set in Cases 1 and 2 above.

LDEQ recognizes there may be many unpermitted sources of oxygen-demanding loading within the Lake Pontchartrain Basin. These sources may include unpermitted facilities (privately owned treatment units for subdivisions or businesses). LDEQ has been locating unpermitted facilities and updating location information on permitted facilities in the Lake Pontchartrain Basin. LDEQ has conducted these activities within the Bayou Cane watershed. The unpermitted facilities are required to apply for the appropriate LPDES (Louisiana Pollutant Discharge Elimination System) permits. These unpermitted sources of oxygen-demanding loading may also include individual treatment units for residential homes and small businesses. The ability to accurately quantify the loads provided from these systems is extremely difficult due to lack of reliable information regarding the number of units and the loading provided by each individual unit. Such unpermitted sources of loading may add to the uncertainty of this TMDL and provide additional justification for the use of the phased TMDL approach.

LDEQ believes a primary component of the solution to improving conditions in many of the Lake Pontchartrain Basin waterbodies is the regionalization of wastewater treatment for all sanitary wastewater sources including individual treatment systems.

LDEQ is also investigating the need to modify the subsegment lines for subsegments 040903 and 040904. A significant portion of Bayou Cane contained within subsegment 040903 is intermittent. In addition, subsegment 040904 includes many waterbodies with no connection to Bayou Cane. The load from these waterbodies does not impact Bayou Cane.

There are no MS4 permittees in the Bayou Cane watershed. Subsegment 040904 does contain two MS4 permittees, but they do not impact Bayou Cane.

The final TMDL loading for Phase I is presented in Table 2. LDEQ estimates that the overall nonpoint loading must be reduced by 90% in reach 1, and the overall nonpoint loading must be reduced by 60% in reaches 2-6 in order to meet the current DO criteria of 4.0 mg/L in subsegment 040904 and 5.0 mg/L in subsegment 040903. The percent reduction is different due to the two different DO criteria for the two subsegments. During Phase I, LDEQ recommends load reductions not be implemented in reaches 2-6 because these reaches appeared to be at or near natural background conditions during the survey. These natural conditions may include wetland seepage from neighboring wetlands. In

addition, the projected load reductions indicate that the dissolved oxygen criteria for Bayou Cane may be inappropriate based on the experience of LDEQ's water quality modelers. The load reductions implemented in reach 1, in particular, the new permit limits established for the Southeast Louisiana State Hospital, may contribute to some load reductions in reaches 2-6. Phase II may require different load reductions based on the DO criteria and in-stream conditions.

Existing ecoregion data suggests that the summer and winter DO criteria should be 2.3 mg/L and 4.0 mg/L, respectively. Based on a potential summer criterion of 2.3 mg/L, a 50% overall reduction of nonpoint loading would be required. Southeast Louisiana State Hospital would have permit limits of 5/2/5 (CBOD₅/NH₃-N/DO). Water quality monitoring site 0302 is located in the reaches of Bayou Cane for which these proposed criteria would apply.

Table 2. Total Maximum Daily Load (Sum of UCBOD¹, UNBOD, and SOD) for the current dissolved oxygen criteria of 5.0 (Subsegment 040903) and 4.0 (Subsegment 040904)

ALLOCATION ALLOCATION	SUMM		WINT	
Subsegment 040903	% Reduction Required	(MAY- OCT) (lbs/day)	% Reduction Required	(NOV-APR) (lbs/day)
Point Source WLA		53		53
Point Source Reserve MOS (20%)		13		13
Nonpoint Source LA	90	7	90	13
Nonpoint Source Reserve MOS Summer (20%) Winter (20%)		2		4
TMDL		75		83
ALLOCATION	SUMM	FR	WINT	FR
Subsegment 040904	% Reduction Required	(MAY- OCT) (lbs/day)	% Reduction Required	(NOV-APR) (lbs/day)
Point Source WLA		1,010		1,010
Point Source Reserve MOS (20%)		254		254
Nonpoint Source LA	60	423	60	348
Nonpoint Source Reserve MOS				
Summer (20%) Winter (20%)		106		86
TMDL		1,793		1,698

Note 1: UCBOD as stated in this allocation is Ultimate CBOD. UCBOD to $CBOD_5$ ratio = 2.3 for all treatment levels Permit allocations are generally based on $CBOD_5$

Table 3. TMDL Summary – Point Sources in Subsegment 040903, Current DO Criterion of 5.0 mg/L

FACILITY	AI NO./PERMIT	PERMIT EXPIRA-	FACILITY TYPE	OUT-FALL	OUTFALL DESCRIP-	RECEIV- ING	CURRENT EXPECTED FLOW		CURRENT NTHLY AVER ENTRATION		TMDL FLOW		TMDL ILY AVERA		
	NO.	TION DATE	TYPE	NO.	TION	WATER	GPD	BOD5/ CBOD5, mg/L	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L	NH ₃ -N, mg/L	DO, mg/L	MODELING COMMENTS
Southeast Louisiana State Hospital	9371/ LA0049671	1/28/11	POTW		Bayou Cane to Lake Pontchartrain	Bayou Cane	280,000	10	5	None	350,000	5	2	5	Included in the model; implementation of permit limits will occur in a phased manner.
Lakeshore High School	165696/ LAG570500	4/30/14	STP	001	LA Hwy. 1088 ditch, unnamed ditch for 4.5 miles, Bayou Cane	Bayou Cane	26,000	10	None	None	32,500	10	None		Not modeled; Keep existing permit limits.

Table 4. TMDL Summary – Point Sources in Subsegment 040904, Current DO Criterion of 4.0 mg/L

FACILITY	AI NO./PERMIT		FACILITY	OUT- FALL	OUTFALL DESCRIP-	RECEIVING	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I		TMDL FLOW	CONC	TMDL HLY AVEI CENTRAT LIMITS**		
	NO.	TION DATE	TYPE	NO.	TION	WATER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
St. Tammany Fire Protection District #4 Station #44	104230/ LAG531412	11/30/12	STP		Local drainage, Bayou Cane, Lake Pontchartrain	Bayou Cane	120	45 WA	None	None	150	45 WA	None	None	Not modeled; Keep existing permit limits
Bayou Moon Antiques	40735/ LAG530613	11/30/12	STP	001	Roadside ditch, Bayou Cane, Lake Pontchartrain	Bayou Cane	20	45 WA	None	None	25	45 WA	None	None	Not modeled; Keep existing permit limits
Demmonli- cious Catering LLC	140644/ LAG532086	11/30/12	STP	001	Unnamed ditch, local drainage, Bayou Cane, Lake Pontchartrain	Bayou Cane	60	30	None	None	75	30	None	None	Not modeled; Keep existing permit limits
Bayou Snowballs	122623/ LAG531781	11/30/12	STP		Hwy. 190 ditch, unnamed canal, Big Branch Marsh	Big Branch Marsh	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Big Branch Mobile Home Community LLC - Big Branch Mobile Home Community	93933/ LAG541172	6/30/13	STP	001	Local drainage, Big Branch Marsh	Big Branch Marsh	7,800	30	none	none	9,750	30	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA-		OUT- FALL	OUTFALL DESCRIP-	RECEIVING	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I	_	TMDL FLOW	CONC	TMDL HLY AVER ENTRATI IMITS**	_	
	NO.	TION DATE	ТҮРЕ	NO.	TION	WATER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Union Service & Maintenance Co Inc	119824/ LAG531583	11/30/12	STP	001	Highway ditch, unnamed slough, Big Branch Marsh, Lake Pontchartrain	Big Branch Marsh	120	45 WA	none	none	150	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Ace Auto Source LLC - WWTP	156805/ LAG470268	8/31/14	STP	001	Hwy. 190 roadside ditch, unnamed creek, Lake Pontchartrain	Lake Pontchartrain	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
H2O Systems Inc - Autumn Haven STP	128014/ LAG570352	4/30/14	STP	001	Parish drainage ditch, Big Branch, Lake Pontchartrain	Big Branch	36,400	10	none	none	45,500	10	none	none	Not in Bayou Cane watershed; keep existing permit limits
Northshore Duplicate Bridge Club	41150/ LAG530558	11/30/12	STP	001	Local drainage, highway ditch, Big Branch, Lake Pontchartrain	Big Branch	1,500	45 WA	none	none	1,875	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
LADCRT - Fountainbleau State Park	84081/ LAG532681	11/30/12	STP	001	Unnamed drainage, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	120	45 WA	none	none	150	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish Rec District #1	18237/ LAG530528	11/30/12	STP	001	Ditch, Bayou Castine, Lake Pontchartrain	Bayou Castine	2,499	45 WA	none	none	3,124	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT-FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I	_	TMDL FLOW	CONC	TMDL ILY AVEI ENTRAT IMITS**		
	NO.	DATE	TYPE	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Transitions Law & Professional Center	42477/ LAG530771	11/30/12	STP	001	Local drainage, Bayou Castine	Bayou Castine	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish - Municipal Separate Storm Sewer System	108405/ LAR041024	12/4/12	MS4		Various waterbodies	Various waterbodies	NA	NA	NA	NA	NA	NA	NA	NA	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Marine	52166/ LAG470054	8/31/14	STP	001	Local drainage, Bayou Castine	Bayou Castine	4,999	45 WA	none	none	6,249	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Iqbal Properties LLC - Chahta Mobile Home Park	40994/ LAG570011	6/30/14	STP	001	Ditch, Bayou Castine, Lake Pontchartrain	Bayou Castine	22,000	10	none	none	27,500	10	none	none	Not in Bayou Cane watershed; keep existing permit limits
West Wind Sails LLC - West Wind Sails	136253/ LAG532012	11/30/12	STP	001	Unnamed ditch, Little Bayou Castine	Little Bayou Castine	120	30	none	none	150	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Parent Teacher Child Services Inc	42769/ LAG530842	11/30/12	STP	001	Local drainage, Bayou Castine	Bayou Castine	800	45 WA	none	none	1,000	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
Bert Cortes - Rented Building	25476/ LAG532057	11/30/12	STP	001	Unnamed ditch, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	60	45 WA	none	none	75	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I		TMDL FLOW	CONC	TMDL HLY AVER CENTRATI IMITS**	_	
	NO.	DATE	TYPE	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Daiquiri's & Cream of Mandeville LLC/Daiquiri's & Cream- Mandeville	96291/ LAG532403	11/30/12	STP	001	Unnamed ditch, Little Bayou Castine	Little Bayou Castine	500	45 WA	none	none	625	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
H2O Systems Inc - Monterey Timbers Marigny Trace Subdivisions	42667/ LA0105554	10/31/12	STP	001	Parish drainage ditch, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	182,400	10	5	none	228,000	10	5	none	Not in Bayou Cane watershed; keep existing permit limits
Delta Fence Inc	143737/ LAG532748	11/30/12	STP	001	Unnamed ditch, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Ola's Place	42714/ LAG530401	11/30/12	STP	001	Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	2,275	30	none	none	2,844	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Harry Mayeaux - CARQUEST Auto Parts	156959/ LAG532733	11/30/12	STP	001	Roadside ditch, Little Bayou Castine	Little Bayou Castine	60	45 WA	none	none	75	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish Government - Red Oak Subdivision	43291/ LAG540902	6/30/13	STP	001	Local drainage, Little Bayou Castine	Little Bayou Castine	5,600	30	none	none	7,000	30	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA-	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I		TMDL FLOW	MONTI CONC	TMDL HLY AVER ENTRAT IMITS**		
	NO.	TION DATE	TYPE	NO.	TION	WATER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Country Kitchen Restaurant	41151/ LAG530696	11/30/12	STP	001	Local drainage, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	1,960	30	none	none	2,450	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Deliverance Tabernacle United Pentecost	41230/ LAG530747	11/30/12	STP	001	Local drainage, Bayou Castine	Bayou Castine	630	45 WA	none	none	788	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Automotive Air Services	126638/ LAG531780	11/30/12	STP	001	Unnamed ditch, Bayou Castine, Lake Pontchartrain	Bayou Castine	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
The Bounce House	41186/ LAG530853	11/30/12	STP		Local drainage, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	200	45 WA	none	none	250	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Thomas & Nancy Heidingsfelder - Property	156925/ LAG532929	11/30/12	STP	001	Unnamed ditch, Bayou Castine, Lake Pontchartrain	Bayou Castine	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Patrick Brackley & William Brackley Trust Dollar General & Retail Spaces	93684/ LAG531290	11/30/12	STP	001	Unnamed ditch, Little Bayou Castine	Little Bayou Castine	320	45 WA	none	none	400	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT			OUT- FALL	OUTFALL DESCRIP-	RECEIVING	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I	_	TMDL FLOW	MONTI CONC	TMDL HLY AVER ENTRAT IMITS**		
	NO.	TION DATE	ТҮРЕ	NO.	TION	WATER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Paul Gement - 915-975 Carroll Street	157198/ LAG533029	11/30/12	STP	001	Unnamed ditch, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Marquez's Auto Service Center	30937/ LAG470216	8/31/14	STP	001	Parish drainage ditch, Bayou Castine	Bayou Castine	4,999	45 WA	none	none	6,249	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Northshore Animal Hospital Inc	98461/ LAG531313	11/30/12	STP	001	Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	80	45 WA	none	none	100	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Paul Gement - Orleans Building	139383/ LAG532065	11/30/12	STP	001	Local drainage, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Mamacita's Gerard Street LLC	42369/ LAG530704	11/30/12	STP	001	Local drainage, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	2,120	30	none	none	2,650	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish Government - Castine Regional Sewage Treatment Plant	122025/ LA0120154	4/30/11	STP	001	Bayou Castine, Lake Pontchartrain	Bayou Castine	1,000,000	10	4	none	1,250,000	10	4	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER VTRATION I		TMDL FLOW	MONTH CONC	TMDL HLY AVER ENTRAT IMITS**	_	
	NO.	DATE	ITE	NO.	TION	WAILK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Square 188 Rural Mandeville POA Inc	103883/ LAG531422	11/30/12	STP	001	Local drainage, Bayou Castine, Lake Pontchartrain	Bayou Castine	4,000	30	none	none	5,000	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Kinder Haus Mandeville Inc - Kinder Haus Montessori	156749/ LAG532752	11/30/12	STP	001	Unnamed ditch, Lake Pontchartrain	Lake Pontchartrain	1,345	30	none	none	1,681	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Mandeville City of - Municipal Separate Storm Sewer System	108432/ LAR041008	12/4/12	MS4		Various waterbodies	Various waterbodies	NA	NA	NA	NA	NA	NA	NA	NA	Not in Bayou Cane watershed; keep existing permit limits
Mandeville Karate Training Center	117484/ LAG531528	11/30/12	STP	001	Local drainage, Hwy. 59 ditch, Lake Pontchartrain	Lake Pontchartrain	1,240	45 WA	none	none	1,550	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Service Master Absolute Cleaning Services LLC	238/ LAG532951	11/30/12	STP		Local drainage, Hwy. 59 ditch, Bayou Chinchuba	Bayou Chinchuba	540	45 WA	none	none	675	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Knight's Wrecker Service	157222/ LAG532795	11/30/12	STP	001	Unnamed drainage ditch, Bayou Chinchuba	Bayou Chinchuba	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
KT Automotive Inc	94160/ LAG470161	8/31/14	STP	001	Unnamed ditch, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT		FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I	_	TMDL FLOW	MONTI CONC	TMDL HLY AVER CENTRAT IMITS**	_	
	NO.	TION DATE	TYPE	NO.	TION	WATER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Lazaro's Heating & Air Conditioning Inc	157216/ LAG532805	11/30/12	STP		Roadside ditch, Bayou Chinchuba	Bayou Chinchuba	120	45 WA	none	none	150	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
Crossroads Shopping Center	122239/ LAG531649	11/30/12	STP	001	Hwy 59 ditch, Lake Pontchartrain	Lake Pontchartrain	4,400	45 WA	none	none	5,500	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
Richard J Vanek Properties LLC - HMIH	144461/ LAG532148	11/30/12	STP	001	Hwy. 59 ditch, Lake Pontchartrain	Lake Pontchartrain	80	45 WA	none	none	100	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Dave's Collision Shop	24182/ LAG531471	11/30/12	STP	001	Hwy 59 ditch, Lake Pontchartrain	Lake Pontchartrain	200	45 WA	none	none	250	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
Governor Control Systems Inc	157040/ LAG532741	11/30/12	STP		Hwy. 59 ditch, unnamed canal, Lake Pontchartrain	Lake Pontchartrain	300	45 WA	none	none	375	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
JRM Bel LLC - Southern Pipe & Supply Inc	157197/ LAG533062	11/30/12	STP	001	Local drainage ditch, highway ditch, Bayou Chinchuba	Bayou Chinchuba	150	45 WA	none	none	188	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
WREDCO - Weyerhauser Real Estate & Development Co	153566/ LA0123382	7/31/14	STP	001	Unnamed ditch, Bayou Castine, Lake Pontchartrain	Bayou Castine	300,000	10	5	none	375,000	10	5		Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT-FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I		TMDL FLOW	CONC	TMDL HLY AVER CENTRAT IMITS**	_	
	NO.	DATE	TYPE	NO.	TION	WAIEK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Greenleaves Utility Co - Greenleaves Subdivision	19599/ LA0068730	8/31/12	STP	001	Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	950,000	10	4	5	1,187, 500	10	4	5	Not in Bayou Cane watershed; keep existing permit limits
Brookside Office Complex - Northshore I Commercial Condo Association Inc	42673/ LAG530395	11/30/12	STP		Roadside ditch, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	2,100	45 WA	none	none	2,625	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Lanier Music	42260/ LAG530731	11/30/12	STP	001	Roadside ditch, Bayou Chinchuba	Bayou Chinchuba	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Mandeville Christian Fellowship Church	123007/ LAG531674	11/30/12	STP	001	Local drainage, Little Bayou Castine	Little Bayou Castine	1,000	30	none	none	1,250	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Marbar LLC	42393/ LAG530837	11/30/12	STP	001	Local drainage, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	160	45 WA	none	none	200	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Hosanna Lutheran Church Inc	41529/ LAG530208	11/30/12	STP	001	Parish drainage ditch, Bayou Chinchuba	Bayou Chinchuba	3,500	30	none	none	4,375	30	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT-FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I		TMDL FLOW	MONTI CONC	TMDL HLY AVER ENTRAT IMITS**		
	NO.	DATE	TYPE	NO.	TION	WAIEK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Chilly's Famous Sno- Balls	108508/ LAG531411	11/30/12	STP	001	Roadside ditch, Little Bayou Castine, Lake Pontchartrain	Little Bayou Castine	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Latter & Blum Inc	157162/ LAG532757	11/30/12	STP	001	Unnamed ditch, Bayou Chinchuba	Bayou Chinchuba	560	45 WA	none	none	700	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
OPS Turnkey LLC	42729/ LAG530823	11/30/12	STP	001	Local drainage, Bayou Chinchuba	Bayou Chinchuba	200	45 WA	none	none	250	45 WA	none		Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish Government - Forest Park Apts STP	38224/ LAG540551	6/30/13	STP	001	Unnamed ditch, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	5,400	30	none	none	6,750	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish of - Wadsworth Subdivision WWTP	155943/ LA0124214	4/30/14	STP		Parish drainage ditch, Pipeline ditch, Bayou Castine	Bayou Castine	180,000	10	5	none	225,000	10	5	none	Not in Bayou Cane watershed; keep existing permit limits
The Soil & Garden Depot	156853/ LAG532769	11/30/12	STP	001	Local drainage, Bayou Chinchuba	Bayou Chinchuba	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
All Creatures Country Club - Shari K Karanas - WWTP	156979/ LAG537212	11/30/12	STP		Hwy. 1088 ditch, Bayou Castine, Lake Pontchartrain	Bayou Castine	800	45 WA	none	none	1,000	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I	_	TMDL FLOW	MONTI CONC	TMDL HLY AVER EENTRATI IMITS**		
	NO.	DATE	TIFE	NO.	TION	WAIEK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
S&G Investments LLC	40945/ LAG530765	11/30/12	STP		Local Drainage then to Bayou Chinchuba	Bayou Chinchuba	160	45 WA	none	none	200	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Dejaunay Hair Design	156961/ LAG532815	11/30/12	STP	001	Parish drainage ditch then into Bayou Chinchuba	Bayou Chinchuba	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Gayle Betz - Century 21 Gaylaxey Office Building	149191/ LAG532219	11/30/12	STP	001	Roadside ditch then into Bayou Chinchuba	Bayou Chinchuba	380	45 WA	none	none	475	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Liberty Self Storage #11	128003/ LAG531885	11/30/12	STP	001	Highway ditch then into local drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	320	45 WA	none	none	400	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
B&N Investments	41988/ LAG530273	11/30/12	STP	001	Roadside ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	2,480	45 WA	none	none	3,100	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I		TMDL FLOW	MONTI CONC	TMDL HLY AVER EENTRATI IMITS**	_	
	NO.	DATE	TIFE	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
H2O Systems Inc - Woodland Apartments STF	19967/ LAG570039	4/30/14	STP	001	Parish drainage ditch then into Bayou Chinchuba then to Lake Pontchartrain	Bayou Chinchuba	45,000	10	none	none	56,250	10	none	none	Not in Bayou Cane watershed; keep existing permit limits
Liberty Self Storage LLC #3	98959/ LAG531491	11/30/12	STP	001	Roadside ditch then to Bayou Chinchuba then to Lake Pontchartrain	Bayou Chinchuba	320	45 WA	none	none	400	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
C&C Drugs	163607/ LAG533331	11/30/12	STP	001	Effluent pipe then into a retention pond then 0.04 miles into Highway 59 ditch then into Bayou Chinchuba	Bayou Chinchuba	160	45 WA	none	none	200	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish Government - Woodcrest Subdivision	38142/ LAG540657	6/30/13	STP	001	Roadside ditch then into Little Bayou Castine then into Lake Pontchartrain	Little Bayou Castine	5,600	30	none	none	7,000	30	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I		TMDL FLOW	MONTH CONC	TMDL HLY AVER EENTRAT IMITS**		
	NO.	DATE	TYPE	NO.	TION	WAIEK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
St Tammany Parish Government - Twin Oaks	91147/ LAG570487	4/30/14	STP	001	By effluent pipe to local drainage then into Highway 59 drainage ditch then to Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	8,000	10	none	none	10,000	10	none	none	Not in Bayou Cane watershed; keep existing permit limits
Southern Fastening Systems	157223/ LAG532791	11/30/12	STP	001	Unnamed drainage ditch then into Bayou Chinchuba	Bayou Chinchuba	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Mandeville Christian Church	42371/ LAG530862	11/30/12	STP	001	Highway ditch then to Bayou Chinchuba	Bayou Chinchuba	150	45 WA	none	none	188	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Northlake Automotive	22673/ LAG470237	8/31/14	STP	001	Effluent pipe then into parish drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	200	45 WA	none	none	250	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
B&N Investments - Southern Country Designs	157103/ LAG532739	11/30/12	STP		Unnamed ditch, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	200	45 WA	none	none	250	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I		TMDL FLOW	MONTI CONC	TMDL HLY AVEI ENTRAT IMITS**	_	
	NO.	DATE	TIFE	NO.	TION	WAILK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Dr Robert Hurst - SWWT	157199/ LAG533208	11/30/12	STP	001	Effluent pipe, then 1.11 miles into an unnamed ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	40	45 WA	none	none	50	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Richard St Pe Co Inc	118207/ LAG531521	11/30/12	STP	001	Local drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	60	45 WA	none	none	75	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Yeoh & Williams LLC - Little Tokyo	52163/ LAG531848	11/30/12	STP	001	By effluent pipe then into parish drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	1,620	30	none	none	2,025	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
B&N Investments - Onesource Professional Search	157102/ LAG532743	11/30/12	STP	001	Unnamed ditch, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	120	45 WA	none	none	150	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT		FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVERA		TMDL FLOW	CONC	TMDL HLY AVEI CENTRAT IMITS**		
	NO.	TION DATE	TYPE	NO.	TION	WAIEK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Tire Kingdom #180	28048/ LAG470263	8/31/14	STP	001	Parish drainage ditch then into Bayou Chinchuba then to Lake Pontchartrain	Bayou Chinchuba	4,999	45 WA	none	none	6,249	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
B&N Investments - Basic Elements Day Spa	157104/ LAG532742	11/30/12	STP	001	Unnamed ditch, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	160	45 WA	none	none	200	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Patrick Shannon Allison DDS	36613/ LAG531558	11/30/12	STP	001	Local drainage then to Bayou Chinchuba	Bayou Chinchuba	220	45 WA	none	none	275	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Redi Med Clinic	94543/ LAG532062	11/30/12	STP	001	Local drainage then into Bayou Chinchuba	Bayou Chinchuba	200	45 WA	none	none	250	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Tiffany Lanes	22229/ LAG540886	6/30/13	STP	001	Unnamed ditch then to Bayou Chinchuba	Bayou Chinchuba	8,480	30	none	none	10,600	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Quad Investments LLC	94639/ LAG531555	11/30/12	STP	001	Roadside ditch then to Bayou Chinchuba then to Lake Pontchartrain	Bayou Chinchuba	500	45 WA	none	none	625	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT-FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT THLY AVER TRATION I	_	TMDL FLOW	MONTI CONC	TMDL HLY AVER ENTRAT IMITS**		
	NO.	DATE	TYPE	NO.	TION	WAIEK	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Darby Holdings LLC - Asbury Square	139426/ LAG532090	11/30/12	STP	001	Parish drainage ditch then into Bayou Chinchuba	Bayou Chinchuba	300	45 WA	none	none	375	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
2156 3rd Street LLC - Creations Galore	119791/ LAG531571	11/30/12	STP	001	Unnamed ditch then into local drainage then into Bayou Chinchuba	Bayou Chinchuba	240	45 WA	none	none	300	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
La Petite Maison Childcare LLC	163672/ LAG533129	11/30/12	STP	001	Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	400	45 WA	none	none	500	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Asbury Drive Office Building	122547/ LAG531656	11/30/12	STP	001	Local drainage into Bayou Chinchuba	Bayou Chinchuba	240	45 WA	none	none	300	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Sun Cleaners LLC	52159/ LAG532087	11/30/12	STP	001	Retention pond then via local drainage to Bayou Chinchuba	Bayou Chinchuba	480	45 WA	none	none	600	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Thomas Danos - STP	129243/ LAG531821	11/30/12	STP	001	Roadside ditch along the La. Highway 22 right-of-way then to Bayou Chinchuba	Bayou Chinchuba	280	30	none	none	350	30	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I	_	TMDL FLOW	MONTI CONC	TMDL HLY AVER CENTRATI IMITS**		
	NO.	DATE	TITE	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Safeway Industries	139646/ LAG532135	11/30/12	STP	001	Unnamed ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	120	45 WA	none	none	150	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
St Tammany Parish Hospital - Hospice	3756/ LAG530527	11/30/12	STP	001	Ditch then to Bayou Chinchuba then to Lake Pontchartrain	Bayou Chinchuba	400	45 WA	none	none	500	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Marret LLC - 2180 3rd St Bldg	41235/ LAG530165	11/30/12	STP	001	Unnamed ditch, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	80	45 WA	none	none	100	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Riverside Veterinary Hospital	87273/ LAG531653	11/30/12	STP	001	From veterinary offices, hospital and animal boarding facility into Bayou Chinchuba via local drainage then to Lake Pontchartrain	Bayou Chinchuba	500	30	none	none	625	30	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I	_	TMDL FLOW	MONTI CONC	TMDL HLY AVER EENTRATI IMITS**		
	NO.	DATE	lire	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
NU-Lite Electrical Supply	139647/ LAG532133	11/30/12	STP	001	Unnamed ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
DECS Investments LLC	41224/ LAG530873	11/30/12	STP	001	Highway 59 Ditch then to Bayou Chinchuba	Bayou Chinchuba	800	45 WA	none	none	1,000	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Tammany Oaks Church of Christ	129835/ LAG531953	11/30/12	STP	001	Unnamed ditch then into local drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	2,250	45 WA	none	none	2,813	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
HJH Land Development	83638/ LAG531061	11/30/12	STP	001	Local Drainage then to Bayou Chinchuba	Bayou Chinchuba	260	45 WA	none	none	325	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
WSA LLC - 3933 Hwy 59 Building	127091/ LAG531964	11/30/12	STP	001	Unnamed ditch then into Chinchuba Creek then into Lake Pontchartrain	Bayou Chinchuba	300	45 WA	none	none	375	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I		TMDL FLOW	MONTH CONC	TMDL HLY AVER ENTRAT IMITS**	_	
	NO.	DATE	lift	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Total Environmental Solutions Inc - Beau Pre Subdivision	18603/ LAG570104	4/30/14	STP	001	By effluent discharge pipe then into unnamed ditch then into Bayou Chinchuba	Bayou Chinchuba	30,000	10	none	none	37,500	10	none	none	Not in Bayou Cane watershed; keep existing permit limits
DeVun Veterinary Medical Hospital	125738/ LAG531738	11/30/12	STP	001	Unnamed ditch then to Bayou Chinchuba	Bayou Chinchuba	120	30	none	none	150	30	none	none	Not in Bayou Cane watershed; keep existing permit limits
Fountainbleau Junior & Fountainbleau High Schools	43404/ LAG570064	4/30/14	STP	001	By effluent pipe then into unnamed drainage ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	66,900	10	none	none	83,625	10	none	none	Not in Bayou Cane watershed; keep existing permit limits
Campbell Cabinet Co Inc	116474/ LAG531502	11/30/12	STP	001	Local drainage, Chinchuba Creek, Bayou Chinchuba, Lake Pontchartrain	Bayou Chinchuba	280	45 WA	none	none	350	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Hwy 59 Project - Construction	118212/ LAG531514	11/30/12	STP	001	Highway 59 Ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	140	45 WA	none	none	175	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

FACILITY	AI NO./PERMIT	PERMIT EXPIRA- TION	FACILITY TYPE	OUT- FALL	OUTFALL DESCRIP-	RECEIVING WATER	CURRENT EXPECTED FLOW	MONT	CURRENT HLY AVER TRATION I		TMDL FLOW	MONTE CONC	TMDL HLY AVER ENTRATI IMITS**		
	NO.	DATE	TIFE	NO.	TION	WAIER	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	GPD	BOD5/ CBOD5, mg/L*	NH ₃ -N, mg/L	DO, mg/L	COMMENTS
Campbell Shelving	126566/ LAG531986	11/30/12	STP	001	Local drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	160	45 WA	none	none	200	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Campbell Ventures No 3 LLC	146789/ LAG532177	11/30/12	STP	001	Roadside ditch then into Bayou Chinchuba	Bayou Chinchuba	280	45 WA	none	none	350	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
Campbell Shelving Co Inc - Campbell Building	99213/ LAG531402	11/30/12	STP	001	Local drainage then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	100	45 WA	none	none	125	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
OJALA Ltd - 5 Minute Oil Change	99280/ LAG532680	11/30/12	STP	001	Unnamed ditch then into Bayou Chinchuba then into Lake Pontchartrain	Bayou Chinchuba	80	45 WA	none	none	100	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits
BMC Investments LLC - Strip Mall	98456/ LAG531263	11/30/12	STP	001	Roadside ditch then through local drainage then to Bayou Chinchuba	Bayou Chinchuba	400	45 WA	none	none	500	45 WA	none	none	Not in Bayou Cane watershed; keep existing permit limits

^{*} WA= Weekly average
** Permit limits for facilities listed in Table 4 will not change as a result of this TMDL.

EXECUTIVE SUMMARY

This report presents the results of a watershed-based calibrated modeling analysis of Bayou Cane. Bayou Cane is in the Lake Pontchartrain Basin and is located in subsegments 040903 and 040904. Bayou Cane was the only waterbody modeled for this TMDL effort since it is the waterbody The modeling was conducted to establish a TMDL for designated in the subsegment name. biochemical oxygen-demanding pollutants for subsegments 040903 and 040904. The model extends from just above the Southeast Louisiana State Hospital discharge point to Lake Pontchartrain. Due to lack of access to the waterbody and intermittent flow conditions, Bayou Cane was not surveyed any The land use of the area is primarily scrub/shrub, agriculture/cropland/grassland, and water.

There are five dischargers located within the Bayou Cane watershed, including two in Subsegment 040903 and three in Subsegment 040904. One discharger, Southeast Louisiana State Hospital, was included in the model. The remaining four are small enough so as to not contribute a significant load to Bayou Cane. Most, if not all, of the loading will be expressed in local drainage ditches before it reaches Bayou Cane. These dischargers are accounted for as nonpoint loading through the process of calibration. In order to meet the current dissolved oxygen (DO) criteria of 5.0 mg/L in subsegment 040903 and 4.0 mg/L in subsegment 040904, an overall nonpoint reduction of 90% in reach 1 and 60% in reaches 2-6 is required in addition to more stringent discharge limits of 5/2/5 (CBOD₅/NH₃-N/DO) for Southeast Louisiana State Hospital.

Subsegment 040904 also contains 112 facilities that have no impact on Bayou Cane. They received a wasteload allocation based on their existing permit limits and flows.

Input data for the calibration model was developed from data collected during the June 2008 intensive survey. The nonpoint source loads included nonpoint loading not associated with flow. A satisfactory calibration was achieved for the main stem. For the projection models, ambient temperature and dissolved oxygen data were taken from ambient water quality network station 0302. The Louisiana Total Maximum Daily Load Technical Procedures, Revision 12, was followed in this study.

The various spreadsheets that were used in conjunction with the modeling program may be found in the appendices. During the projection stage of modeling, nonpoint and point source loads were reduced to meet the dissolved oxygen criteria. At the time of the survey, the average dissolved oxygen in Bayou Cane was below the current criteria except for the last modeled reach of the waterbody.

Modeling was limited to low flow scenarios for both the calibration and the projections since the constituent of concern was dissolved oxygen and the available data was limited to low flow conditions. The model used was LA-QUAL, a modified version of QUAL-TX, which has been adapted to address specific needs of Louisiana waters.

Bayou Cane, Subsegments 040903 and 040904, was listed in the 2006 Integrated Report and the Consent Decree. Bayou Cane was subsequently scheduled for TMDL development with other listed waters in the Lake Pontchartrain Basin.

Subsegment 040903 was found to be "not supporting" any of its designated uses of Primary Contact Recreation, Fish and Wildlife Propagation, and Outstanding Natural Resource Waters. The suspected

causes of impairment are organic enrichment/low dissolved oxygen, chloride, fecal coliform, pH, and turbidity. The suspected sources are Site Clearance (Land Development or Redevelopment), On-site Treatment Systems (Septic Systems and Similar Decentralized Systems), and Drought-related Impacts.

Subsegment 040904 was found to be "not supporting" any of its designated uses of Primary Contact Recreation, Secondary Contact Recreation, Fish and Wildlife Propagation, and Outstanding Natural Resource Waters. The suspected causes of impairment are organic enrichment/low dissolved oxygen, fecal coliform, pH, mercury, turbidity, and dissolved copper. The suspected sources are On-site Treatment Systems (Septic Systems and Similar Decentralized Systems), Package Plant or Other Permitted Small Flows Discharges, and unknown sources.

This TMDL establishes load limitations for oxygen-demanding substances and goals for reduction of those pollutants. LDEQ's position is that when oxygen-demanding loads from point and nonpoint sources are reduced in order to ensure that the dissolved oxygen criteria are supported, nutrients are also reduced. The implementation of this TMDL through wastewater discharge permits and implementation of best management practices to control and reduce runoff of soil and oxygen-demanding pollutants from nonpoint sources in the watershed will also reduce the nutrient loading from those sources. However, nutrients were not modeled and this TMDL does not provide allocations for nutrients (total phosphorus, total nitrogen).

Louisiana does not have numeric nutrient criteria at the present time. The original nutrient impairments for waterbodies in the Pontchartrain Basin were not based on quantitative assessments of historical nutrient data. The impairments were based on evaluative assessments that may have included dissolved oxygen. LDEQ and EPA plan to reevaluate the previous nutrient impairments in the Pontchartrain Basin. As a result, both the EPA and LDEQ expect the nutrient impairments to change from category 5 (impairment exists; TMDL required) to category 3 (insufficient data) for Louisiana's 2010 Integrated Report. Therefore, LDEQ believes that TMDLs for dissolved oxygen should adequately address any potential nutrient impairments in the absence of numeric nutrient criteria and quantitative assessments.

LDEQ is developing numeric nutrient criteria for waterbody types based on ecoregions in accordance with LDEQ's plan "Developing Nutrient Criteria for Louisiana 2006" which can be found at:

 $\frac{http://www.deq.louisiana.gov/portal/Portals/0/planning/LA\%20Nutrient\%20Strategy\%20Plan\%20Final\%20FOR\%20WEB.pdf.$

Water body types for nutrient criteria development in Louisiana are 1) inland rivers and streams; 2) freshwater wetlands; 3) freshwater lakes and reservoirs; 4) big rivers and floodplains/boundary rivers and associated water bodies; and 5) estuarine and coastal waters (including up to Louisiana's three mile boundary in the Gulf of Mexico). Proposed approaches for nutrient criteria development are currently under review by LDEQ and EPA. Nutrient criteria can be implemented upon state promulgation and EPA approval as per 40 CFR 131.21.

Upon development of nutrient criteria, a subsequent quantitative assessment of the waterbodies, and the development of full nutrient models, nutrient limits may be established for all facilities discharging to impaired waterbodies in the Pontchartrain Basin. LDEQ recommends that all facilities discharging to impaired waterbodies take a proactive approach and prepare to receive nutrient limitations in the

near future. Such a proactive approach should include nutrient monitoring and documentation through facility Discharge Monitoring Reports (DMRs) in order to assess their nutrient loads and the need to modify their treatment processes for nutrient removal.

LDEQ recognizes that there are many unpermitted facilities within the Pontchartrain Basin. LDEQ is in the process of locating these facilities in an effort to get them permitted. LDEQ is also updating its location information on all permitted facilities within the basin.

A calibrated water quality model for the watershed was developed and projections were modeled to quantify the point and nonpoint source load reductions which would be necessary for Bayou Cane to comply with its established water quality standards and criteria. This report presents the results of that analysis.

This TMDL will implement a phased approach as shown in Table 1. This report represents Phase I of the TMDL. For Phase I, a 90% overall reduction of the nonpoint load in reach 1 and a 60% overall reduction of the nonpoint load in reaches 2-6 are required to achieve the current DO criteria of 4.0 mg/L in subsegment 040904 and 5.0 mg/L in subsegment 040903. In addition, more stringent permit limits of 5/2/5 (CBOD₅/NH₃-N/DO) are required for Southeast Louisiana State Hospital. Permit limits for facilities in subsegment 040904 are summarized in Table 4. During Phase I, LDEQ recommends load reductions not be implemented in reaches 2-6 because these reaches appeared to be at or near natural background conditions during the survey. In addition, the projected load reductions indicate that the dissolved oxygen criteria for Bayou Cane may be inappropriate based on the experience of LDEQ's water quality modelers. The load reductions implemented in reach 1, in particular, the new permit limits established for the Southeast Louisiana State Hospital, may contribute to some load reductions in reaches 2-6. Phase II may require different load reductions based on the DO criteria and in-stream conditions.

LDEQ is in the process of reevaluating Louisiana's ecoregions and modifying the ecoregion boundaries where appropriate. Bayou Cane appears to reside in two different ecoregions, the Lower Mississippi River Alluvial Plain (LMRAP) ecoregion and a transitional zone between the LMRAP and the Terrace Uplands (TU) ecoregions. Therefore, Bayou Cane may continue to have two different dissolved oxygen criteria. Data for the LMRAP and TU ecoregions indicate that the DO criteria could be 2.3 mg/L during the summer and 4.0 mg/L during the winter. LDEQ is evaluating the geographic location of the break between the two ecoregions. As a result, LDEQ has run a preliminary summer projection based on the DO criteria of 2.3 mg/L for the summer and 4.0 mg/L for the winter. This projection is an indication of what the required load reductions may be if the DO criteria are revised for Bayou Cane. The final required load reductions may be different based on the final DO criteria. Based on a potential summer DO criterion of 2.3 mg/L, a 50% overall reduction of nonpoint sources would be required, and Southeast Louisiana State Hospital would have 5/2/5 (CBOD₅/NH₃-N/DO) limits.

Once this planned UAA is complete, Phase II of the TMDL will be conducted. This may include the development of new model projections based on the new DO criteria. A new TMDL will be calculated, and the report will be revised.

Such high load reductions as those required in a waterbody that is minimally impacted by point sources indicate that the DO criteria may be inappropriate. This scenario also provides justification

for the ecoregion based UAA. The target DO values used in the calibration model were similar to the existing summer DO criteria for the LMRAP Ecoregion further strengthening the justification for a revision of the DO criteria for Bayou Cane.

DEQ will work with other agencies such as local Soil Conservation Districts to implement agricultural best management practices in the watershed through the 319 programs. LDEQ will also continue to monitor the waters to determine whether standards are being attained.

In accordance with Section 106 of the Federal Clean Water Act and under the authority of the Louisiana Environmental Quality Act, the LDEQ has established a comprehensive program for monitoring the quality of the state's surface waters. The LDEQ collects surface water samples at various locations utilizing appropriate sampling methods and procedures for ensuring the quality of the data collected. The objectives of the surface water monitoring program are to determine the quality of the state's surface waters, to develop a long-term data base for water quality trend analysis, and to monitor the effectiveness of pollution controls. The data obtained through the surface water monitoring program is used to develop the state's biennial 305(b) report (*Water Quality Inventory*) and the 303 (d) list of impaired waters. This information is also utilized in establishing priorities for the LDEQ nonpoint source program.

The LDEQ is continuing to implement a watershed approach to the surface water quality monitoring. In 2004 a four-year sampling cycle replaced the previous five-year cycle. Approximately one-quarter of the state's watersheds will be sampled in each year so that all of the state's watersheds will be sampled within the four-year cycle. This will allow the LDEQ to determine whether there has been any improvement in water quality following implementation of the TMDLs. As the monitoring results are evaluated by LDEQ and approved by EPA, waterbodies may be added to or removed from the 303(d) list.

TABLE OF CONTENTS

TE	CHNI	CAL SUMMARY	ii
		IVE SUMMARY	
		TABLESxx	
		FIGURESxx	
1.		duction	
2.		y Area Description	
	•	General Information.	
		Water Quality Standards	
2		Wastewater Discharges	
		Water Quality Conditions/Assessment	
		Prior Studies	
		mentation Calibration Model	
4.		pration Model Documentation	
		Program Description	
		Input Data Documentation	
		Model Schematics and Maps	
	4.2.2	•	
	4.2.3		
	4.2.4		
	4.2.5		
	4.2.6	Advective Hydraulic Coefficients, Data Type 9	
	4.2.7		
	4.2.8	Initial Conditions, Data Type 11	
	4.2.9	* *	
	4.2.10		
	4.2.1		
	4.2.12		
	4.2.13	1	
	4.2.14	**	
	4.2.1		
_		Model Discussion and Results	
		er Quality Projections	
		Critical Conditions, Seasonality and Margin of Safety	
		Input Data Documentation	
٠	5.2.1	Model Options, Data Type 2	
	5.2.2	Temperature Correction Constants, Data Type 4	
	5.2.3	Reach Identification Data, Data Type 8	
	5.2.4	, , , , , , , , , , , , , , , , , , , ,	
	5.2.5	Initial Conditions, Data Type 11	
	5.2.6	Reaeration Rates, Carbonaceous BOD Decay and Settling Rates, Nitrogenous BOD De	
		Settling Rates, Data Types 12 and 13	-
	5.2.7	5 · · · · · · · · · · · · · · · · · · ·	
		0, 21, 22, 24, 25, and 26	
	5.2.8	Boundary Conditions, Data Type 27	
	5.2.0	Domain Conditions, Data Type 27	41

	5.3 Model Discussion and Results	21
	5.3.1 Summer Projection	21
	5.3.2 Winter Projection	22
	5.4 Calculated TMDL, WLAs and LAs	23
	5.4.1 Outline of TMDL Calculations	23
	5.4.2 Bayou Cane TMDL	23
6.	Sensitivity Analysis	24
7.	Conclusions	25
8.	References	31
9.	Appendices	31
	Appendix A – Detailed TMDL Analysis	32
	Appendix A1 – Outline of TMDL Calculations	33
	Appendix A2 – 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6,	,
	Summer TMDL Summary	
	Appendix A3 – 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6,	,
	Winter TMDL Summary	
	Appendix B – Calibration Model Input and Output	
	Appendix B1 – Calibration Output Graphs, Input, Output, & Overlay File for Subsegments	
	040903 and 040904	
	Appendix B2 – Calibration Justification	
	Appendix B3 - Wind-aided Reaeration Calculations	
	Appendix C - Calibration Model Development	
	Appendix C1 – Vector Diagram	
	Appendix C2 – Calibration Loading	
	Appendix D – Projection Model Input, Output, and Input Sources	
	Appendix D1 –Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reach	
	2-6 DO Graph, Input, and Output for Subsegments 040903 & 040904	
	Justifications 157	υ,
	Appendix D3 –Winter, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reache	sc 2_
	6DO Graph, Input, and Output for Subsegments 040903 & 040904	
	Appendix D4 – Winter, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reach	
	2-6, Justifications	
	Appendix E - Projection Model Development	
	Appendix E1 – Summer Loading—90% Overall Reduction in Reach 1, 60% Overall Reduction	
	in Reaches 2-6 220	
	Appendix E2 – Winter Loading—90% Reduction in Reach 1, 60% Reduction in Reaches 2-	6
	227	
	Appendix E3 –Reference Stream Data	. 234
	Appendix F – Survey Data Measurements and Analysis Results	. 238
	Appendix F1 – Water Quality Data	. 239
	Appendix F2 – Cross Sections and Discharge Measurements	. 249
	Appendix F3 – Field Notes	
	Appendix F4 – Continuous Monitor	
	Appendix F5 – BOD Calculations	
	Appendix F6 – Dye Study Calculations	
	Appendix F7 – Water Level Monitor Data & Tide Calculations	. 388

Appendix G- Historical and Ambient Data	422
Appendix G1 – Ambient temperature & DO Calculations for current criter	
Appendix G2 – Water Quality Data for Ambient Monitoring Site 0302	
Appendix H – Maps and Diagrams	
Appendix H1- Overview map	
Appendix H2 – Land Use Maps	
Appendix H3 – Louisiana Precipitation Map	
Appendix I – Sensitivity Analysis	
Appendix II – Sensitivity Output Graphs for Subsegments 040903 & 0409	904447
Appendix I2 – Sensitivity Input and Output Data Set	
Table 1. Bayou Cane Phased TMDL Approach	iii
Table 2. Total Maximum Daily Load (Sum of UCBOD ¹ , UNBOD, and SOD dissolved oxygen criteria of 5.0 (Subsegment 040903) and 4.0 (Subsegme Table 3. TMDL Summary – Point Sources in Subsegment 040903, Current I mg/L) for the current ent 040904)vii OO Criterion of 5.0
Table 4. TMDL Summary – Point Sources in Subsegment 040904, Current mg/L	DO Criterion of 4.0
Table 5. Land Uses in Subsegment 040903	
Table 6. Land Uses in Subsegment 040904	
Table 7. Water Quality Numerical Criteria and Designated Uses for Subseg	ments 040903 and
040904	
Table 8. Summary of Calibration Model Sensitivity Analysis	2.4

LIST OF FIGURES

Figure 1. Model Layout	4
Figure 2. Map of Study Area	
Figure 3. Calibration Model Dissolved Oxygen versus River Kilometer, Subsegments 040903 &	
040904	16
Figure 4. Summer Projection at 90% Nonpoint Removal in Reach 1, 60% Nonpoint Removal in	
Reaches 2-6, Subsegments 040903 & 040904	22
Figure 5. Winter Projection at 90% Nonpoint Removal in Reach 1, 60% Nonpoint Removal in	
Reaches 2-6, Subsegments 040903 & 040904	23

1. Introduction

Bayou Cane, located in St. Tammany Parish in subsegments 040903 and 040904, was listed in the 2006 Integrated Report and the consent decree. Because of these listings, a total maximum daily load (TMDL) for oxygen-demanding substances was required. A calibrated water quality model for the Bayou Cane watershed was developed, and projections for current dissolved oxygen criteria were run to quantify the loads required to meet established dissolved oxygen criteria. This report presents the model development and resulting TMDL for oxygen-demanding substances.

2. Study Area Description

2.1 General Information

"The Lake Pontchartrain Basin, located in southeastern Louisiana, consists of the tributaries and distributaries of Lake Pontchartrain, a large estuarine lake. The basin is bounded on the north by the Mississippi state line, on the west and south by the east bank Mississippi River levee, on the east by the Pearl River Basin and on the southeast by Breton and Chandeleur Sounds. This basin includes Lake Borgne, Breton Sound, Chandeleur Sound and the Chandeleur Islands. The northern part of the basin consists of wooded uplands, both pine and hardwood forests. The southern portions of the basin consist of cypress-tupelo swamps and lowlands and brackish and saline marshes. The marshes of the southeastern part of the basin constitute the most rapidly eroding area along the Louisiana coast. Elevations in this basin range from minus five feet at New Orleans to over two hundred feet near the Mississippi border." (LDEQ, 2000)

This TMDL addresses Bayou Cane, located in the Lake Pontchartrain Basin, from just above the Southeast Louisiana State Hospital discharge point to Lake Pontchartrain. The land use of the watershed is primarily scrub/shrub, forest, agriculture/cropland/grassland, and water as shown in Tables 5 and 6. Subsegment 040904 has a significant amount of vegetated urban area; however, this area is not in the Bayou Cane watershed. Detailed land cover maps of Subsegments 040903 and 040904 are included in Appendix H2. Annual precipitation in the area is approximately 64 inches as shown on the precipitation map in Appendix H3.

Table 5. Land Uses in Subsegment 040903

Land Use Summary

Subsegment: 40903

Data Source Name: LA-GAP June 2000

Grid Name	Area (Acres)	% Land Use
Upland S/S Mixed	1182.25	24.13
Upland Forest Evergreen	1031.91	21.06
Wetland Forest Evergreen	1024.35	20.91
Agriculture/Cropland/Grassland	590.24	12.05
Wetland Forest Deciduous	442.57	9.03
Wetland Forest Mixed	144.11	2.94
Upland Forest Mixed	118.76	2.42
Water	95.85	1.96
Vegetated Urban	95.41	1.95
Dense Pine Thicket	52.49	1.07
Wetland S/S Mixed	49.82	1.02
Wetland S/S Deciduous	30.02	0.61
Wetland S/S Evergreen	13.12	0.27
Fresh Marsh	12.45	0.25
Upland S/S Deciduous	10.67	0.22
Upland Barren	2.89	0.06
Upland S/S Evergreen	2.00	0.04
Wetland Barren	0.22	0.00

Monday, July 27, 2009 Page 1 of 1

Table 6. Land Uses in Subsegment 040904

Land Use Summary

Subsegment: 40904

Data Source Name: LA-GAP June 2000

Grid Name	Area (Acres)	% Land Use
Upland Forest Evergreen	6688.29	25.89
Vegetated Urban	5757.35	22.29
Water	2457.90	9.51
Upland S/S Mixed	2335.59	9.04
Intermediate Marsh	1944.40	7.53
Upland Forest Mixed	1457.80	5.64
Wetland Forest Mixed	1321.47	5.12
Agriculture/Cropland/Grassland	1162.23	4.50
Wetland Forest Evergreen	714.55	2.77
Wetland Forest Deciduous	611.81	2.37
Brackish Marsh	451.46	1.75
Wetland S/S Deciduous	308.68	1.19
Dense Pine Thicket	190.15	0.74
Wetland S/S Mixed	149.89	0.58
Fresh Marsh	98.30	0.38
Upland Barren	73.61	0.28
Upland S/S Deciduous	49.59	0.19
Upland Forest Deciduous	34.25	0.13
Upland S/S Evergreen	20.02	0.08
Wetland Barren	7.56	0.03

Monday, July 27, 2009 Page 1 of 1

Figure 1. Model Layout

Bayou Cane Model Layout Subsegments 040903 and 040904 RKM 3.6 to RKM 0.0

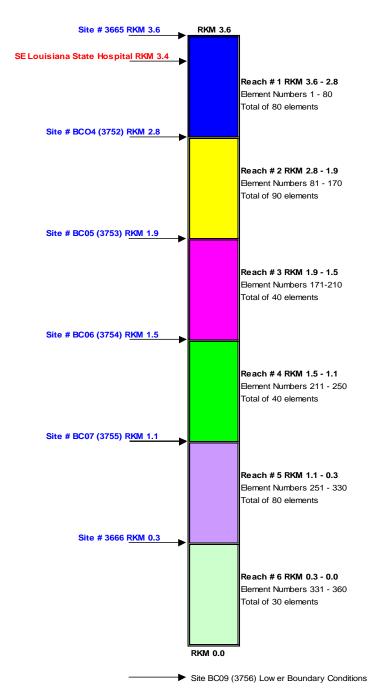
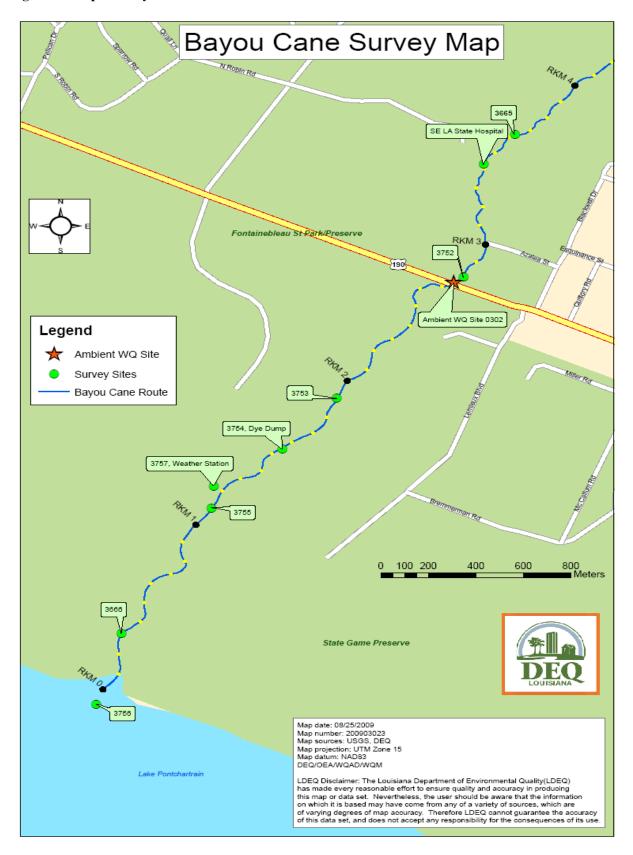



Figure 2. Map of Study Area

2.2 Water Quality Standards

The water quality criteria and designated uses for the two subsegments of Bayou Cane are shown in Table 7. Subsegment 040903 includes Bayou Cane from the headwaters to US-190 (Scenic). Subsegment 040904 begins at US-190 and extends to Lake Pontchartrain (Scenic) (Estuarine). The dissolved oxygen criteria noted in the table are year-round.

Table 7. Water Quality Numerical Criteria and Designated Uses for Subsegments 040903 and 040904

Parameter	Value
Designated Uses	ABCG
DO, mg/L	5.0 (040903), 4.0 (040904)
Cl, mg/L	30 (040903), N/A (040904)
SO ₄ , mg/L	30 (040903), N/A (040904)
pH	6.0 - 8.5
BAC	1*
Temperature, deg Celsius	30 (040903), 32 (040904)
TDS, mg/L	150 (040903), N/A (040904)

USES: A - primary contact recreation; B - secondary contact recreation; C - fish and wildlife propagation; D - drinking water supply; E - oyster propagation; F - agriculture; G - outstanding natural resource waters; L - limited aquatic life and wildlife use.

2.3 Wastewater Discharges

There are five dischargers located within the Bayou Cane watershed including two in Subsegment 040903 and three in Subsegment 040904. One discharger, the Southeast Louisiana State Hospital, was included in the model. The remaining four facilities are small enough so as to not contribute a significant load. Most, if not all, of the loading will be expressed in local drainage ditches before it reaches Bayou Cane. These dischargers are accounted for as nonpoint loading through the process of calibration.

Based on survey data and modeling, LDEQ determined that the Southeast Louisiana State Hospital (SLSH, AI # 9371) was the only facility having a significant impact on Bayou Cane. The SLSH enters Bayou Cane in reach 1 at river kilometer 3.4. It appeared to be contributing significant phosphorus and nitrite/nitrate loads to Bayou Cane. From the water quality data in Appendix F1, the total phosphorus (TP) and nitrite/nitrate values for the hospital were 3.12 mg/L and 2.63 mg/L, respectively. The survey data indicated that the phosphorus and ammonia levels were higher at sites 3665 and 3752 (BC04), then decreasing for the remainder of the waterbody except for Site 3666, where the levels increased slightly. LDEQ attributes the higher levels at sites 3665 and 3752 to loading from the hospital. The TOC and turbidity levels at site 3752 also appear to show the impact of the hospital as does the ammonia levels at sites 3665 and 3752. In order to meet the current dissolved oxygen criteria, Southeast Louisiana State Hospital will have more stringent limits of 5/2/5 (mg/L CBOD₅/ mg/L NH₃-

^{*}No more than 25% of samples shall exceed a fecal coliform density of 400/100 mL for the period May through October. No more than 25% of samples shall exceed a fecal coliform density of 2,000/100 mL for the period November through April.

N/ mg/L DO). Because of the higher nutrient loading produced by the Southeast Louisiana State Hospital, LDEQ recommends that the facility begin monitoring for nutrients (total phosphorus and total nitrogen) and consider tertiary treatment for the removal of nutrients. LDEQ is in the process of developing nutrient criteria and this facility may receive permit limits for total phosphorus and total nitrogen in the future.

Lakeshore High School (AI # 165696) is located approximately 4.5 miles from the modeled (perennial) reaches of Bayou Cane. Effluent from the school does not impact Bayou Cane. The facility discharges to a local roadside ditch which then goes to a ditch along Hwy 1088. There are no discernable streams in Subsegment 040903 north of I-12. There is a canal along the north side of I-12 that would serve to intercept any flow from streams or facilities north of I-12 including Lakeshore High School and reroute the flow to the headwaters of Bayou Castine in Subsegment 040904. Lakeshore High School does not impact Bayou Cane. The permit limits for this facility will not be modified as a result of this TMDL.

The other facilities in the Bayou Cane watershed are Station # 44 of the St. Tammany Fire Protection District #4, Bayou Moon Antiques, and Demmonlicious Catering, LLC (AI #s 104230, 40735, 140644). All of these facilities are located in Subsegment 040904. They contribute approximately 120 gpd, 20 gpd, and 60 gpd, respectively, and are therefore not expected to impact Bayou Cane. Additional projection runs indicated that these facilities do not provide a discernable impact to Bayou Cane. The permit limits for these facilities will not be modified as a result of this TMDL.

The remaining 112 facilities in Subsegment 040904 are outside of the Bayou Cane watershed and they have no impact on Bayou Cane. Therefore, they were not modeled, and their permit limits will not be modified as a result of this TMDL.

Tables 3 and 4 in the Technical Summary include details about the facilities.

LDEQ recognizes that home treatment systems and camps may exist along the bayou. LDEQ is not able to quantify these dischargers but recommends that such systems be incorporated into a community or regional treatment system if available.

The LDEQ is updating current information on permitted facilities and actively locating unpermitted facilities in the Lake Pontchartrain Basin. The unpermitted facilities are encouraged to apply for the appropriate LPDES permit.

EPA's stormwater permitting regulations require municipalities to obtain permit coverage for all stormwater discharges from MS4s. Areas regulated by MS4 permits border the Bayou Cane watershed; however, the loading from these regulated areas does not impact Bayou Cane. There are no MS4's in the Bayou Cane watershed.

2.4 Water Quality Conditions/Assessment

Bayou Cane, located in St. Tammany Parish in subsegments 040903 and 040904, was listed in the 2006 Integrated Report and the consent decree. Subsegment 040903 was found to be "not supporting" any of its designated uses of Primary Contact Recreation, Fish and Wildlife Propagation, and

Outstanding Natural Resource Waters. The suspected causes of impairment are organic enrichment/low dissolved oxygen, chloride, fecal coliform, pH, and turbidity. The suspected sources are Site Clearance (Land Development or Redevelopment), On-site Treatment Systems (Septic Systems and Similar Decentralized Systems), and Drought-related Impacts. Subsegment 040903 was assessed using ambient water quality network site number 0302 which is on Bayou Cane at the U.S. 190 bridge.

Subsegment 040904 was found to be "not supporting" any of its designated uses of Primary Contact Recreation, Secondary Contact Recreation, Fish and Wildlife Propagation, and Outstanding Natural Resource Waters. The suspected causes of impairment are organic enrichment/low dissolved oxygen, fecal coliform, pH, mercury, turbidity, and dissolved copper. The suspected sources are On-site Treatment Systems (Septic Systems and Similar Decentralized Systems), Package Plant or Other Permitted Small Flows Discharges, and unknown sources. Subsegment 040904 was assessed using ambient site number 1046 which is located on Bayou Castine at Prieto Marina.

Because of the impairment, a total maximum daily load (TMDL) for oxygen-demanding substances was required.

The last two sampling cycles of ambient water quality data from site 0302 are shown in Appendix G2. Data points for TKN, NH₃-N, NO₂-NO₃ N, chloride, specific conductance, phosphorus, TOC, color, and turbidity were retrieved from LDEQ's website and then plotted. The graphs also include a survey data point from site BC04 (3752) which is approximately 145 feet from ambient monitoring site 0302. The survey data was within the range of the ambient data. However, both the total phosphorus and ammonia values measured during the survey were near the top of the range of the ambient data.

2.5 Prior Studies

LDEQ has not conducted previous TMDL surveys on Bayou Cane. LDEQ has one ambient water quality monitoring site on Bayou Cane. Site 0302, Bayou Cane east of Mandeville, Louisiana, has a period of record from 1991-1998, 2001, and 2007. Data collected during the Eulerian survey in June 2008 included discharge data, cross-section data, field in-situ data, continuous monitor data, lab water quality data, and a dye study. This data was used to establish the input for the model calibration and is presented in Appendix F.

3. Documentation Calibration Model

The development of a TMDL for dissolved oxygen generally occurs in 3 stages. Stage 1 encompasses the data collection activities. These activities may include gathering such information as stream cross-sections, stream flow, stream water chemistry, stream temperature and dissolved oxygen at various locations on the stream, location of the stream centerline and the boundaries of the watershed which drains into the stream, and other physical and chemical factors which are associated with the stream. Additional data gathering activities include gathering all available information on each facility which discharges pollutants in to the stream, gathering all available stream water quality chemistry and flow data from other agencies and groups, gathering population statistics for the watershed to assist in developing projections of future loadings to the water body, land use and crop rotation data where available, and any other information which may have some bearing on the quality of the waters within

the watershed. During Stage 1, any data available from reference or least impacted streams which can be used to gauge the relative health of the watershed is also collected.

Stage 2 involves organizing all of this data into one or more useable forms from which the input data required by the model can be obtained or derived. Water quality samples, field measurements, and historical data must be analyzed and statistically evaluated in order to determine a set of conditions which have actually been measured in the watershed. The findings are then input to the model. Best professional judgment is used to determine initial estimates for parameters which were not or could not be measured in the field. These estimated variables are adjusted in sequential runs of the model until the model reproduces the field conditions which were measured. In other words, the model produces a value of dissolved oxygen, temperature, or other parameter which matches the measured value within an acceptable margin of error at the locations along the stream where the measurements were actually made. When this happens, the model is said to be calibrated to the actual stream conditions. At this point, the model should confirm that there is an impairment and give some indications of the causes of the impairment. If a second set of measurements is available for slightly different conditions, the calibrated model is run with these conditions to see if the calibration holds for both sets of data. When this happens, the model is said to be verified.

Stage 3 covers the projection modeling which results in the TMDL. The critical conditions of flow and temperature are determined for the waterbody and the maximum pollutant discharge conditions from the point sources are determined. These conditions are then substituted into the model along with any related condition changes which are required to perform worst case scenario predictions. At this point, the loadings from the point and nonpoint sources (increased by an acceptable margin of safety) are run at various levels and distributions until the model output shows that dissolved oxygen criteria are achieved. It is critical that a balanced distribution of the point and nonpoint source loads be made in order to predict any success in future achievement of water quality standards. At the end of Stage 3, a TMDL is produced which shows the point source permit limits and the amount of reduction in manmade nonpoint source pollution which must be achieved to attain water quality standards. The manmade portion of the NPS pollution is estimated from the difference between the calibration loads and the loads observed on reference or least impacted streams.

4. Calibration Model Documentation

4.1 Program Description

The model used for this TMDL was LA-QUAL, a steady-state one-dimensional water quality model. LA-QUAL has the mechanisms for incorporating tidal fluctuations, dispersion, and algal impacts in the simulation and was suitable for use in modeling Bayou Cane. For a history of LA-QUAL, refer to the LA-QUAL for Windows User's Manual (Wiland, 2007).

4.2 Input Data Documentation

Data collected during an intensive survey from June 16-20, 2008 was used to establish the input for the model calibration. Field and laboratory water quality data were entered in spreadsheets for ease of analysis. The data is presented in Appendix F.

Data from LDEQ's reference streams projects is presented in Appendix E3. A comparison of the reference stream data and survey data was made for specific conductance, chlorides, ammonia, and phosphorus. Even though the reference stream data was collected in the months of January, March, October, and November and does not include any tidal waterbodies, it can still be used to obtain a general indication of how Bayou Cane compares to waterbodies in least-impacted natural conditions.

Chloride and specific conductance measured in Bayou Cane during the survey were much higher than in the reference streams. This difference may indicate some influence from the hospital's discharge, but the tidal nature of Bayou Cane and the influence of Lake Pontchartrain are most likely the primary causes. This indicates that the lower reaches of Bayou Cane may be primarily dominated by natural loading conditions and stream characteristics.

Reference stream values for ammonia ranged from 0.12-0.23 mg/L; however, the majority of values were non-detect. For the Bayou Cane survey, ammonia values were measured at the survey sites. Three sites had readings of 0.21-0.25 mg/L, and three sites were non-detect including the lower boundary site in Lake Pontchartrain. The measured levels of ammonia in Bayou Cane were similar to the reference stream values with the possible exception of two sites where the ammonia levels may have been slightly higher than reference stream values.

Phosphorus data for the reference streams ranged from 0.05 mg/L to 0.27 mg/L. Phosphorus values in the middle and lower portions of Bayou Cane during the survey were similar to the reference stream values and ranged from 0.17 to 0.23 mg/L. The phosphorus values in the modeled headwaters were 0.58-0.61 mg/L which indicates some possible influence from the Southeast Louisiana State Hospital's discharge. The phosphorus level measured for the hospital during the TMDL survey was 3.12 mg/L.

The TOC, turbidity, and TSS values also seem to indicate a possible influence from the hospital at site 3752 (BC04). It would appear as if the hospital was providing an effluent with a low turbidity and TOC but high levels of nutrients.

The DO levels in the hospital effluent appear to temporarily improve the levels in the stream.

The UBOD concentrations were relatively low throughout Bayou Cane. The UBOD concentrations for the Southeast Louisiana State Hospital were also low, but the mass loading provided by the facility appears to be overloading the waterbody which has a low assimilative capacity due to the hydrologic characteristics.

4.2.1 Model Schematics and Maps

A vector diagram of the modeled area is presented in Figure 1 and Appendix C1. The vector diagram shows the locations of survey stations and the reach/element design. An ARCVIEW map of the stream showing river kilometers, survey stations, and other points of interest is included in Figure 2 and Appendix H1.

4.2.2 Model Options, Data Type 2

Five constituents were modeled during the calibration process. These were dissolved oxygen, carbonaceous biochemical oxygen demand, nitrogenous biochemical oxygen demand, chloride, and

conductivity. The continuous monitors showed diurnal swings indicative of algal activity. The algae cycle was not modeled; however, the measured chlorophyll-a values were included in the initial conditions. This allowed the model to simulate the oxygen production associated with algae without modeling the entire algal cycle.

4.2.3 Program Constants, Data Type 3

A minimum K_L value of 0.7 m/day was used. This value is a conversion from 2.3 ft/day which is a Louisiana standard minimum. The K_2 maximum was set to 10 1/day at 20° C which is the model default.

The inhibition control value was set to option 3 which is all rates but sediment oxygen demand. The water column dissolved oxygen demand is assumed to come primarily from facultative bacteria under anoxic conditions and SOD is not influenced by modeled dissolved oxygen levels in the upper water column.

The hydraulic calculation method was set to option 2 which is "widths and depths." This was done because the low slopes in this waterbody cause a substantial amount of water to be present in some reaches during critical flow. Using a modified Leopold relationship allows the model to predict a more accurate depth and width during low flow.

The settling rate units were set to option 2 which is 1/day.

The algae oxygen production was set to 0.05 to account for the net oxygen production per unit of chlorophyll-a.

Dispersion equation option 3 was used to take into account all modes of transport.

4.2.4 Temperature Correction of Kinetics, Data Type 4

The temperature values computed are used to correct the rate coefficients in the source/sink terms for the other water quality variables. These coefficients are input at 20 °C and are then corrected to temperature using the following equation:

$$X_T = X_{20} * Theta^{(T-20)}$$

Where:

 X_T = the value of the coefficient at the local temperature T in degrees Celsius

 X_{20} = the value of the coefficient at the standard temperature at 20 degrees Celsius

Theta = an empirical constant for each reaction coefficient

In the absence of specified values for data type 4, the model uses default values. A complete listing of these values can be found in the LA-QUAL for Windows User's Manual (Wiland, 2007). For this model, LA-QUAL default values were used.

4.2.5 Reach Identification Data, Data Type 8

A diagram of the modeled area is presented in Appendix C1. The vector diagram shows the reach/element design and survey sites. The modeled area is characterized by seven survey sites. The model begins just above the discharge point of Southeast Louisiana State Hospital and extends to Lake Pontchartrain. This calibrated model includes six reaches, 360 elements, and one headwater. Reach 1 is in subsegment 040903, and reaches 2-6 are in subsegment 040904. A digitized map of the stream showing river kilometers and the June 2008 survey sites is included in Figure 2 and Appendix H1.

4.2.6 Advective Hydraulic Coefficients, Data Type 9

The Leopold equations are used to scale the velocity (U), width (W), and depth (H) of a free flowing stream from a lower value of flow to a higher value or from a higher value of flow to a lower value. Note that the exponents add to one and the coefficients multiply to 1. This is known as the "rule of ones". This method is not appropriate for streams which are not dependent entirely on flow such as waterbodies where flow approaches zero, but contain some depth.

$$U = aQ^b$$
 $H = cQ^d$ $W = eQ^f$ $b + d + f = 1$ $(a)(c)(e) = 1$

The Leopold equations presume that the water surface width and average depth of a stream are zero at zero flow. Most Louisiana streams, such as Bayou Cane, retain a significant width and depth at zero flow. The equations have therefore been modified to allow for a zero-flow width and depth. The "rule of ones" does not apply to the modified equations. The modified Leopold equations are:

$$W=aQ^b+c \qquad \qquad H=dQ^e+f \qquad \qquad U=gQ^h$$

For this model, the width and depths were assumed to be independent of flow. Consequently, the modified Leopold coefficients and exponents were not calculated.

4.2.7 Dispersive Hydraulic Coefficients, Data Type 10

A dye study was conducted during the survey between sites 3752 and 3666. Dye concentrations were recorded in two separate runs using the moving site method. Run 1 consisted of readings at approximately 30 hours after the dye was dumped into the waterbody. Run 2 consisted of readings at approximately 54 hours after the dye was dumped into the waterbody.

A dispersion value was calculated for each run using the dye concentration measurements. Based on the data collected, run 2 was determined to be most representative of the stream since it had the longest time span. The longer time frame allowed the dye to become more uniformly dispersed in the waterbody. Dispersion was determined to be $0.288 \text{ m}^2/\text{s}$.

To take into consideration all modes of transport, equation 3 ($E = aD^bQ^cV_M^d$) in LA-QUAL was used. Using b=5/6, c=0, and d=1 took into account all modes of transport in the manner of the Tracor and QUAL2E equations. The value for coefficient "a" was varied during calibration until the measured

dispersion value was obtained. The measured dispersion value was applied to the stretch of water that encompassed dye run 2. Information associated with the dye study can be found in Appendix F6.

4.2.8 Initial Conditions, Data Type 11

The initial conditions are used to reduce the number of iterations required by the model. The parameters required for this model were temperature, salinity, DO, and chlorophyll-a by reach. The input values came from the survey site located at the top of each reach.

Chlorophyll-a values were used since the effects of algae on the dissolved oxygen concentrations were simulated with this model. The chlorophyll-a values are used in calculating the net oxygen production due to photosynthesis.

The input data and sources are shown in Appendix B2.

4.2.9 Reaeration Rates, Data Type 12

The applicability of the various reaeration equations was examined. The Texas Equation was considered to be the most appropriate equation for reaches 1-4. The equation is stated below.

$$K_2 = \underbrace{1.923 \ V^{0.273}}_{D^{0.894}}$$

where: V = stream velocity D = stream depth

The last two reaches of the waterbody are marsh which allows more windy conditions than in the upstream reaches. Therefore, the Mattingly equation (Bowie, 1985) was used to account for wind reaeration in reaches 5 and 6. Reaeration option number 1 in LA-QUAL was used. The calculations were performed manually. The calculated rate was used as input for the model. The Mattingly equation is shown below. The calculations for the Mattingly equation are shown in Appendix B3.

$$\underline{\mathbf{k}_2} - 1 = 0.2395 \text{ V}_w^{1.643}$$

 $(\mathbf{k}_2)_o$

where: k₂=reaeration coefficient under windy conditions, 1/day

 $(k_2)_0$ =reaeration coefficient without wind, 1/day

V_w=wind velocity in the free stream above the boundary layer near the water surface, m/s

4.2.10 Sediment Oxygen Demand, Data Type 12

The SOD values were achieved through calibration. The SOD value for each reach is shown in Appendix B2. The values were considered to be reasonable for this type of stream. The conversion ratio of settled BOD to SOD was considered to be zero for all reaches due to the resuspension of bottom sediments.

The nitrogen series was not modeled, and UCBOD and UNBOD were combined into a single parameter, UBOD. These simplifications eliminated the possibility of allowing LA-QUAL to internally generate SOD from the conversion of settled CBOD. In this case, settled UBOD disappears from the model and the nonpoint "resuspended" loading is used to calibrate the model to measured values of UBOD. LDEQ used reasonable settling rates in accordance with the Louisiana Technical Procedures.

All SOD was added as "background sediment oxygen demand" to calibrate to the measured dissolved oxygen values. This should not be taken to imply that this level of SOD represents natural background SOD. In the case of Bayou Cane, no natural background loading was specified, and the loading needed to calibrate represents both natural background loading and anthropogenic loading, if present. The term "Background SOD" in the LA-QUAL input file is actually a baseline input value void of any settled CBOD that has been converted to SOD. "Background SOD" does not refer to any type of natural background loading present in the stream.

4.2.11 CBOD & NBOD Decay and Settling Rates, Data Types 12 and 13

The Louisiana BOD program was applied to the BOD data in a spreadsheet and values were computed for each sample taken during the survey. The spreadsheet calculates ultimate CBOD and NBOD, CBOD and NBOD decay rates, and CBOD and NBOD lag times.

The NBOD bottle decay rates ranged from 0.059 to 0.462 per day but had to be adjusted in order to calibrate the model. The two most upstream sampling sites had rather high bottle values of 0.307 and 0.462 per day compared to the remaining downstream sites. This may indicate the influence of anthropogenic loading, in particular, the Southeast Louisiana State Hospital. The decay rate of the effluent from Southeast Louisiana State Hospital was 0.431 per day.

The CBOD decay rates ranged from 0.044 to 0.068 per day.

The BOD curves presented in Appendix F5 were derived using the Microsoft Excel Solver and were based on the measured daily BOD values. The decay rates are shown in Appendix F5.

Settling rates were achieved through calibration.

4.2.12 Nonpoint Sources, Data Type 19

Nonpoint source loads which are not associated with a flow are input into this part of the model. These can be most easily understood as resuspended load from the bottom sediments and are modeled as CBOD, NBOD, and SOD. These values are achieved through calibration. The loads determined through calibration were reasonable for this type of waterbody and stream geometry.

4.2.13 Headwaters, Data Types 20, 21, and 22

The headwater flow was measured at Site 3665 during the survey. The data and sources are presented in Appendix B2.

4.2.14 Wasteloads, Data Types 23, 24, and 25

There are five dischargers located within the Bayou Cane watershed. One discharger, Southeast Louisiana State Hospital, was included in the model. The remaining four are small enough so as to not contribute a significant load. Limits for these facilities are generally set by state policy. The load, as discharged, is expected to be small. In addition, most, if not all, of the loading will be expressed in local drainage ditches before it reaches Bayou Cane. These dischargers are accounted for as nonpoint loading through the process of calibration.

4.2.15 Boundary Conditions, Data Type 27

Data from Site 3756 was used for the lower boundary conditions.

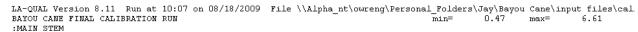
4.3 Model Discussion and Results

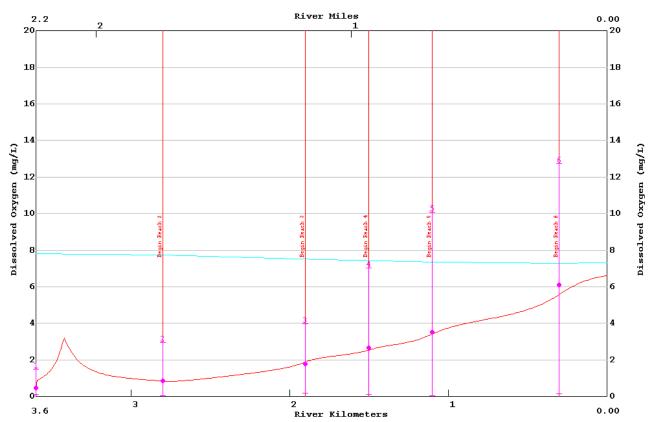
The calibration model input and output are presented in Appendix B. The overlay plotting option was used to determine if calibration had been achieved. A plot of the dissolved oxygen concentration versus river kilometer is presented in Figure 3. The calibration points for dissolved oxygen were based on average DO values from the continuous monitors. SOD and nonpoint CBOD and NBOD were varied until the model matched the measured values of DO, UCBOD, and UNBOD.

An adequate calibration was achieved for DO, UCBOD, UNBOD, chlorides, and conductivity on the main stem. The calibration model showed that during the June 2008 survey period, the DO criterion was met only in the last modeled reach of Bayou Cane. The calibration model minimum DO on the main stem was 0.47 mg/L. The chlorides and conductivity values steadily increased from upstream to downstream indicating the tidal influence of Lake Pontchartrain on Bayou Cane.

LA-QUAL simulates tidal dispersion and transport by calculating the flow into and out of a tidal prism, element by element. This is combined with advective flow to produce a combined average flow for the water quality model. This combined flow is used by the model to calculate reaeration rate, dispersion, and transport time for the steady state model.

The lower boundary option in the model is used for systems that contain high dispersion or flow reversals (such as tidal impacts) in the lower reaches. The lower portion of Bayou Cane (Subsegment 040904) is dominated by Lake Pontchartrain influent and adjacent wetlands. From the Louisiana reference stream studies, wetlands have been demonstrated to discharge constituents that contribute to low DO in receiving waters.


The DO value chosen for the lower boundary condition will force the model to converge on that particular value. The DO value at the lower boundary did not cause an increase in the load reductions required to meet the DO criteria. LDEQ used the average continuous monitor DO value of 6.61 mg/L that was measured during the survey since this value is not expected to change substantially during critical conditions.


The DO levels in Bayou Cane (high SOD, high resuspended CBOD and NBOD) may be influenced by the loads delivered from the relatively small number of dischargers (permitted and non-permitted) but is certainly compounded by continuous, long-term BOD loading from the wetlands adjacent to Bayou

Cane and the low reaeration capacity of the bayou. Wetland seepage is very low in solids and is high in color from the dissolved tannins (see Appendix F1 for color data); it would be expected to remain in the water column, not dropped out to be resuspended at a later time. These constituents are naturally occurring and will remain even after TMDL allocations are implemented.

LDEQ recognizes that Bayou Cane may be minimally impacted by permitted and non-permitted dischargers. In addition, LDEQ realizes that the lower reaches of the modeled portion of Bayou Cane may have been at or near natural loading conditions during the time of the TMDL survey. Nonetheless, the water quality conditions may be improved and protected by the regionalization of wastewater treatment for all sanitary wastewater sources, including individual treatment systems, and the consideration of innovative forms of wastewater treatment.

Figure 3. Calibration Model Dissolved Oxygen versus River Kilometer, Subsegments 040903 & 040904

- numbered points indicate survey sites
- vertical lines indicate beginning of reach
- upper plotted line indicates DO saturation
- lower plotted line indicates calibration model output

5. Water Quality Projections

The traditional summer critical projection loading scenario was performed at the current DO criteria of 5.0 mg/L for subsegment 040903 and 4.0 mg/L for subsegment 040904. This scenario was based on reduced point and nonpoint loads at summer season critical conditions (i.e., 90th percentile seasonal temperatures and summer default flows) in accordance with the Louisiana Technical Procedures (LTP). A winter projection was run based on the percent reduction of nonpoint loads used for the summer critical projections.

5.1 Critical Conditions, Seasonality and Margin of Safety

The Clean Water Act requires the consideration of seasonal variation of conditions affecting the constituent of concern and the inclusion of a margin of safety (MOS) in the development of a TMDL. For Bayou Cane, an analysis of LDEQ ambient data was used to determine critical seasonal conditions.

Critical conditions for dissolved oxygen were determined for Bayou Cane using data from Site 0302 of the LDEQ Ambient Water Quality Monitoring Network. The 90th percentile temperature for each season and the corresponding 90% of DO saturation were determined. Ambient temperature data, critical temperatures, and DO saturation determinations are shown in Appendix G1.

Graphical and regression analysis techniques have been used by LDEQ historically to evaluate the temperature and dissolved oxygen data from the Ambient Monitoring Network and run-off determinations from the Louisiana Office of Climatology water budget. Since nonpoint loading is conveyed by run-off, this was a reasonable correlation to use. Temperature is strongly inversely proportional to dissolved oxygen and moderately inversely proportional to run-off. Dissolved oxygen and run-off are also moderately directly proportional. The analysis concluded that the critical conditions for stream dissolved oxygen concentrations were those of negligible nonpoint run-off and low stream flow combined with high stream temperature.

When the rainfall run-off (and non-point loading) and stream flow are high, turbulence is higher due to the higher flow and the temperature is lowered by the run-off. In addition, run-off coefficients are higher in cooler weather due to reduced evaporation and evapotranspiration, so that the high flow periods of the year tend to be the cooler periods. Reaeration rates and DO saturation are, of course, much higher when water temperatures are cooler, but BOD decay rates are much lower. For these reasons, periods of high loading are periods of higher reaeration and dissolved oxygen but not necessarily periods of high BOD decay.

This phenomenon is interpreted in TMDL modeling by assuming that nonpoint loading associated with flows into the stream are responsible for the benthic blanket which accumulates on the stream bottom and that the accumulated benthic blanket of the stream, expressed as SOD and/or resuspended BOD in the calibration model, has reached steady state or normal conditions over the long term and that short term additions to the blanket are off set by short term losses. This accumulated loading has its greatest impact on the stream during periods of higher temperature and lower flow. The man-made portion of the NPS loading is the difference between the calibration load and the reference stream load where the calibration load is higher. The only mechanism for changing this normal benthic blanket condition is to implement best management practices and reduce the amount of nonpoint source loading entering the stream and feeding the benthic blanket.

Critical season conditions were simulated in the Bayou Cane dissolved oxygen TMDL projection modeling by using the LTP seasonal defaults for all flows and the 90th percentile temperature. For the headwater DO, 90% of DO saturation at the 90 percentile seasonal temperature from ambient monitoring site 0302 was used.

In reality, the highest temperatures occur in July-August, the lowest stream flows occur in October-November, and the maximum point source discharge occurs following a significant rainfall, i.e., high-flow conditions. The summer projection model is established as if all these conditions happened at the same time. The winter projection model accounts for the seasonal differences in flows and BMP efficiencies. Other conservative assumptions regarding rates and loadings are also made during the modeling process. In addition to the conservative measures, an explicit MOS of 20% was used for all loads to account for future growth, safety, model uncertainty and data inadequacies.

5.2 Input Data Documentation

The LTP states that the flow for summer conditions should be 0.1 cfs or the 7Q10, whichever is greater. In the absence of historical data, a 7Q10 value could not be determined for Bayou Cane. Therefore, the critical flows were set to 0.1 cfs (0.0028 cms) and 1 cfs (0.028 cms) for the summer and winter seasons, respectfully.

Parameters that are affected by critical conditions include dissolved oxygen, temperature, and flow. Pollutant loading is adjusted in the projection models to meet the dissolved oxygen criteria.

Chlorophyll-a was set at $10 \mu g/L$ for the summer and winter projections to account for improvements in nutrient loading while realizing that the algae will not completely disappear.

The calibration values were retained for the remaining parameters and used as input values in the summer and winter projections. The model adjusts the input values of SOD, BOD decay rates, and BOD settling rates based upon the input temperature.

5.2.1 Model Options, Data Type 2

Five constituents were modeled during the projection process. These were dissolved oxygen, carbonaceous biochemical oxygen demand, nitrogenous biochemical oxygen demand, chloride, and conductivity.

5.2.2 Temperature Correction Constants, Data Type 4

The default temperature correction factors in the model were used.

5.2.3 Reach Identification Data, Data Type 8

The reach and element design from the calibration was used in the projection modeling.

5.2.4 Advective Hydraulic Coefficients, Data Type 9

The hydraulic coefficients, exponents, and constants determined for the calibration were used in the projection modeling.

5.2.5 Initial Conditions, Data Type 11

Temperature was set to the 90^{th} percentile critical season temperature in accordance with the LTP. For summer, the temperature was set to 27.91° C. For winter, the temperature was set to 20.71° C. The dissolved oxygen values for the initial conditions were set at the stream criteria (5.0 mg/L for subsegment 040903 and 4.0 mg/L for subsegment 040904). Chlorophyll-a was set at 10 μ g/L for the summer and winter projections.

5.2.6 Reaeration Rates, Carbonaceous BOD Decay and Settling Rates, Nitrogenous BOD Decay and Settling Rates, Data Types 12 and 13

The reaeration rate equations, CBOD decay and settling rates, NBOD decay and settling rates, and the fractions converting settled CBOD and settled NBOD to SOD were not changed from the calibration.

5.2.7 Sediment Oxygen Demand, Nonpoint Sources, Headwaters, Wasteloads, Data Types 12, 19, 20, 21, 22, 24, 25, and 26

The headwater DO was set to 90% of DO saturation based on the 90th percentile temperature. Data was obtained from water quality ambient monitoring site 0302. The headwater DO for summer was set to 7.06 mg/L. The headwater DO for winter was set to 8.07 mg/L.

The NPS values were calculated for each projection scenario using a load equivalent spreadsheet. An analysis was made of the calibration NPS and SOD loads in terms of loading in units of g $O_2/m^2/day$. The same spreadsheet also calculated load reductions for the headwaters and included calculations for wasteloads. The spreadsheets are found in Appendix E.

LDEQ has collected and measured the CBOD and NBOD oxygen demand loading components for a number of years. These loads have been found in all streams including the non-impacted reference streams. It is LDEQ's opinion that much of this loading is attributable to run-off loads which are flushed into the stream during run-off events and subsequently settle to the bottom in our slow moving streams. These benthic loads decay and breakdown during the year becoming easily resuspended into the water column during the low flow/high temperature season. This season has historically been identified as the critical dissolved oxygen season.

LDEQ simulates part of the nonpoint source oxygen demand loading as resuspended benthic load and SOD. The calibrated nonpoint loads, UCBOD, UNBOD and SOD, are summed to produce the total calibrated benthic load. The total calibrated benthic load is then reduced by the total background benthic load (determined from LDEQ's reference stream research) to determine the total man-made benthic loading. The man-made portion is then reduced incrementally on a percentage basis to determine the necessary percentage reduction of man-made loading required to meet the waterbody's dissolved oxygen criteria. These reductions are applied uniformly to all reaches sharing similar hydrology and land uses.

Following the same protocol as the point source discharges, the total reduced man-made benthic load is adjusted for the margin of safety by dividing the value by one minus the margin of safety. This adjusted load is added back to the total background benthic value to obtain the total projection model benthic load. This total projection benthic load is then broken out into its components of SOD, resuspended CBOD, and resuspended NBOD by multiplying the total projection benthic load by the ratio of each calibrated component to the total calibrated benthic load. The calculations described above are shown in Appendix E.

LDEQ has found variations in the breakdown of the individual CBOD and NBOD components. While the total BOD is reliable, the carbonaceous and nitrogenous component allocation is subject to the type of test method. In the past, LDEQ used a method which suppressed the nitrogenous component to obtain the carbonaceous component value, which was then subtracted from the total measured BOD to determine the nitrogenous value. The suppressant in this method was only reliable for twenty days thus leading to the assumption that the majority of the carbonaceous loading was depleted within that period of time. The test results supported this assumption. A new method was found in Standard Methods for testing long term BODs and was implemented in 2000. This new method was necessary because the nitrogen suppressant started failing around day seven and the manufacturer of the suppressant would only guarantee its potency for a five-day period. LDEQ felt a five-day test would not adequately depict the water quality of streams.

This proposed method is a sixty-day test which measures the incremental total BOD of the sample while at the same time measuring the increase in nitrite/nitrate in the sample. This increase in nitrite/nitrate allows LDEQ to calculate the incremental nitrogenous portion by multiplying the increase by 4.57 to determine the NBOD daily readings. These NBOD daily readings are then subtracted from the daily reading for total BOD to determine the CBOD daily values. A curve fit algorithm is then applied to the daily component readings to obtain the estimated ultimate values of each component as well as the decay rate and lag times of the first order equations.

The results obtained using the new method showed that a portion of the CBOD first order equation does begin to level off prior to the twentieth day; however, a secondary CBOD component begins to use dissolved oxygen sometime between day ten and day twenty-five. This secondary CBOD component was not being assessed as CBOD using the previous method but was being included in the NBOD load. Thus the CBOD and NBOD component loading used in the reference stream studies is not consistent with the results using the new proposed 60-day method and the individual values should not be used to determine background values for samples processed using the new test methods. However, the sum of CBOD and NBOD should be about the same for both new and old test methods. For this reason, LDEQ usually decides to use the average of reference stream benthic loads as background values. However, for the Bayou Cane TMDL, background values were not determined due to the lack of a representative reference stream.

The projections show that Bayou Cane cannot meet the current 5.0 mg/L and 4.0 mg/L criteria without significant load reductions. Since LDEQ assumes these benthic loads are long-term loads brought to the stream by various sources throughout the year, the same percentage reductions were made in the winter projection model as were in the summer critical projection model. These reductions met the summer dissolved oxygen criteria and well surpassed requirements in the winter projection.

5.2.8 Boundary Conditions, Data Type 27

For all projections and scenarios, the lower boundary conditions were set to the DO, UCBOD, and UNBOD measured during the survey and the 90th percentile critical season temperature.

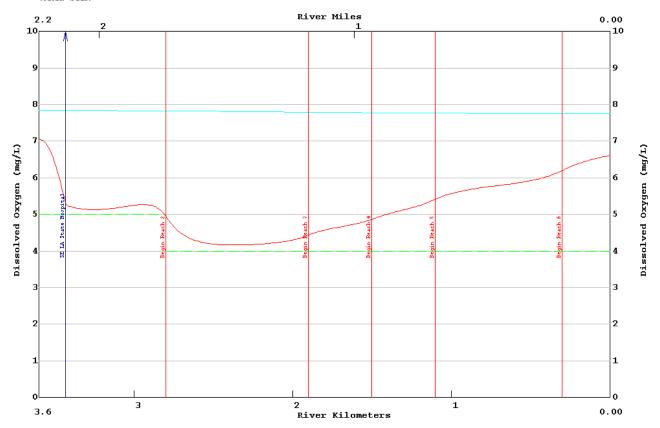
5.3 Model Discussion and Results

The projection model input, output, and sources of the inputs are presented in Appendix D.

The impact of unpermitted, and therefore unmodeled, dischargers is captured in the benthic loading (nonpoint loading not associated with a flow and SOD loading).

Natural background loading was not separated from anthropogenic loading. In the absence of a representative reference stream, LDEQ chose to do an overall load reduction.

In order to meet the existing DO criteria of 5.0 mg/L and 4.0 mg/L, the SOD had to be reduced to less than reference stream average values which may indicate that much of Bayou Cane was at or near natural conditions during the survey and the DO criteria may be inappropriate.

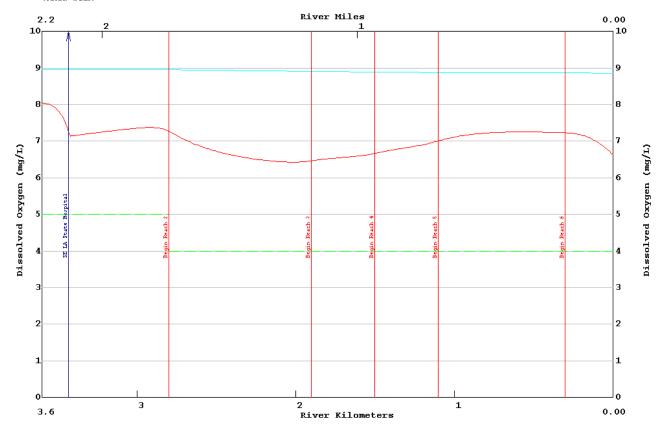

5.3.1 Summer Projection

In order to meet the current dissolved oxygen (DO) criteria of 5.0 mg/L in subsegment 040903 and 4.0 mg/L in subsegment 040904, an overall nonpoint reduction of 90% in reach 1 and 60% in reaches 2-6 is required in addition to more stringent discharge limits of 5/2/5 (CBOD₅/NH₃-N/DO) for Southeast Louisiana State Hospital. The two different percent reductions are due to the two different DO criteria for Bayou Cane. The nonpoint loading includes unquantifiable sources such as individual home treatment systems. In order to reduce nonpoint loading, appropriate BMPs are usually employed in a watershed. The Bayou Cane watershed may benefit from the use of BMPs. This TMDL supports the revision of the DO criteria as discussed in the Technical Summary of this report.

A graph of the dissolved oxygen concentration versus river kilometer for the summer projection is presented in Figure 4.

Figure 4. Summer Projection at 90% Nonpoint Removal in Reach 1, 60% Nonpoint Removal in Reaches 2-6, Subsegments 040903 & 040904

LA-QUAL Version 8.11 Run at 10:22 on 04/19/2010 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\program of SUMR, 4,5 DO, OverallReduc, 90% reduc rch 1,60% reduc rch 2-6, hosp5/2 min= 4.16 max= 7.06



5.3.2 Winter Projection

Winter runs were made at the same level of load reduction as the summer runs. A graph of the dissolved oxygen concentration versus river kilometer for the winter projection is presented in Figure 5.

Figure 5. Winter Projection at 90% Nonpoint Removal in Reach 1, 60% Nonpoint Removal in Reaches 2-6, Subsegments 040903 & 040904

LA-QUAL Version 8.11 Run at 10:27 on 04/19/2010 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\program
WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2 min= 6.43 max= 8.07
:MAIN STEM

5.4 Calculated TMDL, WLAs and LAs

5.4.1 Outline of TMDL Calculations

An outline of the TMDL calculations is provided to assist in understanding the TMDL calculations. The outline is presented in Appendix A1.

5.4.2 Bayou Cane TMDL

TMDLs for biochemical oxygen demanding constituents (CBOD, NBOD, and SOD) were calculated for the summer and winter critical seasons based on the current dissolved oxygen criteria. They are presented in Appendices A2 and A3. A summary of the loads is presented in Table 2.

6. Sensitivity Analysis

All modeling studies necessarily involve uncertainty and some degree of approximation. It is therefore of value to consider the sensitivity of the model output to changes in model coefficients and in the hypothesized relationships among the parameters of the model. The LA-QUAL model allows multiple parameters to be varied with a single run. The model adjusts each parameter up or down by the percentage given in the input set. The rest of the parameters listed in the sensitivity section are held at their original projection value. Thus, the sensitivity of each parameter is reviewed separately. A sensitivity analysis was performed on the calibration. The sensitivity of the model's minimum DO projections to these parameters is presented in Appendix I. Parameters were varied by +/- 30%, except temperature, which was adjusted +/- 2 degrees Celsius.

As shown in Table 8, stream reaeration and benthal demand are the parameters to which DO is most sensitive. The model is moderately sensitive to initial temperature.

Table 8. Summary of Calibration Model Sensitivity Analysis

SENSITIVITY ANALYSIS SUMMARY

:MAIN STEM
BAYOU CANE FINAL CALIBRATION RUN

Plot 1 Base Model Minimum DO = 0.47

Parameter	%Param Chg	Min D.O.		%Param Chg	Min D.O	
Stream Baseflow	30.	0.47	0.0	-30.	0.47	0.0
Stream Velocity	30.	0.47	0.0	-30.	0.47	0.0
Stream Depth	30.	0.47	0.0	-30.	0.47	0.0
Stream Dispersion	30.	0.47	0.0	-30.	0.47	0.0
Stream Reaeration	30.	0.47	0.0	-30.	0.00	-100.0
CBOD Aerobic Decay Rate	30.	0.47	0.0	-30.	0.47	0.0
CBOD Settling Rate	30.	0.47	0.0	-30.	0.47	0.0
Tidal Range	30.	0.47	0.0	-30.	0.47	0.0
NBOD Decay Rate	30.	0.47	0.0	-30.	0.47	0.0
NBOD Settling Rate	30.	0.47	0.0	-30.	0.47	0.0
Benthal Demand	30.	0.00	-100.0	-30.	0.47	0.0
Initial Temperature	2.	0.28	-41.0	-2.	0.47	0.0
Initial Salinity	30.	0.47	0.0	-30.	0.47	0.0
Initial Chorophyll a	30.	0.47	0.0	-30.	0.47	0.0
Headwater Flow	30.	0.47	0.0	-30.	0.47	0.0
Headwater DO	30.	0.47	0.0	-30.	0.47	0.0
Headwater CBOD	30.	0.47	0.0	-30.	0.47	0.0
Headwater NBOD	30.	0.47	0.0	-30.	0.47	0.0
Wasteload Flow	30.	0.47	0.0	-30.	0.47	0.0
Wasteload DO	30.	0.47	0.0	-30.	0.47	0.0
Wasteload CBOD	30.	0.47	0.0	-30.	0.47	0.0
Wasteload NBOD	30.	0.47	0.0	-30.	0.47	0.0

Ocean Exchange Ratio	30.	0.47	0.0	-30.	0.47	0.0
Lower Boundary Temperature	2.	0.47	0.0	-2.	0.47	0.0
Lower Boundary DO	30.	0.47	0.0	-30.	0.47	0.0
Lower Boundary CBOD	30.	0.47	0.0	-30.	0.47	0.0
Lower Boundary NBOD	30.	0.47	0.0	-30.	0.47	0.0
Non-Point Source CBOD	30.	0.47	0.0	-30.	0.47	0.0
Non-Point Source NBOD	30.	0.47	0.0	-30.	0.47	0.0

7. Conclusions

This TMDL establishes load limitations for oxygen-demanding substances and goals for reduction of those pollutants. LDEQ's position is that when oxygen-demanding loads from point and nonpoint sources are reduced in order to ensure that the dissolved oxygen criteria are supported, nutrients are also reduced. The implementation of this TMDL through wastewater discharge permits and implementation of best management practices to control and reduce runoff of soil and oxygen-demanding pollutants from nonpoint sources in the watershed will also reduce the nutrient loading from those sources.

LDEQ has designated Bayou Cane to be an Outstanding Natural Resource Water (ONRW). A review of point source discharges indicates that Bayou Cane is minimally impacted by man-made sources. It is being considered for possible use in studies involving reference streams.

A calibrated water quality model and projections were developed for the watershed to quantify the load reductions which would be necessary in order for Bayou Cane to comply with its established water quality criteria. This report presents the results of that analysis.

The load reductions required to meet the current DO criteria are 90% for reach 1 and 60% for reaches 2-6. However, LDEQ recommends load reductions not be implemented in reaches 2-6 because these reaches appear to have been at or near natural background conditions during the survey. These natural conditions may include wetland seepage from neighboring wetlands. In addition, the projected load reduction indicates that the dissolved oxygen criteria for Bayou Cane may be inappropriate based on the experience of LDEQ's water quality modelers. The load reductions implemented in reach 1, in particular, the new permit limits established for the Southeast Louisiana State Hospital, may contribute to some load reductions in reaches 2-6.

The modeling conducted for this TMDL was conservative and based on limited information.

LDEQ is utilizing a phased TMDL approach for Bayou Cane as shown in the Table 1. This approach will allow LDEQ to meet its TMDL commitments, revise the subsegments, revise the dissolved oxygen criteria, develop nutrient criteria, and develop meaningful and implementable TMDL reports based on appropriate DO criteria. At the same time, it will lead to improved water quality while providing local governments and businesses the opportunity to prepare and adjust to new permit requirements that will be required as a result of the TMDLs developed in Phases I and II.

Phase I consists of the implementation of a permitting strategy and the calculation of the TMDL. The TMDL calculation was based on the nonpoint and point source loading values that meet the current DO criteria for Bayou Cane. The nonpoint reductions and the limits for the hospital were acquired

through the modeling process. Phase I will serve as the first step towards meeting the DO criteria for Bayou Cane.

LDEQ has designated Bayou Cane to be an Outstanding Natural Resource Water (ONRW). A review of point source dischargers and the modeling results indicate that the impairments under the existing criteria may be caused largely by natural conditions. The only point source having a significant impact on Bayou Cane is the Southeast Louisiana State Hospital. The permitting strategy for the Bayou Cane TMDL is intended to protect the ONRW status of Bayou Cane by improving the water quality at this time and preventing the degradation of the water quality in the future.

The implementation of permit limits will occur according to the following strategy:

Phase I Permit Implementation

All TMDL, permitting, and enforcement activities will be conducted in accordance with the Clean Water Act, the Louisiana Environmental Regulatory Code, and applicable state laws.

1. New Discharges of oxygen-demanding loads:

Due to the ONRW status of Bayou Cane, the waterbody is afforded Tier 3 protection according to 40 CFR 131.12 (a)(3). New or increased discharges that will cause degradation, as defined in LAC 33:IX.1119.C.4, will not be approved. However, in the event that such a discharge will not cause degradation and one of the following requirements can be attained, LDEQ may permit the new discharge. Such new facilities may be required to submit an environmental impact assessment to LDEQ's permitting staff which will conduct a thorough evaluation of the proposed facility based on environmental impacts, economic benefits, an analysis of alternatives, and other pertinent factors. The typical permit limits will be 5 mg/L BOD₅ / 2 mg/L NH₃ / 5 mg/L DO.

- a. The facility demonstrates that it will provide a significant load reduction of man-made oxygen-demanding constituents to the impaired watershed(s) serviced by the facility. The facility must also contribute to a reduction in the number of facilities discharging to the watershed(s). Facilities that may be considered for permits under this provision include, but are not limited to:
 - i. A facility that will provide improved sewage treatment to multiple subdivisions previously serviced by wastewater treatment plants that are incapable of treating to tertiary limits.
 - ii. A facility that will provide sewage treatment to previously unsewered areas in which many of the sanitary discharges from permitted facilities and individual home treatment units were

entering an impaired watershed. As a result, the facility would be expected to provide more efficient treatment to the wastewater and reduce the net loading of oxygen-demanding substances in the watershed.

- b. The facility demonstrates that its wastewater will not leave the facility or its property. Significant stormwater events do not apply to this provision. For the purpose of this provision, a significant stormwater event is defined as the 25 year, 24 hour rainfall event or its numerical equivalent, as defined by the Southern Regional Climate Center.
 - i. Facilities that may be considered under this provision include, but are not limited to:
 - a. Effluent reduction systems that have been approved by the Louisiana Department of Health and Hospitals.
 - b. Wastewater treatment plants equipped with overland flow systems in which the effluent will not leave the facility.
 - c. Wastewater treatment plants equipped with holding ponds that will retain the effluent such that the effluent will not leave the facility.
 - ii. LDEQ recognizes that some local governments are in the process of building or expanding regional sewage collection and treatment systems. In such areas, LDEQ may, on a limited basis, grant permits to facilities that agree to tie into a regional collection and treatment system when it becomes available. LDEQ must have reasonable assurance that the facility will connect to the regional collection Reasonable assurance may include a formal agreement system. between the facility, the owner and operator of the regional wastewater treatment system, and LDEQ. The regional system must have the capacity to treat the additional wastewater. Such a permit may have a duration of less than five years or it may have a five year duration with interim permit limits. The facility will be required to cease all wastewater discharges to Bayou Cane and transfer the discharge to the regional collection system once the permit or interim limits expire or the collection system is available to the facility, whichever comes first. Such new facilities will be required to submit an environmental impact assessment to LDEQ's permitting staff which will conduct a thorough evaluation of the proposed facility

based on environmental impacts, economic benefits, an analysis of alternatives, and other pertinent factors.

- c. LDEQ reassesses Subsegments 040903 and/or 040904 (Bayou Cane). LDEQ determines that Subsegments 040903 and/or 040904 are meeting the appropriate DO criteria and designated uses.
- 2. Existing Discharges of oxygen-demanding loads:

Below are the reductions for existing dischargers in the Bayou Cane TMDL. Facilities discharging oxygen-demanding loads without LPDES permits as of the TMDL approval date are to be permitted in accordance with the limits established for existing facilities with permits. Unpermitted facilities that are newly activated or reactivated after the TMDL approval date may be subjected to enforcement actions and will be required to tie into regional collection and treatment systems once they are available.

- a. The Southeast Louisiana State Hospital (AI# 9371) will receive a compliance schedule of up to 3 years with final limitations of 5 mg/L BOD₅ / 2 mg/L NH₃ / 5 mg/L DO (with post reaeration).
- b. All other facilities within the Bayou Cane Watershed will keep existing permits limits for Phase I of the TMDL.
- 3. Nutrient monitoring (i.e. reporting for Total Nitrogen and Total Phosphorus) will be required for individual permits. Nutrient monitoring will be added to the general permit series (LAG530000, LAG540000, LAG560000, and LAG570000) upon the next scheduled renewal of each series.

Phase II will be developed based on the outcome of an ecoregion-based use attainability analysis (UAA) planned for the watershed. Based on existing data for the Lower Mississippi River Alluvial Plains Ecoregion, many of the Lake Pontchartrain Basin TMDLs that are currently being developed may be candidates for DO criteria revisions. TMDL survey data and modeling also indicate that existing DO criteria may be inappropriate. These TMDLs have an interim (state) deadline of March 31, 2011 and a final deadline of March 31, 2012. New ecoregion data is being collected in order to evaluate the need to revise the DO criteria. If needed, such revisions are expected to occur within the next three to five years.

In the event the new criteria are not developed and promulgated within five years from the TMDL approval date for each individual waterbody, LDEQ intends to proceed in the following manner:

Case 1: UAA study indicates that the current DO criteria are appropriate - the TMDL will be fully implemented based on the existing DO criteria.

Case 2: The UAA is not likely to be completed and/or approved - the TMDL will be fully implemented based on the existing DO criteria.

Case 3: The UAA is in progress and is expected to be approved – Phase II of the TMDL will be postponed for a maximum period of 2 years, at which time the UAA status will be reviewed again according to the criteria set in Cases 1 and 2 above.

LDEQ recognizes there may be many unpermitted sources of oxygen-demanding loading within the Lake Pontchartrain Basin. These sources may include unpermitted facilities (privately owned treatment units for subdivisions or businesses). LDEQ has been locating unpermitted facilities and updating location information on permitted facilities in the Lake Pontchartrain Basin. LDEQ has conducted these activities within the Bayou Cane watershed. The unpermitted facilities are required to apply for the appropriate LPDES (Louisiana Pollutant Discharge Elimination System) permits. These unpermitted sources of oxygen-demanding loading may also include individual treatment units for residential homes and small businesses. The ability to accurately quantify the loads provided from these systems is extremely difficult due to lack of reliable information regarding the number of units and the loading provided by each individual unit. Such unpermitted sources of loading may add to the uncertainty of this TMDL and provide additional justification for the use of the phased TMDL approach.

Louisiana does not have numeric nutrient criteria at the present time. The original nutrient impairments for waterbodies in the Pontchartrain Basin were not based on quantitative assessments of historical nutrient data. The impairments were based on evaluative assessments that may have included dissolved oxygen. LDEQ and EPA plan to reevaluate the previous nutrient impairments in the Pontchartrain Basin. As a result, both the EPA and LDEQ expect the nutrient impairments to change from category 5 (impairment exists; TMDL required) to category 3 (insufficient data) for Louisiana's 2010 Integrated Report. Therefore, LDEQ believes that TMDLs for dissolved oxygen should adequately address any potential nutrient impairments in the absence of numeric nutrient criteria and quantitative assessments.

LDEQ is developing numeric nutrient criteria for waterbody types based on ecoregions in accordance with LDEQ's plan "Developing Nutrient Criteria for Louisiana 2006" which can be found at:

 $\frac{http://www.deq.louisiana.gov/portal/Portals/0/planning/LA\%20Nutrient\%20Strategy\%20Plan\%20Final\%20FOR\%20WEB.pdf.$

Water body types for nutrient criteria development in Louisiana are 1) inland rivers and streams; 2) freshwater wetlands; 3) freshwater lakes and reservoirs; 4) big rivers and floodplains/boundary rivers and associated water bodies; and 5) estuarine and coastal waters (including up to Louisiana's three mile boundary in the Gulf of Mexico). Proposed approaches for nutrient criteria development are currently under review by LDEQ and EPA. Nutrient criteria can be implemented upon state promulgation and EPA approval as per 40 CFR 131.21.

Upon development of nutrient criteria, a subsequent quantitative assessment of the waterbodies, and the development of full nutrient models, nutrient limits may be established for all facilities discharging to impaired waterbodies in the Pontchartrain Basin. LDEQ recommends that all facilities discharging to impaired waterbodies take a proactive approach and prepare to receive nutrient limitations in the near future. Such a proactive approach should include nutrient monitoring and documentation through facility Discharge Monitoring Reports (DMRs) in order to assess their nutrient loads and the need to modify their treatment processes for nutrient removal.

LDEQ recognizes that Bayou Cane may be minimally impacted by permitted dischargers. As such, Bayou Cane is being considered for possible use in studies involving reference streams. LDEQ also realizes that the water quality conditions may be improved and protected by the regionalization of wastewater treatment in the area to include all sanitary wastewater sources such as home treatment systems and camps along the bayou and the consideration of innovative forms of wastewater treatment.

Subsegment 040903 was assessed using ambient water quality network site number 0302 which is on Bayou Cane at the U.S. 190 bridge. Subsegment 040904 was assessed using ambient site number 1046 which is on Bayou Castine at Prieto Marina.

Existing ecoregion data suggests that the summer and winter DO criteria should be 2.3 mg/L and 4.0 mg/L, respectively. Water quality monitoring site 0302 is located in the reaches of Bayou Cane for which these proposed criteria would apply.

Model runs were also conducted for alternate dissolved oxygen criteria of 2.3 mg/L for the summer and 4.0 mg/L for the winter. Based on a summer criterion of 2.3 mg/L, an overall reduction of 50% of nonpoint loading would be required, and Southeast Louisiana State Hospital would have permit limits of 5/2/5 (CBOD₅/NH₃-N/DO). It is possible that the UAA may produce a DO criterion different than 2.3 mg/L.

LDEQ has developed this TMDL to be consistent with the state antidegradation policy (LAC 33:IX.1109.A).

LDEQ will work with other agencies such as local Soil Conservation Districts to implement agricultural best management practices in the watershed through the 319 programs. LDEQ will also continue to monitor the waters to determine whether standards are being attained.

In accordance with Section 106 of the federal Clean Water Act and under the authority of the Louisiana Environmental Quality Act, the LDEQ has established a comprehensive program for monitoring the quality of the state's surface waters. The LDEQ collects surface water samples at various locations utilizing appropriate sampling methods and procedures for ensuring the quality of the data collected. The objectives of the surface water monitoring program are to determine the quality of the state's surface waters, to develop a long-term database for water quality trend analysis, and to monitor the effectiveness of pollution controls. The data obtained through the surface water monitoring program is used to develop the state's biennial Integrated Report. This information is also utilized in establishing priorities for the LDEQ nonpoint source program.

The LDEQ is continuing to implement a watershed approach to surface water quality monitoring. In 2004 a four-year sampling cycle replaced the previous five-year cycle. Approximately one-quarter of the state's watersheds will be sampled each year so that all of the state's watersheds will be sampled within the four-year cycle. This will allow LDEQ to determine whether there has been any improvement in water quality following implementation of the TMDLs. As the monitoring results are evaluated by LDEQ and approved by EPA, waterbodies may be added to or removed from the 303(d) list.

8. References

Bowie, G.L., et. al. *Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling (Second Edition)*. Env. Res. Lab., USEPA, EPA/600/3-85/040. Athens, GA: 1985.

LDEQ (Louisiana Department of Environmental Quality). 2002. Office of Environmental Services Water Discharge Permit, Final: Discharges from Small Municipal Separate Storm Sewer Systems. Louisiana Department of Environmental Quality, Baton Rouge, LA.

Lee, Fred N. Low-Flow on Streams in Louisiana. Louisiana Department of Environmental Quality. Baton Rouge, LA: March, 2000.

Louisiana Department of Environmental Quality. *State of Louisiana Water Quality Management Plan, Volume 6, Part A, Nonpoint Source Pollution Assessment Report.* Baton Rouge, LA: 2000. http://nonpoint.deg.louisiana.gov/wqa/NPSManagementPlan.htm

Louisiana Department of Environmental Quality. *Environmental Regulatory Code, Part IX*. Water Regulations. Baton Rouge, LA: 2009.

Louisiana State University, Southern Regional Climate Center, http://www.losc.lsu.edu/plots.html

Smythe, E. deEtte. *Overview of the 1995 and 1996 Reference Streams*. Louisiana Department of Environmental Quality. Baton Rouge, LA: June 28, 1999.

USEPA (U.S. Environmental Protection Agency). 2000. Storm Water Phase II Final Rule. (Fact sheet). EPA 833-F-00-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Waldon M. G., R. K. Duerr, and Marian U. Aguillard. *Louisiana Total Maximum Daily Load Technical Procedures*. Louisiana Department of Environmental Quality. Baton Rouge, LA: January, 2008.

Wiland, Bruce L. *LA-QUAL for Windows User's Manual (Model Version 8.11, Manual Revision N)*. Watershed Support Division, Engineering Section, Louisiana Department of Environmental Quality. Baton Rouge LA: August 22, 2007.

9. Appendices

Appendix A – Detailed TMDL Analysis

Appendix A1 – Outline of TMDL Calculations

Outline of Typical TMDL Calculations

Slight variances may occur based on individual cases.

- 1) The natural background benthic loading was estimated from reference stream resuspension (nonpoint CBOD and NBOD), and SOD load data.
- 2) The calibration man-made benthic loading was determined as follows:
 - a) Calibration resuspension and SOD loads were summed for each reach as gm O_2/m^2 -day to get the calibration benthic loading.
 - b) The natural background benthic loading was subtracted from the calibration benthic loading to obtain the man-made calibration benthic loading.
- 3) Projection loads are determined by trial and error during the modeling process
 - a) Resuspension and SOD loads are reduced by uniform percentages.
 - b) Point sources are reduced as necessary to subsequently more stringent levels of treatment consistent with the size of the treatment facility as much as possible. Point source design flows are increased to obtain an explicit MOS of 20%.
 - c) Headwater and tributary concentrations of CBOD, NBOD and DO range from reference stream levels to calibration levels based on the character of the headwater. Where headwaters and tributaries exhibit man-made pollutant loads in excess of reference stream values, the loadings are reduced by the same uniform percentages as the benthic loads.
- 4) The projection benthic loading at 20 °C is calculated as the sum of the projection resuspension and SOD components expressed as gm O₂/m²-day.
- 5) The natural background benthic load is subtracted from the projection benthic load to obtain the man-made projection benthic load for each reach.
- 6) The percent reduction of man-made loads for each reach is determined from the difference between the projected man-made non-point load and the man-made non-point load found during calibration.
- 7) The projection loads are also computed in units of lb/d and kg/d for each kind.
- 8) The total stream loading capacity at critical water temperature is calculated as the sum of:
 - a) Headwater and tributary CBOD and NBOD loading in lb/d and kg/d.
 - b) The natural and man-made projection benthic loading for all reaches of the stream, converted to the loading at critical temperature and summed in lb/d and kg/d.
 - c) Point source CBOD and NBOD loading in lb/d and kg/d.
 - d) The margin of safety in lb/d and kg/d.

Appendix A2 – 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Summer TMDL Summary

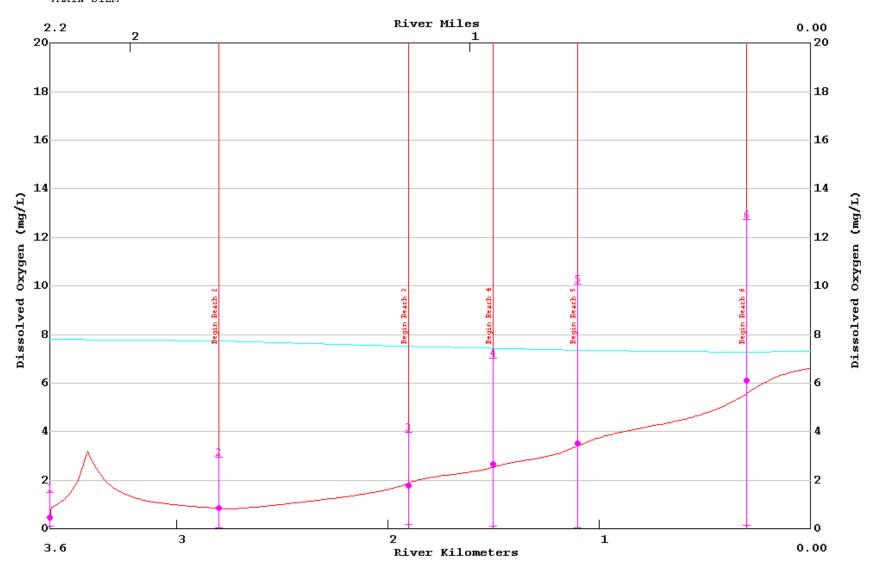
Summer TMDL Sumn	nary:	Loading fo	or 90% Ove	rall Redu	ction in Rea	ich 1													
		RAV	OH CANE (S	HRSEGM	ENT 040903)													
		DAT	JC CALLE (D	CDSEGINI	LITT 040703														
		Calcula	tion of the T	MDL - Kil	ograms per d	lay					C	alculation	of the T	MDL - P	ounds per da	y			
Load description	WLA (kg O ₂ /day)	CBOD1 LA (kg O ₂ /day)	CBOD2 LA (kg O ₂ /day)	Organic-N LA (kg/day)				LA (kg O ₂ /day)	MOS Load (kg O ₂ /day)	Load description	WLA (lbs O ₂ /day)	CBOD1 LA (lbs O ₂ /day)	CBOD2 LA (lbs O ₂ /day)	Organic- N LA (lbs/day)	Ammonia-N LA (lbs/day)	NBOD LA (lbs O ₂ /day)	SOD LA (lbs O ₂ /day)	LA (lbs O ₂ /day)	MOS Load (lbs O ₂ /day
Point Source loads	24								6	Point Source loads	53								13
Headwater / Tributary loads		0	0	0	0	0		0	0	Headwater / Tributary loads		0	0	0	0	0		0	0
Benthic loads		1	0	0	0	0	2	3	1	Benthic loads		2	0	0	0	0	4	7	2
Incremental Loads		0	0	0	0	0		0	0	Incremental Loads		0	0	0	0	0		0	0
SUB-TOTAL	24	1	0	0	0	0	2	3	7	SUB-TOTAL	53	2	0	0	0	0	4	7	15
								1						-					
TMDL = WLA + LA + MOS								34	kg/day	TMDL = WLA + LA + MOS			-					75	lbs/day
Notes:										Notes:									
(1) - Load(lbs/day) = Load(kg/day) x 2.20)5									(1) - Load(lbs/day) = Load(kg/day) x 2.205									
		Calcula	tion of the T	MDL - Kil	ograms per d	lay	•	•			С	alculation	of the T	MDL - P	ounds per da	y			
Load description	WLA (kg O ₂ /day)	CBOD1 LA (kg O ₂ /day)	CBOD2 LA (kg O ₂ /day)	Organic-N LA (kg/day)				LA (kg O ₂ /day)	MOS Load (kg O ₂ /day)	Load description	WLA (lbs O ₂ /day)	CBOD1 LA (lbs O ₂ /day)	CBOD2 LA (lbs O ₂ /day)	Organic- N LA (lbs/day)	Ammonia-N LA (lbs/day)	NBOD LA (lbs O ₂ /day)	SOD LA (lbs O ₂ /day)	LA (lbs O ₂ /day)	MOS Load (lbs O ₂ /day)
Point Source loads	24	<u> </u>	<u> </u>	l 	<u> </u>	<u> </u>	<u> </u>	<u> </u> 	6	Point Source loads	53	<u> </u>	1	1	l 	1			13
Natural Nonpoint Loads		0	0	0	0	0	0	0	 	Natural Nonpoint Loads	- 50	0	0	0	0	0	0	0	1.0
Manmade Nonpoint Loads		1	0	0	0	0	2	3	1	Manmade Nonpoint Loads		2	0	0	0	0	4	7	2
SUB-TOTAL	24	1	0	0	0	0	2	3	7	SUB-TOTAL	53	2	0	0	0	0	4	7	15
TMDL = WLA + LA + MOS								34	kg/day	TMDL = WLA + LA + MOS								75	lbs/day

Summer TMDL Sumn	nary:	Loading fo	or 60% Ove	rall Redu	ction in Rea	ches 2-6														
		BAY	OU CANE (S	SUBSEGM	ENT 040904		<u> </u>													
	<u> </u>	Calcula	A CROD LA Organic-N LA (kg/day)																	
Load description	WLA (kg O ₂ /day)	CBOD1 LA	CBOD2 LA	Organic-N LA	Ammonia-N	NBOD LA		ll .			Load description	WLA (lbs	CBOD1 LA (lbs	CBOD2 LA (lbs	Organic- N LA	Ammonia-N LA	NBOD LA (lbs	(lbs	(lbs	Load (lbs
Point Source loads	458								115		Point Source loads	1,010								254
Headwater / Tributary loads		0	0	0	0	0		0	0		Headwater / Tributary loads		0	0	0	0	0		0	0
Benthic loads		72	0	0	0	26	94	192	48		Benthic loads		159	0	0	0	57	207	423	106
Incremental Loads		0	0	0	0	0		0	0		Incremental Loads		0	0	0	0	0		0	0
SUB-TOTAL	458	72	0	0	0	26	94	192	163		SUB-TOTAL	1,010	159	0	0	0	57	207	423	360
SMDL = WLA + LA + MOS								813	kg/day		TMDL = WLA + LA + MOS								1,793	lbs/d
Notes:																				
) - Load(lbs/day) = Load(kg/day) x 2.20	05									(1) - Load(lbs/day) = Load(kg/day) x 2.205									
										(F										
	ı	Calcula	tion of the T	MDL - Kil	ograms per d	ay	ı	ı				C	1		MDL - P	ounds per da		1		
Load description	II	CBOD1 LA (kg O ₂ /day)	CBOD2 LA	ΙΙΔ	Ammonia-N LA (kg/day)			LA (kg O ₂ /day)	MOS Load (kg O ₂ /day)		Load description	WLA (lbs O ₂ /day)	CBOD1 LA (lbs O ₂ /day)	CBOD2 LA (lbs O ₂ /day)	Organic- N LA (lbs/day)	Ammonia-N LA (lbs/day)	NBOD LA (lbs O ₂ /day)	SOD LA (lbs O ₂ /day)	LA (lbs O ₂ /day)	MOS Load (lbs O ₂ /da
Point Source loads	458								115		Point Source loads	1,010		1	1	1				254
Natural Nonpoint Loads		0	0	0	0	0	0	0			Natural Nonpoint Loads		0	0	0	0	0	0	0	
Manmade Nonpoint Loads		72	0	0	0	26	94	192	48		Manmade Nonpoint Loads		159	0	0	0	57	207	423	106
SUB-TOTAL	458	72	0	0	0	26	94	192	163		SUB-TOTAL	1,010	159	0	0	0	57	207	423	360
CMDL = WLA + LA + MOS								813	kg/day		TMDL = WLA + LA + MOS								1,793	lbs/da

Appendix A3 – 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Winter TMDL Summary

Winter TMDL Summa	ry:	Loading fo	or 90% Ove	rall Redu	ction in Rea	ch 1														
		BAYO	OU CANE (S	UBSEGM	ENT 040903)														
		Calcula	tion of the T	MDI - Kil	ograms per d	937				Ī		Co	lculation	of the T	MDI - Po	unds per day	7			
						ay							CBOD1	CBOD2		i i	NBOD			MOS
	WLA	CBOD1 LA	CBOD2 LA	Organic-N	Ammonia-N	NBOD LA	SOD LA	LA	MOS Load			WLA	LA	LA	Organic-	Ammonia-N	LA	SOD LA	LA	Load
Load description		$(kg O_2/day)$	(kg O./day)	LA	I A (kg/day)				(kg O ₂ /day)		Load description	(lbs	(lbs	(lbs	N LA	LA	(lbs	(lbs	(lbs	(lbs
	(kg O ₂ /day)	(kg O ₂ /day)	(kg O ₂ /day)	(kg/day)	LA (kguay)	(kg O ₂ /day)			O ₂ /day)	(O ₂ /day)	(lbs/day)	(lbs/day)	O ₂ /day)	O ₂ /day)	O ₂ /day)	O ₂ /day)			
														2 0,			2 0,			
Point Source loads	24								6		Point Source loads	53								13
Headwater / Tributary loads		3	0	0	0	1		4	1		Headwater / Tributary loads		7	0	0	0	2		9	2
Benthic loads		1	0	0	0	0	1	2	1		Benthic loads		2	0	0	0	0	2	4	2
Incremental Loads		0	0	0	0	0		0	0		Incremental Loads		0	0	0	0	0		0	0
SUB-TOTAL	24	4	0	0	0	1	1	6	8		SUB-TOTAL	53	9	0	0	0	2	2	13	17
THE WILL IN MOC								20	I-ar/day.		THE WILL IN A MOC								00	Ilaa (alass
TMDL = WLA + LA + MOS								38	kg/day	<u>L</u>	TMDL = WLA + LA + MOS								83	lbs/day
Notes:											Notes:									
(1) - Load(lbs/day) = Load(kg/day) x 2.20	15									(1) - Load(lbs/day) = Load(kg/day) x 2.205									
										Ī				<u> </u>						
		Calcula	tion of the T	MDL - Kil	ograms per d	ay	1	Í				Ca				unds per day		1		
	****	GDOD11.	CDODA:	Organic-N		MDODI	gop I :	. .	Nog I			WLA		CBOD2	Organic-	Ammonia-N	NBOD	SOD LA	LA	MOS
Load description	WLA	CBODI LA	CBOD2 LA	LA	Ammonia-N			LA	MOS Load		Load description	(lbs	LA	LA	N LA	LA	LA	(lbs	(lbs	Load
Loud description	(kg O ₂ /day)	(kg O ₂ /day)	(kg O ₂ /day)	(kg/day)	LA (kg/day)	(kg O ₂ /day)		1	O ₂ /day)	(lbs	(lbs	(lbs/day)	(lbs/day)	(lbs	O ₂ /day)	O ₂ /day)	(lbs			
				(kg/day)								O ₂ /day)	O ₂ /day)	O ₂ /day)	(ibs/day)	(ibs/day)	O ₂ /day)	O ₂ /day)	O ₂ /day)	O ₂ /day)
Point Source loads	24								6		Point Source loads	53								13
Natural Nonpoint Loads		0	0	0	0	0	0	0			Natural Nonpoint Loads		0	0	0	0	0	0	0	
Manmade Nonpoint Loads		4	0	0	0	1	1	6	2		Manmade Nonpoint Loads		9	0	0	0	2	2	13	4
SUB-TOTAL	24	4	0	0	0	1	1	6	8		SUB-TOTAL	53	9	0	0	0	2	2	13	17
TMDL = WLA + LA + MOS								38	kg/day	ľ	TMDL = WLA + LA + MOS								83	lbs/day

Winter TMDL Summa	ry:	Loading fo	or 60% Ove	rall Redu	ction in Rea	ches 2-6														
		BAYO	OU CANE (S	UBSEGM	ENT 040904)		<u> </u>												
		C 1 1	4° 641 TD	MDI K									1 14:	6.41 TD	ADI D	1 1				
		Calcula	tion of the 11	MDL - KII	ograms per d	ay	1	İ				Ca	i		MDL - Po	unds per day		I		1400
Load description	WLA (kg O ₂ /day)	CBOD1 LA (kg O ₂ /day)	CBOD2 LA (kg O ₂ /day)	Organic-N LA (kg/day)	Ammonia-N LA (kg/day)			LA (kg O ₂ /day)	MOS Load (kg O ₂ /day)		Load description	WLA (lbs O ₂ /day)	CBOD1 LA (lbs O ₂ /day)	CBOD2 LA (lbs O ₂ /day)	Organic- N LA (lbs/day)	Ammonia-N LA (lbs/day)	NBOD LA (lbs O ₂ /day)	SOD LA (lbs O ₂ /day)	LA (lbs O ₂ /day)	MOS Load (lbs O ₂ /day)
Point Source loads	458								115		Point Source loads	1,010								254
Headwater / Tributary loads		0	0	0	0	0		0	0		Headwater / Tributary loads		0	0	0	0	0		0	0
Benthic loads		72	0	0	0	26	60	158	39		Benthic loads		159	0	0	0	57	132	348	86
Incremental Loads		0	0	0	0	0		0	0		Incremental Loads		0	0	0	0	0		0	0
SUB-TOTAL	458	72	0	0	0	26	60	158	154		SUB-TOTAL	1,010	159	0	0	0	57	132	348	340
TIME 11 1400								770	Laddan		THE THE TAXABLE								4 000	11 (-1
TMDL = WLA + LA + MOS				-				770	kg/day		TMDL = WLA + LA + MOS		-	-	-				1,698	lbs/day
Notes:											Notes:									
(1) - Load(lbs/day) = Load(kg/day) x 2.20)5										(1) - Load(lbs/day) = Load(kg/day) x 2.205									
										ı										
		Calcula	tion of the T	MDL - Kil	ograms per d	ay						Ca				unds per day				
Load description	WLA (kg O ₂ /day)	CBOD1 LA (kg O ₂ /day)	CBOD2 LA (kg O ₂ /day)	Organic-N LA (kg/day)	Ammonia-N LA (kg/day)			LA (kg O ₂ /day)	MOS Load (kg O ₂ /day)		Load description	WLA (lbs O ₂ /day)	LA (lbs	CBOD2 LA (lbs O ₂ /day)	Organic- N LA (lbs/day)	Ammonia-N LA (lbs/day)	NBOD LA (lbs O ₂ /day)	SOD LA (lbs O ₂ /day)	LA (lbs O ₂ /day)	MOS Load (lbs O ₂ /day)
Point Source loads	458		1						115		Point Source loads	1,010			<u> </u>					254
Natural Nonpoint Loads		0	0	0	0	0	0	0			Natural Nonpoint Loads		0	0	0	0	0	0	0	
Manmade Nonpoint Loads		72	0	0	0	26	60	158	39		Manmade Nonpoint Loads		159	0	0	0	57	132	348	86
SUB-TOTAL	458	72	0	0	0	26	60	158	154		SUB-TOTAL	1,010	159	0	0	0	57	132	348	340
TMDL = WLA + LA + MOS							<u> </u>	770	kg/day		TMDL = WLA + LA + MOS								1,698	lbs/day

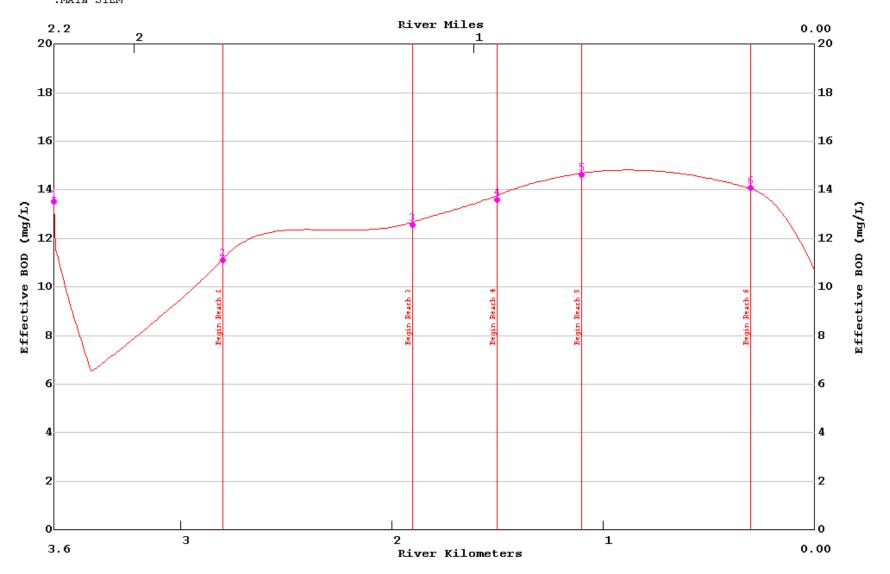

Appendix B – Calibration Model Input and Output

Appendix B1 – Calibration Output Graphs, Input, Output, & Overlay File for Subsegments 040903 and 040904

LA-QUAL Version 8.11 Run at 10:57 on 08/19/2009 File \\Alpha_nt\owreng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

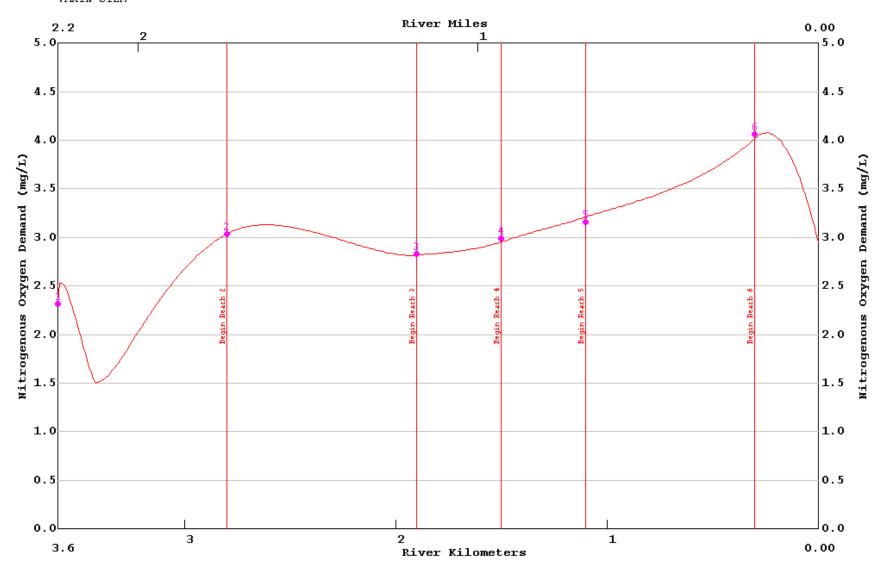
min= 0.47 max= 6.61
:MAIN STEM

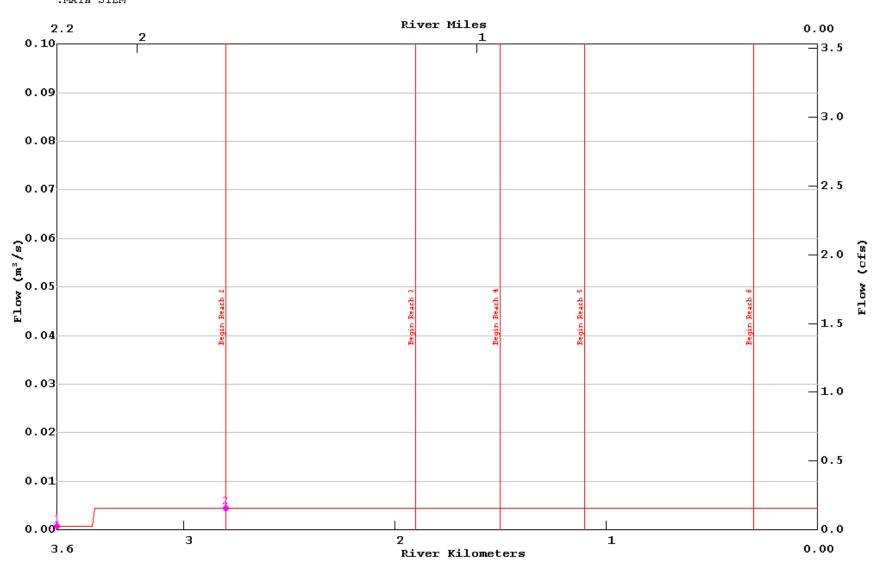


LA-QUAL Version 8.11 Run at 10:57 on 08/19/2009 File \\Alpha_nt\owreng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

min= 6.52 max= 14.81

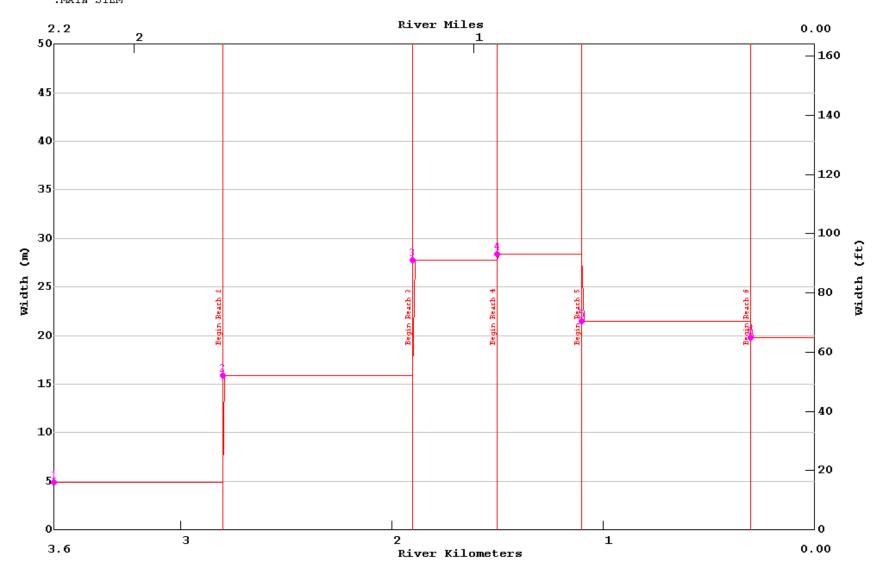

:MAIN STEM


LA-QUAL Version 8.11 Run at 10:57 on 08/19/2009 File \\Alpha_nt\owreng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

min= 1.50 max= 4.08
:MAIN STEM

LA-QUAL Version 8.11 Run at 10:57 on 08/19/2009 File \\Alpha_nt\owreng\Personal_Folders\Jay\Bayou Cane\input files\cal.
BAYOU CANE FINAL CALIBRATION RUN
min= 0.00 max= 0.00
:MAIN STEM

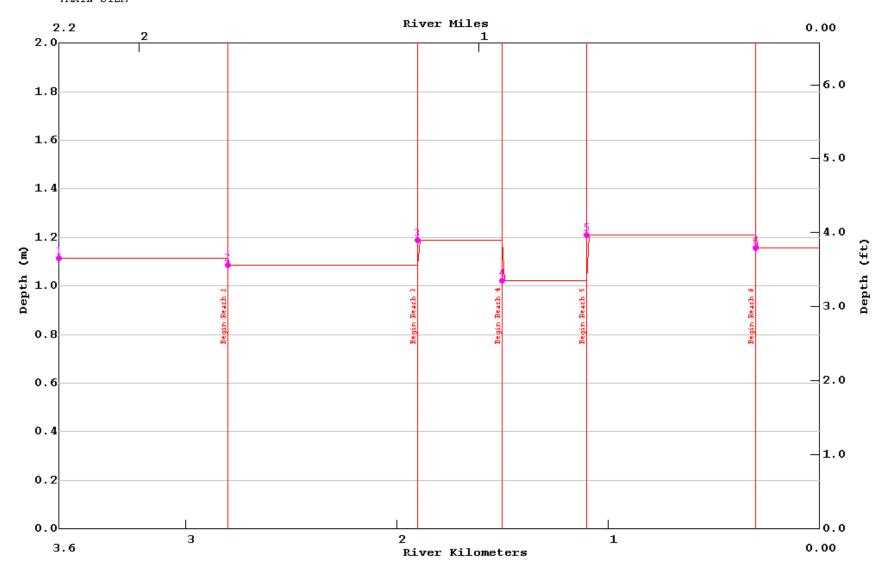


LA-QUAL Version 8.11 Run at 10:57 on 08/19/2009 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

min= 4.88 max= 28.35

:MAIN STEM

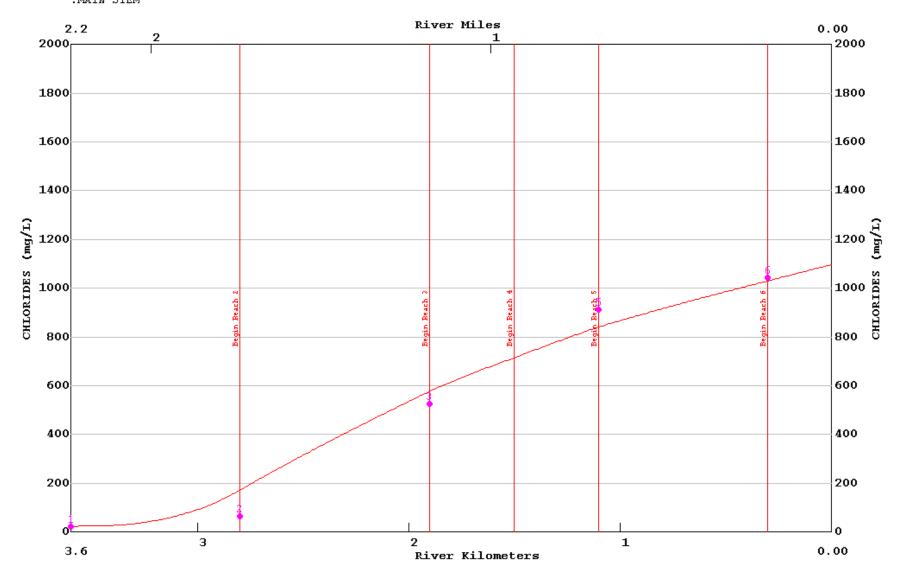


LA-QUAL Version 8.11 Run at 10:57 on 08/19/2009 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

min= 1.02 max= 1.21

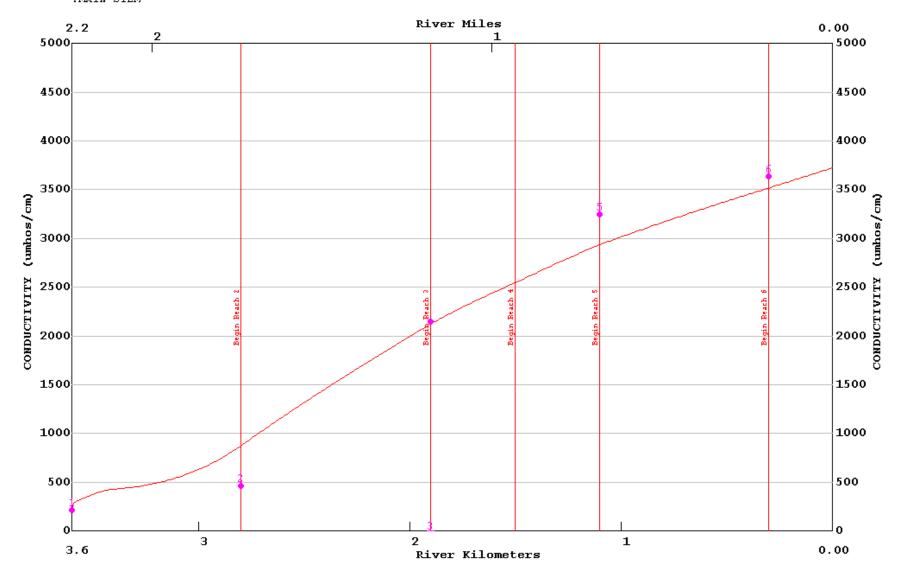
:MAIN STEM



LA-QUAL Version 8.11 Run at 11:17 on 04/20/2010 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

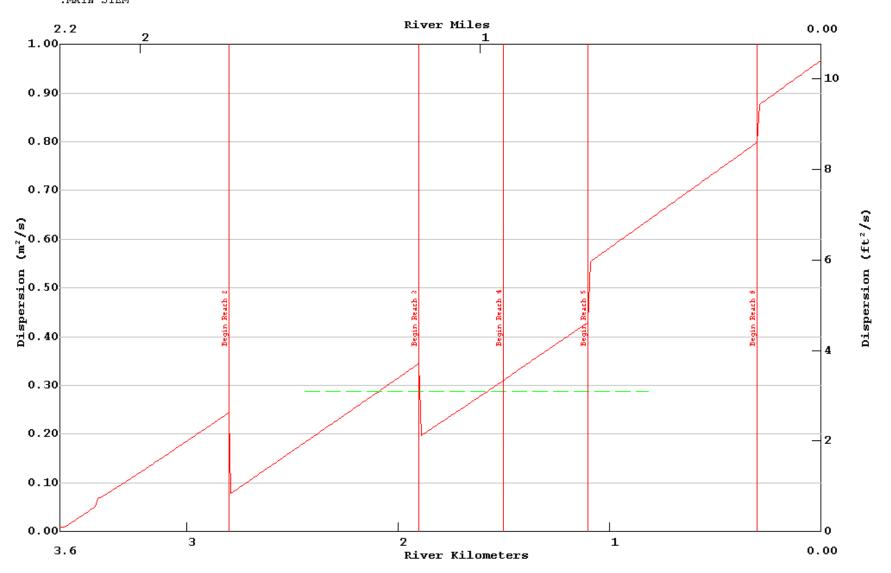
min= 21.50 max= 1095.91


:MAIN STEM

LA-QUAL Version 8.11 Run at 11:17 on 04/20/2010 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CAME FINAL CALIBRATION RUN

:MAIN STEM

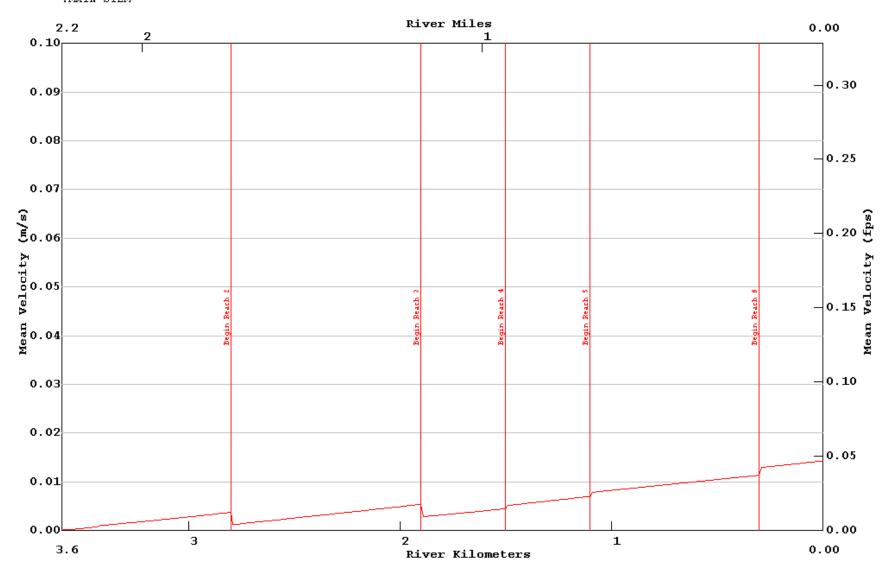


LA-QUAL Version 8.11 Run at 11:17 on 04/20/2010 File \\Alpha_nt\owreng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

min= 0.01 max= 0.97

:MAIN STEM



LA-QUAL Version 8.11 Run at 11:17 on 04/20/2010 File \\Alpha_nt\owreng\Personal_Folders\Jay\Bayou Cane\input files\cal.

BAYOU CANE FINAL CALIBRATION RUN

min= 0.00 max= 0.01

:MAIN STEM

Bayou Cane Calibration Input File

```
TITLE01
             BAYOU CANE WATERSHED MODEL
TITLE02
             BAYOU CANE FINAL CALIBRATION RUN
CONTROL YES METRIC UNITS
ENDATA01
MODOPT01 NO TEMPERATURE
MODOPT02 NO SALINITY
MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES
                                                                   mq/L
                                                                              Chloride
                                                                  umhos/cm Conduct
MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY
MODOPT05 YES DISSOLVED OXYGEN
MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND
MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND
MODOPT08 YES NBOD OXYGEN DEMAND
MODOPT10 NO PHOSPHORUS
MODOPT11 NO CHLOROPHYLL A
MODOPT12 NO MACROPHYTES
MODOPT13 NO COLIFORM
ENDATA02
PROGRAM DISPERSION EQUATION = 3.
PROGRAM OCEAN EXCHANGE RATIO = 1.0
PROGRAM TIDE HEIGHT = 0.236
PROGRAM TIDAL PERIOD = 24.58
PROGRAM PERIOD OF TIDAL RISE = 11.625
PROGRAM KL MINIMUM = 0.7
                                       = 3.
PROGRAM INHIBITION CONTROL VALUE
                                    = 0.0
= 0.05
= 10.0
PROGRAM EFFECTIVE BOD DUE TO ALGAE
PROGRAM ALGAE OXYGEN PROD
PROGRAM K2 MAXIMUM
                                       = 2.
PROGRAM HYDRAULIC CALCULATION METHOD
PROGRAM SETTLING RATE UNITS
ENDATA03
!Temperature Correction Constants
!-----5----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
         ******
ENDATA04
ENDATA05
ENDATA06
ENDATA07
!Reach Identification Data
```

!34	56	78
!23456789012345678901234567890123456789012345	567890123456789012345	678901234567890
! *** *************	*****	****
! R# ID REACH NAME	RKM	RKM LENGTH
REACH ID 1 BC RKM 3.6 to 2.8	3.6	2.8 0.01
REACH ID 2 BC RKM 2.8 to 1.9	2.8	1.9 0.01
REACH ID 3 BC RKM 1.9 to 1.5	1.9	1 5 0 01
REACH ID 3 BC RKM 1.9 to 1.5 REACH ID 4 BC RKM 1.5 to 1.1	1.5	1.1 0.01
REACH ID 5 BC RKM 1.1 to 0.3		0.3 0.01
REACH ID 6 BC RKM 0.3 to 0.0	0.3	
ENDATA08		
!Advective Hydraulic Coefficients		
!34	56	78
!23456789012345678901234567890123456789012345		
! *********	*	****
! a b c d	e f	
! WIDTH WIDTH WIDTH DEPTH I	DEPTH DEPTH	
! R# COEFF EXP CONST COEFF	EXP CONST SLOPE M	ANNING
! Reach 1 - 3665		
HYDR-1 1 0.00 0.00 4.877 0.00 (1.113	
!		
! Reach 2 - BC04 (3752)		
HYDR-1 2 0.00 0.00 15.85 0.00 (1.085	
!		
! Reach 3 - BC05 (3753)		
	1.189	
!		
! Reach 4 - BC06 (3754)		
	1.021	
!		
! Reach 5 - BC07 (3755)		
	1.21	
!		
! Reach 6 - 3666		
	1.156	
ENDATA09		
!Dispersive Hydraulic Coefficients		
!4		
!2345678901234567890123456789012345		
!The dispersion calculated from the dye study		
!To take into consideration all modes of tran	sport, equation 3 (E	=aD^DQ^CVm^d) in Laqual was used.

```
!Using b=5/6, c=0, and d=1 will take into account all modes of transport in the manner of the Tracor and QUAL2E equations. !The value for coefficient "a" was varied during calibration until the measured dispersion value was obtained. !The measured dispersion value was applied to the stretch of water that encompassed Dye Run 2.

! R# RANGE a b c d
```

!	R#	RANGE	a	b	С	d			
!	***		*****		*****				
HYDR-2	1		60.0	0.833	0.0	1.0			
HYDR-2		0.95	60.0	0.833	0.0	1.0			
HYDR-2		0.93	60.0		0.0	1.0			
HYDR-2		0.93	60.0		0.0	1.0			
HYDR-2		1.00			0.0	1.0			
HYDR-2	6	1.00	60.0	0.833	0.0	1.0			
ENDATA10									
!Initial									
			_			-			8
!23456789	901234								L234567890
!	***		_****	*	*****	*	****	*	_****
!	R#		SALINITY	DO	инз и	NIT NIT	PHOS	CHL A	MACROPHYTES
-		lont Avg							
			Avg (3665)					
		it Avg (3	665)						
!Chloroph	nyll A	(3665)							
INITIAL	1	28.13	0.10	0.47				8.5	
!									
!Temp - 0	Cont M	Iont Avg	(3752-BC0	4)					
!Salinity	/ - Co	nt Mont A	Avg (3752	-BC04)					
!DO - Cor	nt Mon	it Avg (3	752-BC04)						
!Chloroph	nyll A	(3665)							
INITIAL	2	28.57	0.23	0.86				8.5	
!									
!Temp - 0	Cont M	lont Avg	(3753-BC0	5)					
!Salinity	/ - Co	nt Mont A	Avg (3753	-BC05)					
!DO - Cor	nt Mon	it Avg (3	753-BC05)						
!Chloroph	nyll A	(3753-BC	205)						
INITIAL	3	29.98	1.15	1.79				33.6	
!									
!Temp - 0	Cont M	Iont Avg	(BC05, BC	07)					
!Salinity	/ - Co	nt Mont A	Avg (BC05	, BC07)					
			C05, BC07)					
!Chloroph	nyll A	(3753-B	C05)						
INITIAL	4	30.51	1.45	2.66				33.6	
!									

```
Bayou Cane Watershed TMDL
Subsegments 040903 and 040904
Originated: February 4, 2011
```

```
!Temp - Cont Mont Avg (3755-BC07)
!Salinity - Cont Mont Avg (3755-BC07)
!DO - Cont Mont Avg (3755-BC07)
!Chlorophyll A (3666)
INITIAL 5 31.04 1.76 3.52
                                                     28.5
!Temp - Cont Mont Avg (3666)
!Salinity - Cont Mont Avg (3666)
!DO - Cont Mont Avg (3666)
!Chlorophyll A (3666)
         6 31.59 1.98 6.12
                                                     28.5
INITIAL
ENDATA11
!Reaeration, Sediment Oxygen Demand and BOD Coefficients
!23456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
        *** ____******
                                                                   BOD 2
            REA
                                     BOD 1 BOD 1 BOD 1
                                                           BOD 2
        R# EO "a"
                                 SOD DECAY SETT
                                                 CONV
                                                           DECAY
                                                                   SETT
!Texas Equation used for reaches 1-4.
!Mattingly equation was used for reaches 5 & 6 to account for wind reaeration.
!Settling rates determined through calibration. Decay rates from lab.
!CB0D1 DECAY (3665)
COEF-1 1 11.0
                                3.50 0.0440 0.05
!CBOD1 DECAY (3752-BC04)
COEF-1
         2 11.0
                                3.50 0.0680 0.05
!CB0D1 DECAY (3753-BC05)
COEF-1
      3 11.0
                                3.00 0.0570 0.05
!CB0D1 DECAY - Avg (3753-BC05, 3755-BC07)
COEF-1
         4 11.0
                                2.40 0.0570 0.05
!CB0D1 DECAY (3755-BC07)
COEF-1
         5 1.0 0.738
                             1.90 0.0570 0.05
!CB0D1 DECAY (3666)
COEF-1
         6 1.0 0.773
                                0.00 0.0620 0.05
ENDATA12
!Nitrogen and Phosphorus Coefficients
!-----5----6-----7-----8
```

```
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____*******
           NBOD
                  NBOD
        R# DECAY
                  SETT
!Settling rates determined through calibration. Began with decay rates from lab but adjusted
!them during calibration.
!NBOD Decay (3665)
COEF-2
      1 0.200
                  0.05
!NBOD Decay (3752-BC04)
COEF-2 2 0.100
                  0.05
!NBOD Decay (3753-BC05)
COEF-2
       3 0.100
                  0.05
!NBOD Decay - Avg (3753-BC05, 3755-BC07)
COEF-2
         4 0.100
                  0.05
!NBOD Decay (3755-BC07)
COEF-2
         5 0.100
                  0.05
!NBOD Decay (3666)
COEF-2
         6 0.100
                 0.05
ENDATA13
ENDATA14
!Coliform and Nonconservative Cofficients
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       *** _____******
ENDATA15
!Incremental Data for Flow, Temperature, Salinity, and Conservatives
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____*********
        R# OUTFLOW INFLOW TEMP
                                 SALINITY CHLORIDE COND
ENDATA16
!Incremental Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       *** _____**********
```

```
R#
             DO
                  BOD 1
                          NBOD
                                NH3 N NIT NIT
                                              BOD 2
ENDATA17
!Incremental Data for Phosphorus, Chlorophyll, Coliform and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____*******
       R# PHOSPH
                  CHL A COLIFORM NONCONSERVATIVE
ENDATA18
!Nonpoint Source Data
!-----5-----6-----7-----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       BOD 1
                        COLIFORM NONCONS
                                             BOD 2
        R#
                   NBOD
NONPOINT
        1
             5.00
                   1.80
NONPOINT
            24.00
                   4.00
NONPOINT
            26.00
                   7.30
            28.00
                   8.00
NONPOINT
NONPOINT
            55.00
                  16.50
            47.00
                  28.00
NONPOINT
ENDATA19
!Headwater Data for Flow, Temperature, Salinity, and Conservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
      **** _____*******
       E#
           NAME
                              FLOW
                                    TEMP SALIN CHLORIDE COND
!Flow (3665)
!Salinity - Cont Mont (3665)
!Chloride - Lab Data (3665)
!Conductivity - Cont Mont (3665)
HDWTR-1
        1 HEADWATER
                             0.0008
                                         0.10
                                                21.5
                                                    215.38
ENDATA20
!Headwater Data for DO, BOD, and Nitrogen
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
           _____************
       Ε#
             DO
                          NBOD
                                NH3-N
                                      NIT NIT BOD 2
                   BOD 1
!DO - Cont Mont Avg (3665)
!BOD1 and NBOD (3665)
HDWTR-2
        1
             0.47
                   13.528 2.315
ENDATA21
```

```
!Headwater Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
      **** _____********
       E# PHOSPHOR CHL A COLIFORM NONCONSERVATIVE
ENDATA22
ENDATA23
!Wasteload Data for Flow, Temperature, Salinity, and Conservatives
!-----5-----6-----7-----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
      ***
                                 TEMP SALINITY CHLORIDE COND
                          FLOW
!Southeast Louisiana State Hospital AI# 9371
!Flow obtained from facility personnel during survey
!Salinity from insitu. Chloride and conductivity from lab data
WSTLD-1 18 SE LA State Hospital 0.0037
                                         0.22
                                               22.5 458
ENDATA24
!Wasteload Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
      DO BOD 1
                            NBOD
                                 NH3-N
                                             NIT NIT BOD 2
!Southeast Louisiana State Hospital AI# 9371
WSTLD-2
             8.09 3.725
                            0.984
ENDATA25
!Wasteload Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!-----5-----6-----7-----8
**** _____********
       E# PHOSPHOR CHL A COLIFORM NONCONSERVATIVE
ENDATA26
!Lower Boundary Conditions
!Site 3756-BC09 Cont Mont
LOWER BC TEMPERATURE
                               = 31.18
!Site 3756-BC09 Cont Mont
                               = 2.03
LOWER BC SALINITY
!Site 3756-BC09 Lab
LOWER BC CONSERVATIVE MATERIAL I (CHLORIDES) = 1097
```

```
Bayou Cane Watershed TMDL
Subsegments 040903 and 040904
Originated: February 4, 2011
```

```
!Site 3756-BC09 Cont Mont
LOWER BC CONSERVATIVE MATERIAL II (COND)
                                      = 3724.94
!Site 3756-BC09 Cont Mont
LOWER BC DISSOLVED OXYGEN
                                        = 6.61
!Site 3756-BC09 Lab
LOWER BC BOD1 BIOCHEMICAL OXYGEN DEMAND
                                        = 10.626
!Site 3666 Lab
                                        = 28.5
LOWER BC CHLOROPHYLL A
!Site 3756-BC09 Lab
LOWER BC NBOD
                                        = 2.91
ENDATA27
!Dam Data
!-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        **** ************ ** ****** ** ******
ENDATA28
SENSITIV BASEFLOW
                        -30
SENSITIV VELOCITY
                       -30
SENSITIV DEPTH
                       -30
SENSITIV DISPERSI
                        -30
SENSITIV REAERATI
                       -30
SENSITIV BOD DECA
                        -30
SENSITIV BOD SETT
                       -30
SENSITIV TRANGE
                        -30
SENSITIV NBOD DEC
                        -30
SENSITIV NBOD SET
                        -30
SENSITIV BENTHAL
                        -30
SENSITIV TEMPERAT
                        -2
SENSITIV SALINITY
                        -30
SENSITIV CHLOR A
                        -30
                       -30
SENSITIV HDW FLOW
SENSITIV HDW DO
                       -30
                       -30
SENSITIV HDW BOD
SENSITIV HDW NBOD
                       -30
SENSITIV WSL FLOW
                  30
                       -30
SENSITIV WSL DO
                        -30
```

```
Bayou Cane Watershed TMDL
Subsegments 040903 and 040904
Originated: February 4, 2011
SENSITIV WSL BOD
                     -30
SENSITIV WSL NBOD
                     -30
SENSITIV OXR
                     -30
SENSITIV LBC TEMP
                 2
                    -2
SENSITIV LBC DO
                     -30
SENSITIV LBC BOD
                     -30
SENSITIV LBC NBOD
                     -30
                     -30
SENSITIV NPS BOD
SENSITIV NPS NBOD 30
                     -30
ENDATA29
NUMBER OF PLOTS = 1
                                               INCREMENT = 0.1
NUMBER OF REACHES IN PLOT 1 = 6
PLOT RCH 1 2 3 4 5 6
!-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       ENDATA30
```

:MAIN STEM

BAYOU CANE CALIBRATION OVERLAY DATA SET

OVERLAY 1 bayoucaneovl.txt

ENDATA31

STATION I	KILOMETER 3.6		
5 0.13	0.47	1.48	DO
6	13.528		CBOD1
13	8.5		CHLOROPHYLL A
18	2.315		NBOD
31	0.0008		FLOW
33	1.113		DEPTH
34	4.877		WIDTH
STATION 2	KILOMETER 2.8		
5 0.06	0.86	2.95	DO
6	11.104		CBOD1
18	3.037		NBOD
31	0.0045		FLOW
33	1.085		DEPTH
34	15.85		WIDTH
STATION 3	KILOMETER 1.	9	
5 0.2	0 1.79	3.98	DO
6	12.55		CBOD1

13 18 33 34 STATION 4	33.6 2.828 1.189 27.737 KILOMETER 1.5	CHLOROPHYLL A NBOD DEPTH WIDTH
5 0.12 6 18 33 34	2.655 7.03 13.576 2.994 1.021 28.346	DO CBOD1 NBOD DEPTH WIDTH
STATION 5	KILOMETER 1.1	
5 0.04 6 18 33 34	3.52 10.08 14.602 3.161 1.21 21.488 KILOMETER 0.3	DO CBOD1 NBOD DEPTH WIDTH
5 0.16	6.12 12.73	DO
6 13 18 33 34	14.091 28.5 4.059 1.156 19.812	CBOD1 CHLOROPHYLL A NBOD DEPTH WIDTH
MRK 2.8 MRK 1.9 MRK 1.5 MRK 1.1 MRK 0.3 END	288 2.439 0.816 Begin Reach 2 Begin Reach 3 Begin Reach 4 Begin Reach 5 Begin Reach 6	

BAYOU CANE CALIBRATION OUTPUT

LA-QUAL Version 8.11

Louisiana Department of Environmental Quality

Input file is $\Lambda = \frac{\Gamma}{\mu}$ Cane\input files\calibration\canecalib.txt Output produced at 11:21 on 08/19/2009

\$ DATA TYPE 1 (TITLES AND CONTROL CARDS) \$

CARD TYPE CONTROL TITLES

TITLE01 BAYOU CANE WATERSHED MODEL TITLE02 BAYOU CANE FINAL CALIBRATION RUN CONTROL YES METRIC UNITS ENDATA01 \$\$\$ DATA TYPE 2 (MODEL OPTIONS) \$\$\$ CARD TYPE MODEL OPTION MODOPT01 NO TEMPERATURE MODOPT02 NO SALINITY MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES mq/L Chloride MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY umhos/cm Conduct MODOPT05 YES DISSOLVED OXYGEN MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND MODOPT08 YES NBOD OXYGEN DEMAND MODOPT10 NO PHOSPHORUS MODOPT11 NO CHLOROPHYLL A MODOPT12 NO MACROPHYTES MODOPT13 NO COLIFORM ENDATA02 \$\$\$ DATA TYPE 3 (PROGRAM CONSTANTS) \$\$\$ CARD TYPE DESCRIPTION OF CONSTANT VALUE 3.00000 (values entered as a function of D,O,Vmean) PROGRAM DISPERSION EQUATION PROGRAM OCEAN EXCHANGE RATIO 1.00000 TIDE HEIGHT 0.23600 meters PROGRAM 24.58000 hours PROGRAM TIDAL PERIOD TIDAL PERIOD = 24.58000 nours

PERIOD OF TIDAL RISE = 11.62500 hours

KL MINIMUM = 0.70000 meters/day

INHIBITION CONTROL VALUE = 3.00000 (inhibit all rates but SOD)

EFFECTIVE BOD DUE TO ALGAE = 0.00000 mg/L BOD per ug/L chl a

ALGAE OXYGEN PROD = 0.05000 mg O/ug chl a/day

K2 MAXIMUM = 10.00000 per day

HYDRAULIC CALCULATION METHOD = 2.00000 (widths and depths) PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM SETTLING RATE UNITS 2.00000 (values entered as per day) ENDATA03 \$\$\$ DATA TYPE 4 (TEMPERATURE CORRECTION CONSTANTS FOR RATE COEFFICIENTS) \$\$\$ CARD TYPE RATE CODE THETA VALUE ENDATA04 \$\$\$ CONSTANTS TYPE 5 (TEMPERATURE DATA) \$\$\$ CARD TYPE DESCRIPTION OF CONSTANT VALUE

ENDATA05

\$\$\$ DATA TYPE 6 (ALGAE CONSTANTS) \$\$\$

CARD TYPE DESCRIPTION OF CONSTANT VALUE

ENDATA06

\$\$\$ DATA TYPE 7 (MACROPHYTE CONSTANTS) \$\$\$

CARD TYPE DESCRIPTION OF CONSTANT VALUE

ENDATA07

\$\$\$ DATA TYPE 8 (REACH IDENTIFICATION DATA) \$\$\$

CARD TYPE	REACH	ID	NAME	BEGIN REACH km		END REACH km	ELEM LENGTH km	REACH LENGTH km	ELEMS PER RCH	BEGIN ELEM NUM	END ELEM NUM
REACH ID	1	вС	RKM 3.6 to 2.8	3.60	TO	2.80	0.0100	0.80	80	1	80
REACH ID	2	ВC	RKM 2.8 to 1.9	2.80	TO	1.90	0.0100	0.90	90	81	170
REACH ID	3	ВC	RKM 1.9 to 1.5	1.90	TO	1.50	0.0100	0.40	40	171	210
REACH ID	4	ВC	RKM 1.5 to 1.1	1.50	TO	1.10	0.0100	0.40	40	211	250
REACH ID	5	ВC	RKM 1.1 to 0.3	1.10	TO	0.30	0.0100	0.80	80	251	330
REACH ID	6	BC	RKM 0.3 to 0.0	0.30	TO	0.00	0.0100	0.30	30	331	360
ENDATA08											

\$\$\$ DATA TYPE 9 (ADVECTIVE HYDRAULIC COEFFICIENTS) \$\$\$

CARD TYPE	REACH	ID	WIDTH "A"	WIDTH "B"	WIDTH "C"	DEPTH "D"	DEPTH "E"	DEPTH "F"	SLOPE	MANNINGS "N"
HYDR-1	1	BC	0.000	0.000	4.877	0.000	0.000	1.113	0.00000	0.000
HYDR-1	2	BC	0.000	0.000	15.850	0.000	0.000	1.085	0.00000	0.000
HYDR-1	3	BC	0.000	0.000	27.737	0.000	0.000	1.189	0.00000	0.000
HYDR-1	4	BC	0.000	0.000	28.346	0.000	0.000	1.021	0.00000	0.000
HYDR-1	5	BC	0.000	0.000	21.488	0.000	0.000	1.210	0.00000	0.000
HYDR-1	6	BC	0.000	0.000	19.812	0.000	0.000	1.156	0.00000	0.000
ENDATA09										

\$\$\$ DATA TYPE 10 (DISPERSIVE HYDRAULIC COEFFICIENTS) \$\$\$

CARD TYPE	REACH	ID	TIDAL RANGE	DISPERSION "A"	DISPERSION "B"	DISPERSION "C"	DISPERSION "D"
HYDR	1	BC	0.95	60.000	0.833	0.000	1.000
HYDR	2	BC	0.95	60.000	0.833	0.000	1.000
HYDR	3	BC	0.93	60.000	0.833	0.000	1.000
HYDR	4	BC	0.93	60.000	0.833	0.000	1.000
HYDR	5	BC	1.00	60.000	0.833	0.000	1.000
HYDR	6	BC	1.00	60.000	0.833	0.000	1.000

ENDATA10

ENDATA14

CARD TYPE

\$\$\$ DATA TYPE 15 (COLIFORM AND NONCONSERVATIVE COEFFICIENTS) \$\$\$

NCM

REACH ID COLIFORM

2112111111														
\$\$\$ DATA TYP	E 11 (INITIAL CO	ONDITIONS) \$\$	\$\$											
CARD TYPE	REACH ID	TEMP	SALIN	DO	NH3	NO3+2	PHOS	CHL A	MACRO					
INITIAL	1 BC	28.13	0.10	0.47	0.00	0.00		8.50	0.00					
INITIAL	2 BC	28.57	0.23	0.86	0.00	0.00	0.00	8.50	0.00)				
INITIAL	3 BC	29.98	1.15	1.79	0.00	0.00	0.00	33.60	0.00)				
INITIAL	4 BC	30.51	1.45	2.66	0.00	0.00	0.00	33.60	0.00)				
INITIAL	5 BC	31.04	1.76	3.52	0.00	0.00		28.50	0.00					
INITIAL ENDATA11	6 BC	31.59	1.98	6.12	0.00	0.00		28.50	0.00					
\$\$\$ DATA TYP	E 12 (REAERATION	, SEDIMENT (OXYGEN D	EMAND, BOD	COEFFICIE	NTS) \$\$\$								
									BOD	ANAER			BOD2	ANAER
CARD RCH	RCH K2		K2	K2	K2	BKGRND	BOD	BOD	CONV	BOD2	BOD2	BOD2	CONV	BOD2
TYPE NUM	I ID OPT		"A"	"B"	"C"	SOD	DECAY	SETT	TO SOD	DECAY	DECAY	SETT	TO SOD	DECAY
						g/m²/d	per day	m/d		per day	per day	m/d		per day
COEF-1 1	BC 11 TEXAS	(0.000	0.000	0.000	3.500	0.044	0.050	0.000	0.000	0.000	0.000	0.000	0.000
COEF-1 2	BC 11 TEXAS	(0.000	0.000	0.000	3.500	0.068	0.050	0.000	0.000	0.000	0.000	0.000	0.000
COEF-1 3	BC 11 TEXAS	(0.000	0.000	0.000	3.000	0.057	0.050	0.000	0.000	0.000	0.000	0.000	0.000
COEF-1 4			0.000	0.000	0.000	2.400	0.057	0.050	0.000	0.000	0.000	0.000	0.000	0.000
COEF-1 5			0.738	0.000	0.000	1.900	0.057	0.050	0.000	0.000	0.000	0.000	0.000	0.000
COEF-1 6			0.730	0.000	0.000	0.000	0.062	0.050	0.000	0.000	0.000	0.000	0.000	0.000
ENDATA12	BC 1 N2-a		J. 113	0.000	0.000	0.000	0.062	0.030	0.000	0.000	0.000	0.000	0.000	0.000
\$\$\$ DATA TYP	E 13 (NITROGEN A	AND PHOSPHORU	JS COEFF	ICIENTS) \$\$	\$									
CARD TYPE	REACH ID	NBOD	NBOD	ORGN CONV	NH	13 N	нз рно	OS DENI	ГT					
		DECA	SETT	TO NH3 SRC			CE SRC							
COEF-2	1 BC	0.200	0.050	0.000	0.00	0.0	0.00	0.00	00					
COEF-2	2 BC	0.100	0.050	0.000	0.00	0.0	00 0.00	0.00	0.0					
COEF-2	3 BC	0.100	0.050	0.000	0.00	0.0	00 0.00	0.00	0.0					
COEF-2	4 BC	0.100	0.050	0.000	0.00	0.0	00 0.00	0.00	0.0					
COEF-2	5 BC	0.100	0.050	0.000	0.00									
COEF-2	6 BC	0.100	0.050	0.000	0.00									
ENDATA13	0 BC	0.100	0.030	0.000	0.00	0.0	0.00	0.00	30					
\$\$\$ DATA TYP	E 14 (ALGAE AND	MACROPHYTE (COEFFICI	ENTS) \$\$\$										
CARD TYPE	REACH ID	SECCHI	ALGAE:	ALGAE	ALG CC	NV AL	GAE ALC	GAE MAG	CRO MA	ACRO				
		DEPTH	CHL A	SETT	TO SC	DD G	ROW RE	ESP GI	ROW I	RESP SHA	DING			

NCM NCM CONV

DIE-OFF DECAY SETT TO SOD

TONIDA	П 7	1 5

\$\$\$ DATA TYPE 16 (INCREMENTAL DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES) \$\$\$

CARD TYPE REACH ID OUTFLOW INFLOW TEMP SALIN CM-I CM-II IN/DIST OUT/DIST

ENDATA16

\$\$\$ DATA TYPE 17 (INCREMENTAL DATA FOR DO, BOD, AND NITROGEN) \$\$\$

CARD TYPE REACH ID DO BOD NBOD BOD#2

ENDATA17

\$\$\$ DATA TYPE 18 (INCREMENTAL DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NONCONSERVATIVES) \$\$\$

CARD TYPE REACH ID PHOS CHL A COLI NCM

ENDATA18

\$\$\$ DATA TYPE 19 (NONPOINT SOURCE DATA) \$\$\$

CARD TYPE	REACH	ID	BOD#1	NBOD	COLI	NCM	DO	BOD#2
NONPOINT	1	вс	5.00	1.80	0.00	0.00	0.00	0.00
NONPOINT	2	BC	24.00	4.00	0.00	0.00	0.00	0.00
NONPOINT	3	BC	26.00	7.30	0.00	0.00	0.00	0.00
NONPOINT	4	BC	28.00	8.00	0.00	0.00	0.00	0.00
NONPOINT	5	BC	55.00	16.50	0.00	0.00	0.00	0.00
NONPOINT	6	BC	47.00	28.00	0.00	0.00	0.00	0.00
ENDATA19								

\$\$\$ DATA TYPE 20 (HEADWATER FOR FLOW, TEMPERATURE, SALINITY AND CONSERVATIVES) \$\$\$

CARD TYPE	ELEMENT	NAME	UNIT	FLOW m³/s	FLOW cfs	TEMP deg C	SALIN ppt	CM-I mg/L	CM-II umhos/cm	
HDWTR-1 ENDATA20	1	HEADWATER	0	0.00080	0.028	0.00	0.10	21.500	215.380	0.00

\$\$\$ DATA TYPE 21 (HEADWATER DATA FOR DO, BOD, AND NITROGEN) \$\$\$

CARD TYPE	ELEMENT	NAME	DO mg/L	BOD#1 mg/L	NBOD mg/L	mg/L	mg/L	BOD#2 mg/L
HDWTR-2 ENDATA21	1	HEADWATER	0.47	13.53	2.32	0.00	0.00	0.00

\$\$\$ DATA TYPE 22 (HEADWATER DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NONCONSERVATIVES) \$\$\$

ELEMENT NAME

CARD TYPE

CARD TIFE	ELEMENI NAME	mg/L	mg/L	mg/L	mg/L				
ENDATA22									
\$\$\$ DATA TY	PE 23 (JUNCTION DATA) \$\$\$								
CARD TYPE	JUNCTION UPSTRM RIVER NAME ELEMENT ELEMENT KILOM								
ENDATA23									
\$\$\$ DATA TY	PE 24 (WASTELOAD DATA FOR FLOW, TEMPERA	TURE, SALI	NITY, AND	CONSERVATI	VES) \$\$\$				
CARD TYPE	ELEMENT RKILO NAME	FLOW m³/s	FLOW cfs	FLOW MGD	TEMP deg C	SALIN ppt	CM-I mg/L	CM-II umhos/cm	
WSTLD-1 ENDATA24	18 3.43 SE LA State Hospital	0.00370	0.13065	0.084	0.00	0.22	22.500	458.000	
\$\$\$ DATA TY	PE 25 (WASTELOAD DATA FOR DO, BOD, AND	NITROGEN)	\$\$\$	% BOD			્ર		
CARD TYPE	ELEMENT NAME	DO mg/L	BOD mg/L	RMVL	NBOD mg/L	mg/L	NITRIF	mg/L	BOD#2 mg/L
WSTLD-2 ENDATA25	18 SE LA State Hospital	8.09	3.72	0.00	0.98	0.00	0.00	0.00	0.00
\$\$\$ DATA TY	PE 26 (WASTELOAD DATA FOR PHOSPHORUS, C	HLOROPHYLI	, COLIFORM,	AND NONC	CONSERVATI	VES) \$\$\$			
CARD TYPE	ELEMENT NAME	PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L				
ENDATA26									
\$\$\$ DATA TY	PE 27 (LOWER BOUNDARY CONDITIONS) \$\$\$								
CARD TYPE	CONSTITUENT CONCEN	TRATION							
LOWER BC ENDATA27	TEMPERATURE = SALINITY = CONSERVATIVE MATERIAL I (CHLORIDES) = CONSERVATIVE MATERIAL II (COND) = DISSOLVED OXYGEN = BOD1 BIOCHEMICAL OXYGEN DEMAND = CHLOROPHYLL A = NBOD = PE 28 (DAM DATA) \$\$\$	3724.940	ppt mg/L mg/L umhos, mg/L mg/L ug/L ug/L	'cm					
777 DIIII 11.	12 20 (NIII NIIII) 777								

PHOS CHL A COLI

NCM

\$\$\$ DATA TYP	E 29 (SENSITIVI)	TY ANALYSI	S DATA) \$\$	\$					
CARD TYPE	PARAMETER	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
SENSITIV	BASEFLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	VELOCITY	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	DEPTH	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	DISPERSI	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	REAERATI	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BOD DECA	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BOD SETT	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	TRANGE	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NBOD DEC	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NBOD SET	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BENTHAL	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	TEMPERAT	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	SALINITY	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	CHLOR A	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	OXR	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC TEMP	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
ENDATA29									

NUMBER OF PLOTS = 1 NUMBER OF REACHES IN PLOT 1 = 6 PLOT RCH 1 2 3 4 5 6 ENDATA30

\$\$\$ DATA TYPE 31 (OVERLAY PLOT DATA) \$\$\$

OVERLAY 1 bayoucaneovl.txt ENDATA31

:MAIN STEM

.....NO ERRORS DETECTED IN INPUT DATA
.....HYDRAULIC CALCULATIONS COMPLETED
.....TRIDIAGONAL MATRIX TERMS INITIALIZED

.....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS

.....CONSTITUENT CALCULATIONS COMPLETED

FINAL REPORT HEADWATER BAYOU CANE WATERSHED MODEL REACH NO. 1 RKM 3.6 to 2.8 BAYOU CANE FINAL CALIBRATION RUN

++++	**************************************																	
ELEM NO.	TYPE	FLOW	TEMP deg C	[AS	LN Chloride	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 mg/L	EBOD#1	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	PHOS mg/L	CHL A µg/L	COLI #/100mL	NCM
NO.			deg C	PI	oc mg/L	ullilios/ Cill	шу/ ц	III9/ Li	IIIG/L	mg/ n	ı III9/Li	III9/ Li	шу/ ь	шg/ ц	IIIG/ L	ду/ ц	#/1001111	
1	HDWTR	0.00080	0.00	0.1	10 21.50	215.38	0.47	13.53	0.00	13.53	0.00	2.32	0.00	0.00	0.00	8.50	0.00	0.00
18	WSTLD	0.00370	0.00	0.2	22 22.50	458.00	8.09	3.72	0.00	3.72	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00
****	*****	*****	*****	****	*****	** HYDRAU:	LIC PARA	METER V	ALUES *	****	*****	*****	****	****	*****	*****	**	

ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	MIDTH	VOLU	IME	SURFACE AREA	X-SECT AREA		DAL '. .ISM	VELO VELO	DISPRSN	MEAN VELO	
NO.	km	km	m³/s	Err	velo m/s	days	m	m		m³	AKEA m²	AKEA m²	PK	m ³	m/s	m²/s		
	MIII	KIII	111 / 5		111/5	uays	111	111		111	111	111		111	111/3	111 / 5	111/3	
1	3.60	3.59	0.00080	0.0	0.00015	0.79	1.11	4.88	54.	28	48.77	5.43	10	.93 (0.000	0.010	0.000	
2	3.59	3.58	0.00080	0.0	0.00015	0.79	1.11	4.88	54.	28	48.77	5.43	21	.87	0.000	0.010	0.000	
3	3.58	3.57	0.00080	0.0	0.00015	0.79	1.11	4.88	54.	28	48.77	5.43	32	.80	0.000	0.011	0.000	
4	3.57	3.56	0.00080	0.0	0.00015	0.79	1.11	4.88	54.	28	48.77	5.43	43	.74	0.000	0.014	0.000	
5	3.56	3.55	0.00080	0.0	0.00015	0.79	1.11	4.88	54.	28	48.77	5.43	54	.67	0.000	0.017	0.000	
6	3.55	3.54	0.00080	0.0	0.00015	0.79	1.11	4.88	54.	28	48.77	5.43	65	.61	0.000	0.019	0.000	
7	3.54	3.53	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43			0.000	0.022		
8	3.53	3.52	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43			0.000	0.025	0.000	
9	3.52	3.51	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43			0.000	0.028		
10	3.51	3.50	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	109		0.000	0.031	0.000	
11	3.50	3.49	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	120		0.001	0.034	0.001	
12	3.49	3.48	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	131		0.001	0.037	0.001	
13	3.48	3.47	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	142		0.001	0.040	0.001	
14	3.47	3.46	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	153		0.001	0.043	0.001	
15	3.46	3.45	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	164		0.001	0.046		
16	3.45	3.44	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	174		0.001	0.049	0.001	
17	3.44	3.43	0.00080	0.0	0.00015	0.79	1.11	4.88	54.		48.77	5.43	185		0.001	0.052	0.001	
18	3.43	3.42	0.00450	82.2	0.00083	0.14	1.11	4.88	54.		48.77	5.43	196		0.001	0.067	0.001	
19	3.42	3.41	0.00450	82.2	0.00083	0.14	1.11	4.88	54.		48.77	5.43	207		0.001	0.069	0.001	
20	3.41	3.40	0.00450	82.2	0.00083	0.14	1.11	4.88	54.	28	48.77	5.43	218	.68 (0.001	0.072	0.001	

21	3.40	3.39	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	229.62	0.001	0.074	0.001
22	3.39	3.38	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	240.55	0.001	0.077	0.001
23	3.38	3.37	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	251.49	0.001	0.080	0.001
24	3.37	3.36	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	262.42	0.001	0.082	0.001
25	3.36	3.35	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	273.36	0.001	0.085	0.001
26	3.35	3.34	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	284.29	0.001	0.088	0.001
27	3.34	3.33	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	295.22	0.001	0.090	0.001
28	3.33	3.32	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	306.16	0.001	0.093	0.001
29	3.32	3.31	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	317.09	0.001	0.096	0.001
30	3.31	3.30	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	328.03	0.001	0.099	0.002
31	3.30	3.29	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	338.96	0.001	0.101	0.002
32	3.29	3.28	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	349.90	0.001	0.104	0.002
33	3.28	3.27	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	360.83	0.002	0.107	0.002
34	3.27	3.26	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	371.76	0.002	0.110	0.002
35	3.26	3.25	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	382.70	0.002	0.113	0.002
36	3.25	3.24	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	393.63	0.002	0.115	0.002
37	3.24	3.23	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	404.57	0.002	0.118	0.002
38	3.23	3.22	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	415.50	0.002	0.121	0.002
39	3.22	3.21	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	426.44	0.002	0.124	0.002
40	3.21	3.20	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	437.37	0.002	0.127	0.002
41	3.20	3.19	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	448.30	0.002	0.130	0.002
42	3.19	3.18	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	459.24	0.002	0.133	0.002
43	3.18	3.17	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	470.17	0.002	0.136	0.002
44	3.17	3.16	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	481.11	0.002	0.138	0.002
45	3.16	3.15	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	492.04	0.002	0.141	0.002
46	3.15	3.14	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	502.97	0.002	0.144	0.002
47	3.14	3.13	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	513.91	0.002	0.147	0.002
48	3.13	3.12	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	524.84	0.002	0.150	0.002
49	3.12	3.11	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	535.78	0.002	0.153	0.002
50	3.11	3.10	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	546.71	0.002	0.156	0.002
51	3.10	3.09	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	557.65	0.002	0.159	0.002
52	3.09	3.08	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	568.58	0.002	0.162	0.002
53 54	3.08	3.07	0.00450	82.2 82.2	0.00083	0.14	1.11 1.11	4.88	54.28	48.77	5.43	579.51 590.45	0.002	0.165 0.168	0.003
	3.07 3.06	3.06 3.05	0.00450	82.2	0.00083	0.14		4.88 4.88	54.28	48.77	5.43		0.002	0.108	0.003
55 56	3.05	3.03	0.00450	82.2	0.00083	0.14	1.11 1.11	4.88	54.28 54.28	48.77 48.77	5.43 5.43	601.38 612.32	0.003	0.170	0.003
56 57	3.03	3.04	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	623.25	0.003	0.173	0.003
58	3.03	3.02	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	634.19	0.003	0.178	0.003
59	3.03	3.02	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	645.12	0.003	0.179	0.003
60	3.01	3.00	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	656.05	0.003	0.185	0.003
61	3.00	2.99	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	666.99	0.003	0.188	0.003
62	2.99	2.99	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	677.92	0.003	0.100	0.003
63	2.98	2.97	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	688.86	0.003	0.191	0.003
64	2.97	2.96	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	699.79	0.003	0.194	0.003
65	2.96	2.95	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	710.72	0.003	0.197	0.003
66	2.95	2.94	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	721.66	0.003	0.203	0.003
67	2.93	2.94	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	732.59	0.003	0.203	0.003
68	2.94	2.93	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	743.53	0.003	0.200	0.003
69	2.92	2.92	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	754.46	0.003	0.212	0.003
70	2.91	2.90	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	765.40	0.003	0.212	0.003
71	2.90	2.89	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	776.33	0.003	0.218	0.003
	,		3.00100	J _ • _		V •			01.00	-0	0.10		J • 0 0 0	0.210	3.000

72	2.89	2.88	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	787.26	0.003	0.220	0.003
73	2.88	2.87	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	798.20	0.003	0.223	0.003
74	2.87	2.86	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	809.13	0.003	0.226	0.003
75	2.86	2.85	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	820.07	0.003	0.229	0.003
76	2.85	2.84	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	831.00	0.003	0.232	0.004
77	2.84	2.83	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	841.94	0.004	0.235	0.004
78	2.83	2.82	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	852.87	0.004	0.238	0.004
79	2.82	2.81	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	863.80	0.004	0.241	0.004
80	2.81	2.80	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	874.74	0.004	0.244	0.004
TOT						22.15			4342.48	3901.60					
AVG					0.0004		1.11	4.88			5.43				
CUM						22.15									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
1	3.590	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.84	5.84	5.84	0.01	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
2	3.580	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.84	5.84	5.84	0.01	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
3	3.570	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.02	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
4	3.560	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.02	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
5	3.550	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.02	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
6	3.540	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
7	3.530	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.04	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
8	3.520	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
9	3.510	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.06	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
10	3.500	7.80	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.08	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
11	3.490	7.80	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.11	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
12	3.480	7.80	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.15	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
13	3.470	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.22	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
14	3.460	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.24	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
15	3.450	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.25	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
16	3.440	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.26	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
17	3.430	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.27	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
18	3.420	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.28	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
19	3.410	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.27	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
20		7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.27	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
21	3.390	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.26	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
22	3.380	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.26	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
23	3.370	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.25	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
24	3.360	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.25	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
25	3.350	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.24	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
26	3.340	7.78 7.78	0.73 0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89 5.89	5.89 5.89	5.89 5.89	0.24	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
27	3.330	7.78	0.73	0.06	0.06		0.00	0.00		5.89	5.89	5.89	0.22	0.06	0.00			0.00	0.62	0.00	0.00		0.00
28	3.320	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.90	5.90	5.90	0.18	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
29 30	3.310	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.90	5.90	5.90	0.16	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
30	3.300	1.10	0.73	0.06	0.06	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.14	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00

31	3.290 7.78	0.73		0.06	0.00	0.00	0.00		5.90			0.12		0.00	0.00			0.62		0.00	0.00	0.00
32	3.280 7.78	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.91	5.91	5.91	0.10	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
33	3.270 7.78	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.91	5.91	5.91	0.09	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
34	3.260 7.78	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.91	5.91	5.91	0.08	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
35	3.250 7.78	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.91	5.91	5.91	0.07	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
36	3.240 7.78	0.73		0.06	0.00	0.00	0.00		5.91		5.91	0.07	0.06	0.00	0.00			0.62	0.00	0.00	0.00	0.00
37	3.230 7.77	0.73		0.06	0.00	0.00	0.00	0.00		5.92	5.92	0.06	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
38	3.220 7.77	0.73		0.06	0.00	0.00	0.00			5.92	5.92	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
39	3.210 7.77	0.73		0.06	0.00	0.00	0.00	0.00		5.92	5.92	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
40	3.200 7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.92	5.92	5.92	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
41	3.190 7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.92	5.92	5.92	0.04	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
42	3.180 7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.93	5.93	5.93	0.04	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
43	3.170 7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.93	5.93	5.93	0.04	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
44	3.160 7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.93	5.93	5.93	0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
45	3.150 7.77	0.74		0.06	0.00	0.00	0.00			5.93	5.93		0.06	0.00	0.00		0.00	0.62	0.00	0.00	0.00	0.00
46	3.140 7.77	0.74		0.06	0.00	0.00	0.00		5.93			0.03		0.00	0.00			0.62	0.00	0.00	0.00	0.00
47	3.130 7.77	0.74		0.06	0.00	0.00	0.00		5.94				0.06	0.00	0.00		0.00	0.62	0.00	0.00	0.00	0.00
48	3.120 7.77	0.74		0.06	0.00	0.00	0.00		5.94			0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
49	3.110 7.76	0.74		0.06	0.00	0.00	0.00		5.94			0.03	0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
50	3.100 7.76	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.94	5.94	5.94	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
51	3.090 7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.94	5.94	5.94	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
52	3.080 7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.95	5.95	5.95	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
53	3.070 7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.95	5.95	5.95	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
54	3.060 7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.95	5.95	5.95	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
55	3.050 7.76	0.74		0.06	0.00	0.00	0.00	0.00	5.95	5.95	5.95	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
56	3.040 7.76	0.74		0.06	0.00	0.00	0.00	0.00	5.95	5.95	5.95	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
57	3.030 7.76	0.74		0.06	0.00	0.00	0.00			5.96	5.96	0.02	0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
58	3.020 7.76	0.74		0.06	0.00	0.00	0.00			5.96	5.96		0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
59	3.010 7.76	0.74		0.06	0.00	0.00	0.00		5.96		5.96	0.02	0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
60	3.000 7.76	0.74		0.06	0.00	0.00	0.00			5.96	5.96	0.02	0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
61	2.990 7.75	0.74		0.06	0.00	0.00	0.00		5.96				0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
62	2.980 7.75	0.74		0.06	0.00	0.00	0.00			5.97	5.97	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
63	2.970 7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.97	5.97	5.97	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
64	2.960 7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.97	5.97	5.97	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
65	2.950 7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.97	5.97	5.97	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
66	2.940 7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
67	2.930 7.75	0.74		0.06	0.00	0.00	0.00	0.00		5.98	5.98	0.01	0.06	0.00	0.00	0.00		0.63	0.00	0.00	0.00	0.00
68	2.920 7.75	0.74		0.06	0.00	0.00	0.00			5.98	5.98	0.01	0.06	0.00	0.00	0.00		0.63	0.00	0.00	0.00	0.00
69	2.910 7.75	0.74		0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
70	2.900 7.75	0.74		0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
71	2.890 7.75	0.74		0.06	0.00	0.00	0.00	0.00	5.99	5.99	5.99	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
72	2.880 7.75	0.74		0.06	0.00	0.00	0.00			5.99	5.99	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
73	2.870 7.74	0.74		0.06	0.00	0.00	0.00	0.00	5.99	5.99	5.99	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
74	2.860 7.74	0.74		0.06	0.00	0.00	0.00			5.99	5.99	0.01	0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
75	2.850 7.74	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.99	5.99	5.99	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
76	2.840 7.74	0.74	0.03	0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
77	2.830 7.74	0.74	0.03	0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
78	2.820 7.74	0.74		0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00		0.00	0.63	0.00	0.00	0.00	0.00
79	2.810 7.74	0.74		0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
80	2.800 7.74	0.74	0.03		0.00	0.00				6.00		0.01		0.00				0.63		0.00	0.00	0.00
00	2.000 /./4	0.74	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00

AVG 20 DEG C RATE 0.63 0.04 0.05 0.00 0.00 0.00 3.50 0.20 0.05 0.00 0.00 0.00 0.00

* $g/m^2/d$ ** mg/L/day

							~ -												
ELEM	ENDING	TEMP	SALN	Chloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	TOTN	PHOS	CHL A	MACRO	COLI	NCM
NO.	DIST	DEG C	PPT		umhos/cm	mq/L	mg/L	mg/L	mg/L	mg/L	mg/L	mq/L	mg/L	mg/L	mq/L	μg/L	q/m³	#/100mL	
				3,		٠,٠	٠,	٠,٠	٥,	٠,٠	٥,	٠,٠	٠,	٠,٠	٠,	1. 3.	٥,		
1	3.590	28.14	0.10	23.08	288.49	0.88	11.53	0.00	11.53	0.00	2.52	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
2	3.580	28.14	0.10	23.32	299.63	0.94	11.21	0.00	11.21	0.00	2.53	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
3	3.570	28.15	0.10	23.57	311.37	0.99	10.86	0.00	10.86	0.00	2.51	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
4	3.560	28.15	0.11	23.81	322.53	1.04	10.51	0.00	10.51	0.00	2.47	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
5	3.550	28.16	0.11	24.03	332.87	1.10	10.18	0.00	10.18	0.00	2.41	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
6	3.540	28.16	0.11	24.24	342.49	1.16	9.86	0.00	9.86	0.00	2.35	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
7	3.530	28.17	0.11	24.43	351.49	1.23	9.55	0.00	9.55	0.00	2.28	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
8	3.520	28.17	0.11	24.62	359.95	1.31	9.24	0.00	9.24	0.00	2.21	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
9	3.510	28.18	0.11	24.79	367.97	1.40	8.95	0.00	8.95	0.00	2.13	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
10	3.500	28.18	0.12	24.95	375.59	1.50	8.66	0.00	8.66	0.00	2.05	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
11	3.490	28.19	0.12	25.11	382.87	1.63	8.37	0.00	8.37	0.00	1.97	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
12	3.480	28.20	0.12	25.26	389.85	1.77	8.09	0.00	8.09	0.00	1.89	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
13	3.470	28.20	0.12	25.40	396.56	1.94	7.82	0.00	7.82	0.00	1.81	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
14	3.460	28.21	0.12	25.54	403.04	2.13	7.55	0.00	7.55	0.00	1.74	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
15	3.450	28.21	0.12	25.68	409.29	2.36	7.28	0.00	7.28	0.00	1.67	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
16	3.440	28.22	0.13	25.81	415.35	2.62	7.02	0.00	7.02	0.00	1.61	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
17	3.430	28.22	0.13	25.94	421.22	2.91	6.76	0.00	6.76	0.00	1.55	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
18	3.420	28.23	0.13	26.05	426.33	3.19	6.52	0.00	6.52	0.00	1.50	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
19	3.410	28.23	0.13	26.50	427.73	3.00	6.59	0.00	6.59	0.00	1.51	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
20	3.400	28.24	0.13	26.99	429.24	2.82	6.65	0.00	6.65	0.00	1.52	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
21	3.390	28.25	0.13	27.52	430.86	2.66	6.72	0.00	6.72	0.00	1.53	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
22	3.380	28.25	0.14	28.08	432.62	2.51	6.79	0.00	6.79	0.00	1.55	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
23	3.370	28.26	0.14	28.69	434.49	2.37	6.85	0.00	6.85	0.00	1.56	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
24	3.360	28.26	0.14	29.35	436.51	2.24	6.92	0.00	6.92	0.00	1.58	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
25	3.350	28.27	0.14	30.04	438.65	2.13	6.98	0.00	6.98	0.00	1.60	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
26	3.340	28.27	0.14	30.79	440.94	2.03	7.05	0.00	7.05	0.00	1.63	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
27	3.330	28.28	0.14	31.58	443.37	1.94	7.12	0.00	7.12	0.00	1.66	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
28	3.320	28.28	0.15	32.41	445.94	1.85	7.19	0.00	7.19	0.00	1.68	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
29	3.310	28.29	0.15	33.30	448.67	1.78	7.26	0.00	7.26	0.00	1.72	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
30	3.300	28.30	0.15	34.23	451.55	1.71	7.33	0.00	7.33	0.00	1.75	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
31	3.290	28.30	0.15	35.22	454.60	1.65	7.40	0.00	7.40	0.00	1.78	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
32	3.280	28.31	0.15	36.26	457.80	1.59	7.47	0.00	7.47	0.00	1.81	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
33	3.270	28.31	0.15	37.36	461.17	1.54	7.54	0.00	7.54	0.00	1.85	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
34	3.260	28.32	0.16	38.51	464.71	1.50	7.61	0.00	7.61	0.00	1.88	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
35	3.250	28.32	0.16	39.71	468.43	1.45	7.68	0.00	7.68	0.00	1.92	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
36	3.240	28.33	0.16	40.97	472.32	1.42	7.75	0.00	7.75	0.00	1.95	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
37	3.230	28.33	0.16	42.30	476.39	1.38	7.82	0.00	7.82	0.00	1.99	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
38	3.220	28.34	0.16	43.68	480.65	1.35	7.89	0.00	7.89	0.00	2.02	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
39	3.210	28.34	0.16	45.12	485.10	1.32	7.96	0.00	7.96	0.00	2.05	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
40	3.200	28.35	0.17	46.63	489.74	1.29	8.03	0.00	8.03	0.00	2.09	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
41	3.190	28.36	0.17	48.20	494.57	1.26	8.10	0.00	8.10	0.00	2.12	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00

42	3.180 28.3		49.83	499.61	1.24	8.18	0.00	8.18	0.00	2.15	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
43	3.170 28.3		51.53	504.85	1.21	8.25	0.00	8.25	0.00	2.19	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
44	3.160 28.3		53.30	510.29	1.19	8.32	0.00	8.32	0.00	2.22	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
45	3.150 28.3		55.14	515.94	1.17	8.39	0.00	8.39	0.00	2.25	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
46	3.140 28.3		57.04	521.81	1.16	8.46	0.00	8.46	0.00	2.28	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
47	3.130 28.3		59.02	527.90	1.14	8.53	0.00	8.53	0.00	2.32	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
48	3.120 28.3		61.07	534.20	1.12	8.61	0.00	8.61	0.00	2.35	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
49	3.110 28.4		63.18	540.73	1.11	8.68	0.00	8.68	0.00	2.38	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
50	3.100 28.4		65.38	547.49	1.09	8.75	0.00	8.75	0.00	2.41	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
51	3.090 28.4		67.65	554.47	1.08	8.82	0.00	8.82	0.00	2.44	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
52	3.080 28.4	12 0.18	69.99	561.70	1.07	8.89	0.00	8.89	0.00	2.46	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
53	3.070 28.4		72.41	569.15	1.05	8.97	0.00	8.97	0.00	2.49	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
54	3.060 28.4	13 0.19	74.91	576.86	1.04	9.04	0.00	9.04	0.00	2.52	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
55	3.050 28.4	13 0.19	77.49	584.80	1.03	9.11	0.00	9.11	0.00	2.55	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
56	3.040 28.4	14 0.19	80.15	592.99	1.02	9.19	0.00	9.19	0.00	2.57	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
57	3.030 28.4	14 0.19	82.89	601.44	1.01	9.26	0.00	9.26	0.00	2.60	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
58	3.020 28.4	15 0.19	85.72	610.13	1.00	9.34	0.00	9.34	0.00	2.63	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
59	3.010 28.4	15 0.20	88.62	619.09	0.99	9.41	0.00	9.41	0.00	2.65	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
60	3.000 28.4	16 0.20	91.62	628.31	0.98	9.49	0.00	9.49	0.00	2.68	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
61	2.990 28.4	17 0.20	94.70	637.79	0.98	9.56	0.00	9.56	0.00	2.70	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
62	2.980 28.4	17 0.20	97.86	647.54	0.97	9.64	0.00	9.64	0.00	2.72	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
63	2.970 28.4	18 0.20	101.11	657.56	0.96	9.72	0.00	9.72	0.00	2.75	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
64	2.960 28.4	18 0.20	104.46	667.85	0.95	9.79	0.00	9.79	0.00	2.77	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
65	2.950 28.4	19 0.21	107.89	678.43	0.94	9.87	0.00	9.87	0.00	2.79	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
66	2.940 28.4	19 0.21	111.41	689.28	0.94	9.95	0.00	9.95	0.00	2.81	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
67	2.930 28.5	0.21	115.03	700.41	0.93	10.03	0.00	10.03	0.00	2.83	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
68	2.920 28.5	0.21	118.74	711.84	0.92	10.11	0.00	10.11	0.00	2.85	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
69	2.910 28.5	0.21	122.54	723.55	0.92	10.19	0.00	10.19	0.00	2.87	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
70	2.900 28.5	0.21	126.44	735.56	0.91	10.28	0.00	10.28	0.00	2.89	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
71	2.890 28.5	0.22	130.43	747.86	0.90	10.36	0.00	10.36	0.00	2.90	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
72	2.880 28.5	0.22	134.52	760.47	0.90	10.44	0.00	10.44	0.00	2.92	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
73	2.870 28.5	0.22	138.71	773.38	0.89	10.53	0.00	10.53	0.00	2.94	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
74	2.860 28.5	0.22	143.00	786.59	0.88	10.61	0.00	10.61	0.00	2.95	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
75	2.850 28.5	0.22	147.39	800.11	0.88	10.70	0.00	10.70	0.00	2.97	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
76	2.840 28.5	55 0.22	151.89	813.95	0.87	10.79	0.00	10.79	0.00	2.98	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
77	2.830 28.5	55 0.23	156.48	828.10	0.86	10.88	0.00	10.88	0.00	3.00	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
78	2.820 28.5		161.18	842.57	0.86	10.97	0.00	10.97	0.00	3.01	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
79	2.810 28.5		165.98	857.36	0.85	11.06	0.00	11.06	0.00	3.02	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
80	2.800 28.5		170.89	872.48	0.84	11.15	0.00	11.15	0.00	3.03	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 2 RKM 2.8 to 1.9

81 UPR RCH 0.00450 28.57

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

0.23 170.89 872.48 0.84 11.15 0.00 11.15 0.00 3.03 0.00 0.00 0.00 8.50

NCM

0.00

0.00

****	*****	******	*****	*****	*****	*** HYDRA	ULIC PAR	AMETER VA	ALUES ****	*****	*****	*****	*****	*****	k
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLUME	SURFACE AREA	X-SECT AREA	TIDAL PRISM	TIDAL VELO	DISPRSN	MEAN VELO
	km	km	m^3/s		m/s	days	m	m	m³	m²	m²	m³	m/s	m^2/s	m/s
81	2.80	2.79	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	910.27	0.001	0.078	0.001
82	2.79	2.78	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	945.81	0.001	0.081	0.001
83	2.78	2.77	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	981.34	0.001	0.084	0.001
84	2.77	2.76	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1016.88	0.001	0.087	0.001
85	2.76	2.75	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1052.42	0.001	0.090	0.001
86	2.75	2.74	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1087.95	0.001	0.093	0.001
87	2.74	2.73	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1123.49	0.001	0.096	0.001
88	2.73	2.72	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1159.02	0.002	0.099	0.002
89	2.72	2.71	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1194.56	0.002	0.102	0.002
90	2.71	2.70	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1230.09	0.002	0.105	0.002
91	2.70	2.69	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1265.63	0.002	0.108	0.002
92	2.69	2.68	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1301.17	0.002	0.111	0.002
93	2.68	2.67	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1336.70	0.002	0.114	0.002
94	2.67	2.66	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1372.24	0.002	0.117	0.002
95	2.66	2.65	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1407.77	0.002	0.120	0.002
96	2.65	2.64	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1443.31	0.002	0.123	0.002
97	2.64	2.63	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1478.84	0.002	0.126	0.002
98	2.63	2.62	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1514.38	0.002	0.129	0.002
99	2.62	2.61	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1549.92	0.002	0.132	0.002
100 101	2.61	2.60	0.00450 0.00450	82.2 82.2	0.00026 0.00026	0.44	1.09 1.09	15.85 15.85	171.97 171.97	158.50 158.50	17.20 17.20	1585.45 1620.99	0.002	0.135 0.138	0.002
101	2.59	2.59 2.58	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1656.52	0.002	0.136	0.002
103	2.58	2.57	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1692.06	0.002	0.144	0.002
103	2.57	2.56	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1727.59	0.002	0.147	0.002
105	2.56	2.55	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1763.13	0.002	0.150	0.002
106	2.55	2.54	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1798.66	0.002	0.153	0.002
107	2.54	2.53	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1834.20	0.002	0.156	0.002
108	2.53	2.52	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1869.74	0.002	0.159	0.002
109	2.52	2.51	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1905.27	0.003	0.162	0.003
110	2.51	2.50	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1940.81	0.003	0.165	0.003
111	2.50	2.49	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1976.34	0.003	0.168	0.003
112	2.49	2.48	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2011.88	0.003	0.171	0.003
113	2.48	2.47	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2047.41	0.003	0.174	0.003
114	2.47	2.46	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2082.95	0.003	0.177	0.003
115	2.46	2.45	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2118.49	0.003	0.180	0.003
116	2.45	2.44	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2154.02	0.003	0.183	0.003
117	2.44	2.43	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2189.56	0.003	0.186	0.003
118	2.43	2.42	0.00450		0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2225.09	0.003	0.189	0.003
119	2.42	2.41	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2260.63	0.003	0.192	0.003
120	2.41	2.40	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2296.16	0.003	0.195	0.003
121	2.40	2.39	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2331.70	0.003	0.198	0.003
122	2.39	2.38	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2367.24	0.003	0.201	0.003
123	2.38	2.37	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2402.77	0.003	0.204	0.003

127 2.34 2.33 0.00450 82.2 0.00026 0.44 1.09 13.85 171.97 188.50 17.20 2544.91 0.003 0.219 0.003 129 2.32 2.31 0.00450 82.2 0.00026 0.44 1.09 13.85 171.97 188.50 17.20 284.91 0.003 0.219 0.003 129 2.32 2.31 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 2851.52 0.003 0.229 0.003 132 2.30 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 272.99 0.004 0.224 0.003 132 2.30 0.00650 82.2 0.0026 0.44 1.09 15.85 171.97 188.50 17.20 272.99 0.004 0.234 0.004 134 2.27 2.24 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 272.99 0.004 0.234 0.004 136 2.25 2.25 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 2793.66 0.004 0.234 0.004 136 2.25 2.25 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.234 0.004 136 2.25 2.25 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.244 0.004 136 2.25 2.25 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.244 0.004 136 2.25 2.25 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.244 0.004 138 2.22 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.244 0.004 138 2.22 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.246 0.004 138 2.22 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.246 0.004 138 2.22 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 284.73 0.004 0.246 0.004 138 2.22 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 2835.84 0.004 0.256 0.004 0.246 0.004 144 2.21 2.20 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 2835.84 0.004 0.256 0.004 0.246 0.004 144 2.21 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 188.50 17.20 3835.84 0.004 0.256 0.004	124 125 126	2.37 2.36 2.35	2.36 2.35 2.34	0.00450 0.00450	82.2 82.2 82.2	0.00026 0.00026 0.00026	0.44 0.44 0.44	1.09 1.09 1.09	15.85 15.85 15.85	171.97 171.97 171.97	158.50 158.50 158.50	17.20 17.20 17.20	2438.31 2473.84 2509.38	0.003 0.003 0.003	0.207 0.210 0.213	0.003 0.003 0.003
128																
131 2,30 2,29 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 156,50 17.20 2687,06 0,004 0,228 0,004 133 2,28 2,27 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17.20 278,13 0,004 0,234 0,004 133 2,28 2,27 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17.20 278,16 0,004 0,237 0,004 135 2,26 2,27 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17.20 278,16 0,004 0,237 0,004 135 2,26 2,24 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 289,120 0,004 0,240 0,004 137 2,24 2,25 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 289,120 0,004 0,245 0,004 137 2,24 2,23 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 289,120 0,004 0,246 0,004 139 2,22 2,22 2,22 0,00045 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 290,127 0,004 0,246 0,004 140 0,241 0,004 0,245 0,							0.44									
132 2.29 2.28 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2728.59 0.004 0.231 0.004 134 2.27 2.26 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2798.13 0.004 0.231 0.004 135 2.26 2.25 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2899.20 0.004 0.237 0.004 136 2.25 2.24 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2899.20 0.004 0.243 0.004 136 2.25 2.24 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2899.20 0.004 0.243 0.004 138 2.23 2.22 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2899.31 0.004 0.243 0.004 138 2.23 2.22 2.21 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2899.38 0.004 0.249 0.004 138 2.23 2.22 2.21 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2891.38 0.004 0.249 0.004 140 0.21 2.20 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2891.38 0.004 0.255 0.004 141 2.20 2.19 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2891.38 0.004 0.255 0.004 142 2.19 2.18 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3913.48 0.004 0.255 0.004 142 2.19 2.18 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3913.48 0.004 0.255 0.004 142 2.19 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3913.48 0.004 0.255 0.004 142 2.11 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3913.48 0.004 0.255 0.004 142 2.11 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3913.48 0.004 0.255 0.004 142 2.11 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20																
133 2.28 2.27																
134 2,27 2,26 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2793,66 0,004 0,237 0,004 136 2,25 2,24 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2864,73 0,004 0,243 0,004 136 2,25 2,24 2,23 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2864,73 0,004 0,243 0,004 138 2,23 2,22 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2903,81 0,004 0,249 0,004 138 2,23 2,22 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2935,81 0,004 0,249 0,004 140 2,21 2,20 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2934,81 0,004 0,225 0,004 142 2,19 2,18 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 2934,41 0,004 0,225 0,004 142 2,19 2,18 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3006,88 0,004 0,238 0,004 142 2,19 2,18 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3077,95 0,004 0,258 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3077,95 0,004 0,264 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3119,02 0,004 0,267 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3119,02 0,004 0,267 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3119,02 0,004 0,267 0,004 148 2,11 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3119,02 0,004 0,276 0,004 148 2,11 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3359,33 0,004 0,276 0,004 148 2,11 0,00450 82,2 0,00026 0,44 1.09 15,85 171,97 158,50 17,20 3359,33 0,004 0,276 0,																
135																
137 2,24 2,23 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2900.27 0.004 0.246 0.004 139 2,22 2,21 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2935.81 0.004 0.249 0.004 139 2,22 2,21 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 2971.34 0.004 0.255 0.004 141 2.20 2.19 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3042.41 0.004 0.258 0.004 143 2.18 2.17 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3042.41 0.004 0.258 0.004 143 2.18 2.17 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3042.41 0.004 0.268 0.004 143 2.18 2.17 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3113.48 0.004 0.264 0.004 145 2.16 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3113.48 0.004 0.264 0.004 145 2.16 2.15 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3184.55 0.004 0.270 0.004 146 2.15 2.144 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3184.55 0.004 0.270 0.004 147 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3184.55 0.004 0.270 0.004 148 0.213 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3184.55 0.004 0.270 0.004 148 0.213 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3356.70 0.004 0.270 0.004 148 0.005 0.00450 0.004				0.00450	82.2											0.004
188 2,23 2,22 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 2935,81 0,004 0,249 0,004 109 2,21 2,22 2,21 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3006,88 0,004 0,255 0,004 141 2,20 2,19 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3006,88 0,004 0,255 0,004 142 2,19 2,18 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3007,95 0,004 0,261 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3077,95 0,004 0,264 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3113,48 0,004 0,264 0,004 144 2,17 2,16 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3114,55 0,0040 0,267 0,004 146 2,15 2,14 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3144,55 0,004 0,273 0,004 147 2,14 2,13 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3220,09 0,004 0,273 0,004 148 2,13 2,12 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3225,63 0,004 0,276 0,004 148 2,13 2,12 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3225,63 0,004 0,276 0,004 159 2,2 2,11 2,10 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3326,23 0,004 0,276 0,004 152 2,09 2,08 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3326,70 0,004 0,285 0,004 152 2,09 2,08 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3326,70 0,004 0,285 0,004 152 2,09 2,08 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20 3326,70 0,004 0,285 0,004 152 2,09 2,08 0,00450 82,2 0,00026 0,44 1,09 15,85 171,97 158,50 17,20																
139 2,22 2,21																
140																
141 2.20 2.19 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 307.95 0.004 0.261 0.004 133 2.18 2.17 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 307.95 0.004 0.264 0.004 143 2.18 2.17 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3113.48 0.0045 0.267 0.004 145 2.16 2.15 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3149.55 0.004 0.267 0.004 146 2.15 2.14 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3184.55 0.004 0.270 0.004 146 2.15 2.14 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.273 0.004 148 2.13 2.12 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.276 0.004 148 2.13 2.12 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.276 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.282 0.004 0.276 0.004 15.20 0.004 0.276				0.00450	82.2											
142 2.19 2.18 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3077.95 0.004 0.261 0.004 144 2.17 2.16 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3113.48 0.004 0.264 0.004 144 2.17 2.16 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3149.02 0.004 0.267 0.004 146 2.15 2.14 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3149.02 0.004 0.273 0.004 146 2.15 2.14 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 320.09 0.004 0.273 0.004 148 2.13 2.12 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 320.09 0.004 0.279 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3291.16 0.004 0.279 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3325.63 0.004 0.276 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.282 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.30 0.004 0.282 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.30 0.004 0.282 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3339.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3399.77 0.004 0.288 0.004 152 2.00 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3399.91 0.005 0.294 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.91 0.005 0.300 0.005 159 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.88 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.89 0.005 0.300 0.005 159 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.89 0.005 0.300 0.005 159 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.89 0.005 0.300 0.005 166 1.99 0.00450 82.2																
144 2.17 2.16 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3149.02 0.004 0.270 0.004 146 2.15 1.6 2.15 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3220.09 0.004 0.270 0.004 147 2.14 2.13 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3220.09 0.004 0.273 0.004 147 2.14 2.13 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.276 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.279 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 325.63 0.004 0.229 0.004 150 2.11 2.10 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.73 0.004 0.288 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.005 153 2.08 2.07 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.91 0.005 0.294 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.91 0.005 0.294 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.91 0.005 0.303 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.91 0.005 0.303 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.91 0.005 0.303 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.39 10.005 0.303 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.39 10.005 0.303 0.005 156 2.04 0.0050 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 359.55 0.005 0.331 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.331 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09	142	2.19	2.18				0.44	1.09	15.85			17.20	3077.95	0.004		
145																
146 2.15 2.14 2.13 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3220.09 0.004 0.273 0.004 148 2.13 2.12 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3255.63 0.004 0.276 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3291.16 0.004 0.279 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.285 0.004 150 2.11 2.10 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3362.23 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3362.23 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3468.84 0.005 0.291 0.005 153 2.08 2.07 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3468.84 0.005 0.294 0.005 153 2.08 2.07 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3503.89 0.005 0.294 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3503.99 0.005 0.294 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3503.99 1 0.005 0.300 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3539.91 0.005 0.300 0.005 158 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3539.91 0.005 0.300 0.005 158 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3539.91 0.005 0.300 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3589.91 0.005 0.300 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3589.91 0.005 0.300 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3898.97 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3898.97 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3898.97 0.005 0.312 0.005 160 1.99 0.00450 82.2																
147 2.14 2.13 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3255.63 0.004 0.276 0.004 148 2.13 2.12 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3291.16 0.004 0.279 0.004 149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.282 0.004 150 2.11 2.10 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.73 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.73 0.004 0.285 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3393.30 0.005 0.005 0.291 0.005 153 2.08 2.07 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3468.84 0.005 0.294 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 157 2.04 2.03 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.300 0.005 157 2.04 2.03 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.300 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.98 0.005 0.306 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.50 0.005 0.300 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.50 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.50 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 360.50 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 369.77 0.005 0.312 0.005 160 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 369.57 0.005 0.330 0.005 160 1.99 0.0045																
148 2.13 2.12 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3291.16 0.004 0.279 0.004 150 2.11 2.10 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3326.70 0.004 0.282 0.004 150 2.11 2.10 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3362.23 0.004 0.285 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.005 0.294 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3368.84 0.005 0.294 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3304.88 0.005 0.297 0.005 156 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3599.91 0.005 0.300 0.005 156 2.05 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3599.91 0.005 0.300 0.005 156 2.05 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3599.91 0.005 0.300 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.306 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.306 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.306 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.312 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.312 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.312 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 389.93 0.005 0.324 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 389.93 0.005 0.324 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 389.00 0.005 0.330 0.005 166 1.99 1.99 0.0																
149 2.12 2.11 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3362.70 0.004 0.282 0.004 151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3362.23 0.004 0.285 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.005 153 2.08 2.07 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3493.30 0.005 0.291 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3408.84 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3539.91 0.005 0.300 0.005 156 2.05 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3575.45 0.005 0.300 0.005 158 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3610.98 0.005 0.300 0.005 158 2.03 2.02 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.300 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.300 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.301 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 371.99 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 371.99 0.005 0.312 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 371.99 0.005 0.312 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.312 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 166 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3753.13 0.005 0.331 0.005 166 1.99 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3753.13 0.005 0.331 0.005 166 1.99 1.99 0.0																
151 2.10 2.09 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3397.77 0.004 0.288 0.004 152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3433.30 0.005 0.291 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3468.84 0.005 0.294 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 157 2.04 2.03 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.303 0.005 157 2.04 2.03 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3575.45 0.005 0.303 0.005 158 2.03 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3610.98 0.005 0.306 0.005 158 2.03 2.02 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3610.98 0.005 0.306 0.005 158 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.302 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.312 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.312 0.005 161 2.00 1.09450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3717.59 0.005 0.315 0.005 162 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.332 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.333 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.333 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3895.27 0.005 0.333 0.005 166 1.99 1.91 0.004	149	2.12						1.09	15.85				3326.70	0.004		0.004
152 2.09 2.08 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3433.30 0.005 0.291 0.005 153 2.08 2.07 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3468.84 0.005 0.294 0.005 154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3468.84 0.005 0.294 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 156 2.05 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3539.91 0.005 0.300 0.005 156 2.05 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3575.45 0.005 0.300 0.005 158 2.03 2.02 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3575.45 0.005 0.306 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3604.52 0.005 0.306 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.309 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.309 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.312 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3753.13 0.005 0.318 0.005 162 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3753.13 0.005 0.318 0.005 162 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3753.13 0.005 0.318 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 164 1.97 1.96 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 165 1.96 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 165 1.96 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3895.27 0.005 0.330 0.005 166 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3895.27 0.005 0.330 0.005 166 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3896.34 0.005 0.330 0.005 166 1.99 0.00450 82																
153																
154 2.07 2.06 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3504.38 0.005 0.297 0.005 155 2.06 2.05 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3539.91 0.005 0.300 0.005 156 2.05 2.04 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3610.98 0.005 0.306 0.005 157 2.04 2.03 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3610.98 0.005 0.306 0.005 158 2.03 2.02 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3610.98 0.005 0.306 0.005 159 2.02 2.01 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3646.52 0.005 0.309 0.005 160 2.01 2.00 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3682.05 0.005 0.315 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3717.59 0.005 0.315 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3717.59 0.005 0.315 0.005 161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3717.59 0.005 0.318 0.005 162 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3717.59 0.005 0.318 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 164 1.97 1.96 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.20 0.005 0.321 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.20 0.005 0.321 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.20 0.005 0.327 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.00 0.005 0.330 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3825.27 0.005 0.330 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3826.70 0.005 0.330 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3966.34 0.005 0.330 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3966.34 0.005 0.330 0.005 166 1.99 1.99 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4001.87 0.005 0.330 0.005 169																
155																
156																
158						0.00026										0.005
159																
160													3646.52			
161 2.00 1.99 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3753.13 0.005 0.318 0.005 162 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.20 0.005 0.324 0.005 164 1.97 1.96 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.20 0.005 0.327 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3895.27 0.005 0.330 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3895.27 0.005 0.330 0.005 167 1.94 1.93 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3930.80 0.005 0.333 0.005 168 1.93 1.92 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3966.34 0.005 0.336 0.005 168 1.93 1.92 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3966.34 0.005 0.336 0.005 168 1.93 1.92 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4001.87 0.005 0.339 0.005 169 1.92 1.91 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4007.41 0.005 0.342 0.005 17.00 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 17.00 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 17.00 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 17.00 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 17.00 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 170 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345																
162 1.99 1.98 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3788.66 0.005 0.321 0.005 163 1.98 1.97 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3824.20 0.005 0.324 0.005 164 1.97 1.96 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3859.73 0.005 0.327 0.005 165 1.96 1.95 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3859.73 0.005 0.330 0.005 166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3895.27 0.005 0.330 0.005 167 1.94 1.93 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3930.80 0.005 0.333 0.005 168 1.93 1.92 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3966.34 0.005 0.336 0.005 169 1.92 1.91 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4001.87 0.005 0.339 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.345 0.005 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.9																
163																
165																
166 1.95 1.94 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3930.80 0.005 0.333 0.005 167 1.94 1.93 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 3966.34 0.005 0.336 0.005 168 1.93 1.92 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4001.87 0.005 0.339 0.005 169 1.92 1.91 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.91 1.90 1.90 1.90 1.90 1.90 1.9	164	1.97	1.96			0.00026		1.09	15.85		158.50			0.005		
167																
168 1.93 1.92 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4001.87 0.005 0.339 0.005 169 1.92 1.91 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 170 1.91 1.90 0.00450 82.2 0.0003 1.08 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005																
169 1.92 1.91 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4037.41 0.005 0.342 0.005 170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 TOT AVG 0.0003 1.08 15.85 15.85 17.20																
170 1.91 1.90 0.00450 82.2 0.00026 0.44 1.09 15.85 171.97 158.50 17.20 4072.95 0.005 0.345 0.005 TOT 39.81 15477.53 14265.00 AVG 0.0003 1.08 15.85 17.20																
AVG 0.0003 1.08 15.85 17.20																
						0.0000	39.81	1 00	15 05	15477.53	14265.00	17.00				
						0.0003	61.95	1.08	13.85			17.20				

****	*****	*****	*****	*****	*****	*****	BIOLOGI	CAL A	ND PHYSI	CAL CO	EFFICI	ENTS *	*****	****	****	****	*****	****	****	*			
ELEM	ENDING	SAT	REAER	BOD#1	BOD#1	ABOD#1	BOD#2	BOD#2	ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST	D.O.	RATE	DECAY	SETT	DECAY	DECAY	SETT	DECAY	SOD	SOD	SOD	DECAY	SETT	DECAY	SRCE	RATE	SRCE	PROD	PROD	DECAY	DECAY	SETT
		mg/L	1/da	1/da	1/da	1/da	1/da	1/da	1/da	*	*	*	1/da	1/da	1/da	*	1/da	*	* *	**	1/da	1/da	1/da
81	2.790	7.74	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.01	6.01	6.01	0.00	0.06	0.00	0.00	0.00	0.00	0.65	0.00	0.00	0.00	0.00
82	2.780		0.76		0.06	0.00	0.00	0.00	0.00	6.02	6.02	6.02	0.00	0.06	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.00	0.00
83	2.770	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.02	6.02	6.02	0.00	0.06	0.00	0.00	0.00	0.00	0.69	0.00	0.00	0.00	0.00
84	2.760	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.03	6.03	6.03	0.00	0.06	0.00	0.00	0.00	0.00	0.71	0.00	0.00	0.00	0.00
85	2.750	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.03	6.03	6.03	0.00	0.06	0.00	0.00	0.00	0.00	0.74	0.00	0.00	0.00	0.00
86	2.740		0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.04	6.04	6.04	0.00	0.06	0.00	0.00	0.00	0.00	0.76	0.00	0.00	0.00	0.00
87	2.730	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.05	6.05	6.05	0.00	0.06	0.00	0.00	0.00	0.00	0.78	0.00	0.00	0.00	0.00
88	2.720	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.05	6.05	6.05	0.00	0.06	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00	0.00
89	2.710	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.06	6.06	6.06	0.00	0.06	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.00
90	2.700	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.06	6.06	6.06	0.00	0.06	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.00	0.00
91	2.690	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.07	6.07	6.07	0.00	0.06	0.00	0.00	0.00	0.00	0.86	0.00	0.00	0.00	0.00
92	2.680	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.08	6.08	6.08	0.01	0.06	0.00	0.00	0.00	0.00	0.89	0.00	0.00	0.00	0.00
93	2.670	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.08	6.08	6.08	0.01	0.06	0.00	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.00
94	2.660	7.70	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.09	6.09	6.09	0.01	0.06	0.00	0.00	0.00	0.00	0.93	0.00	0.00	0.00	0.00
95	2.650	7.70	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.09	6.09	6.09	0.01	0.06	0.00	0.00	0.00	0.00	0.95	0.00	0.00	0.00	0.00
96	2.640	7.70	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.10	6.10	6.10	0.01	0.06	0.00	0.00	0.00	0.00	0.97	0.00	0.00	0.00	0.00
97	2.630	7.70	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.11	6.11	6.11	0.01	0.06	0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00
98	2.620	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.11	6.11	6.11	0.01	0.06	0.00	0.00	0.00	0.00	1.02	0.00	0.00	0.00	0.00
99	2.610	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.12	6.12	6.12	0.01	0.06	0.00	0.00	0.00	0.00	1.04	0.00	0.00	0.00	0.00
100	2.600	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.12	6.12	6.12	0.01	0.06	0.00	0.00	0.00	0.00	1.06	0.00	0.00	0.00	0.00
101	2.590	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.13	6.13	6.13	0.01	0.06	0.00	0.00	0.00	0.00	1.08	0.00	0.00	0.00	0.00
102	2.580	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.14	6.14	6.14	0.01	0.06	0.00	0.00	0.00	0.00	1.10	0.00	0.00	0.00	0.00
103	2.570	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.14	6.14	6.14	0.01	0.06	0.00	0.00	0.00	0.00	1.12	0.00	0.00	0.00	0.00
104	2.560	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.15	6.15	6.15	0.01	0.06	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00
105	2.550	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.15	6.15	6.15	0.01	0.06	0.00	0.00	0.00	0.00	1.17	0.00	0.00	0.00	0.00
106	2.540	7.67	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.16	6.16	6.16	0.01	0.06	0.00	0.00	0.00	0.00	1.19	0.00	0.00	0.00	0.00
107	2.530		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.17	6.17	6.17	0.01	0.06	0.00	0.00	0.00		1.21	0.00	0.00	0.00	0.00
108	2.520		0.76	0.05	0.06	0.00	0.00	0.00		6.17		6.17		0.06		0.00	0.00			0.00	0.00	0.00	0.00
109	2.510		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.18	6.18	6.18	0.01	0.06	0.00	0.00	0.00		1.26	0.00	0.00	0.00	0.00
110	2.500		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.18	6.18	6.18	0.01	0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
111	2.490		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.19	6.19	6.19	0.01	0.06	0.00	0.00	0.00		1.30	0.00	0.00	0.00	0.00
112	2.480		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.20	6.20	6.20		0.06		0.00	0.00			0.00	0.00	0.00	0.00
113	2.470		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.20	6.20	6.20	0.01	0.06	0.00	0.00	0.00		1.34	0.00	0.00	0.00	0.00
114	2.460		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.21	6.21	6.21	0.01	0.06	0.00	0.00	0.00			0.00	0.00	0.00	0.00
115	2.450		0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.22	6.22	6.22	0.01	0.06	0.00	0.00	0.00			0.00	0.00	0.00	0.00
116	2.440		0.76		0.06	0.00	0.00	0.00		6.22	6.22	6.22		0.06	0.00	0.00	0.00		1.41		0.00	0.00	0.00
117	2.430		0.76		0.06	0.00	0.00	0.00	0.00	6.23	6.23	6.23	0.01	0.06	0.00	0.00	0.00			0.00	0.00	0.00	0.00
118	2.420		0.76		0.06	0.00	0.00	0.00		6.23	6.23	6.23		0.06	0.00	0.00	0.00			0.00	0.00	0.00	0.00
119	2.410		0.76	0.06		0.00	0.00	0.00	0.00	6.24	6.24	6.24	0.01	0.06	0.00	0.00	0.00		1.48	0.00	0.00	0.00	0.00
120	2.400		0.77		0.06	0.00	0.00	0.00	0.00	6.25	6.25	6.25	0.01	0.06	0.00	0.00	0.00		1.50	0.00	0.00	0.00	0.00
121	2.390		0.77		0.06	0.00	0.00	0.00	0.00	6.25	6.25	6.25	0.01	0.06	0.00	0.00	0.00		1.52	0.00	0.00	0.00	0.00
122	2.380		0.77		0.06	0.00	0.00	0.00		6.26	6.26	6.26	0.01	0.06	0.00	0.00	0.00			0.00	0.00	0.00	0.00
123	2.370	7.63	0.77	0.06	0.06	0.00	0.00	0.00	0.00	6.26	6.26	6.26	0.02	0.06	0.00	0.00	0.00	0.00	1.57	0.00	0.00	0.00	0.00

124	2.360 7.63	0.77	0.06	0.06	0.00	0.00	0.00	0.00	6.27	6.27	6.27	0.02	0.06	0.00	0.00	0.00	0.00	1.59	0.00	0.00	0.00	0.00
125	2.350 7.62	0.77	0.06	0.06	0.00	0.00	0.00	0.00	6.28	6.28	6.28	0.02	0.06	0.00	0.00	0.00	0.00	1.61	0.00	0.00	0.00	0.00
126	2.340 7.62	0.77	0.06	0.06	0.00	0.00	0.00	0.00	6.28	6.28	6.28	0.02	0.06	0.00	0.00	0.00	0.00	1.63	0.00	0.00	0.00	0.00
127	2.330 7.62	0.77	0.06	0.06	0.00	0.00	0.00	0.00	6.29	6.29	6.29	0.02	0.06	0.00	0.00	0.00	0.00	1.66	0.00	0.00	0.00	0.00
128	2.320 7.62	0.77	0.06		0.00	0.00		0.00		6.30	6.30		0.06		0.00		0.00		0.00	0.00	0.00	0.00
129	2.310 7.62	0.77	0.06		0.00		0.00	0.00	6.30	6.30	6.30	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
130	2.300 7.61	0.77	0.06		0.00	0.00	0.00	0.00		6.31	6.31	0.02	0.06	0.00	0.00	0.00		1.72	0.00	0.00	0.00	0.00
	2.290 7.61	0.77		0.06			0.00			6.31	6.31	0.02	0.06	0.00	0.00		0.00					0.00
131					0.00			0.00								0.00			0.00	0.00	0.00	
132	2.280 7.61	0.77	0.06		0.00	0.00		0.00		6.32	6.32		0.06	0.00	0.00			1.77	0.00	0.00	0.00	0.00
133	2.270 7.60	0.77	0.07	0.06	0.00	0.00		0.00		6.33	6.33		0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
134	2.260 7.60	0.77	0.07		0.00	0.00		0.00			6.33		0.06		0.00		0.00		0.00	0.00	0.00	0.00
135	2.250 7.60	0.77	0.07	0.06	0.00		0.00	0.00	6.34	6.34	6.34	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
136	2.240 7.60	0.77		0.06	0.00			0.00	6.35	6.35	6.35	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
137	2.230 7.60	0.77	0.07	0.06	0.00	0.00		0.00	6.35	6.35	6.35	0.02	0.06		0.00		0.00		0.00	0.00	0.00	0.00
138	2.220 7.59	0.77		0.06	0.00	0.00		0.00		6.36	6.36		0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
139	2.210 7.59	0.77	0.07	0.06	0.00	0.00		0.00		6.36	6.36	0.03	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
140	2.200 7.59	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.37	6.37	6.37	0.03	0.06	0.00	0.00	0.00	0.00	1.95	0.00	0.00	0.00	0.00
141	2.190 7.59	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.38	6.38	6.38	0.03	0.06	0.00	0.00	0.00	0.00	1.98	0.00	0.00	0.00	0.00
142	2.180 7.58	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.38	6.38	6.38	0.03	0.06	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00
143	2.170 7.58	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.39	6.39	6.39	0.03	0.06	0.00	0.00	0.00	0.00	2.02	0.00	0.00	0.00	0.00
144	2.160 7.58	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.40	6.40	6.40	0.03	0.06	0.00	0.00	0.00	0.00	2.04	0.00	0.00	0.00	0.00
145	2.150 7.58	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.40	6.40	6.40	0.03	0.06	0.00	0.00	0.00	0.00	2.07	0.00	0.00	0.00	0.00
146	2.140 7.57	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.41	6.41	6.41	0.03	0.06	0.00	0.00	0.00	0.00	2.09	0.00	0.00	0.00	0.00
147	2.130 7.57	0.77	0.07	0.06	0.00	0.00	0.00	0.00	6.41	6.41	6.41	0.04	0.06	0.00	0.00	0.00	0.00	2.11	0.00	0.00	0.00	0.00
148	2.120 7.57	0.77		0.06	0.00	0.00		0.00		6.42			0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
149	2.110 7.57	0.77	0.08	0.06	0.00	0.00		0.00			6.43		0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
150	2.100 7.56	0.77		0.06	0.00	0.00		0.00		6.43			0.06		0.00		0.00		0.00	0.00	0.00	0.00
151	2.090 7.56	0.77	0.08	0.06	0.00	0.00		0.00			6.44		0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
152	2.080 7.56	0.77		0.06	0.00	0.00		0.00		6.45			0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
153	2.070 7.56	0.77	0.08	0.06	0.00	0.00		0.00		6.45	6.45		0.06		0.00		0.00		0.00	0.00	0.00	0.00
154	2.060 7.55	0.77		0.06	0.00	0.00		0.00			6.46		0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
155	2.050 7.55	0.77	0.08	0.06	0.00	0.00		0.00			6.47		0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
156	2.040 7.55	0.77		0.06	0.00	0.00		0.00		6.47			0.06		0.00		0.00		0.00	0.00	0.00	0.00
157	2.030 7.55	0.77	0.08	0.06	0.00	0.00		0.00		6.48	6.48		0.06		0.00		0.00		0.00	0.00	0.00	0.00
																						0.00
158	2.020 7.54	0.77		0.06	0.00			0.00		6.48	6.48		0.06		0.00	0.00		2.37	0.00	0.00	0.00	
159	2.010 7.54	0.77	0.09	0.06	0.00		0.00	0.00		6.49	6.49		0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
160	2.000 7.54	0.77		0.06	0.00	0.00		0.00			6.50		0.06		0.00		0.00		0.00	0.00	0.00	0.00
161	1.990 7.54	0.77	0.09	0.06	0.00	0.00		0.00		6.50	6.50		0.06		0.00		0.00		0.00	0.00	0.00	0.00
162	1.980 7.53	0.77		0.06	0.00	0.00	0.00	0.00		6.51			0.06	0.00	0.00	0.00		2.47		0.00	0.00	0.00
163	1.970 7.53	0.77	0.09	0.06	0.00	0.00	0.00	0.00		6.52	6.52		0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
164	1.960 7.53	0.77		0.06	0.00	0.00		0.00		6.52			0.06		0.00		0.00		0.00	0.00	0.00	0.00
165	1.950 7.53	0.77	0.09	0.06	0.00	0.00		0.00		6.53	6.53		0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
166	1.940 7.52	0.77		0.06	0.00	0.00		0.00		6.54			0.06		0.00	0.00		2.56	0.00	0.00	0.00	0.00
167	1.930 7.52	0.77	0.10	0.06	0.00			0.00	6.54		6.54		0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
168	1.920 7.52	0.78	0.10	0.06	0.00		0.00	0.00		6.55			0.06		0.00		0.00		0.00	0.00	0.00	0.00
169	1.910 7.52	0.78	0.10	0.06	0.00	0.00	0.00	0.00	6.56	6.56	6.56	0.10	0.06	0.00	0.00	0.00	0.00	2.63	0.00	0.00	0.00	0.00
170	1.900 7.51	0.78	0.10	0.06	0.00	0.00	0.00	0.00	6.56	6.56	6.56	0.11	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
7770 0		0 6 5	0 07	0 05	0 00	0 00	0 00	0 00	2 50			0.10	0 05	0 00	0 00	0 00	0.00			0.00	0 00	0.00
AVG Z	O DEG C RATE	0.00	0.07	0.05	0.00	0.00	0.00	0.00	3.50			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} g/m²/d ** mg/L/day

****	*****	*****	****	*****	******	**** WA	TER QUA	ALITY CO	NSTITUE	ENT VALU	ES ****	*****	*****	*****	*****	*****	*****	**	
ELEM	ENDING	TEMP	SALN	Chloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	TOTN	PHOS	CHL A	MACRO	COLI	NCM
NO.	DIST	DEG C	PPT		umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	g/m³	#/100mL	
81	2.790		0.24	175.89	887.88		11.24	0.00	11.24	0.00	3.05	0.00	0.00	0.00	0.00	8.78	0.00	0.	0.00
82	2.780	28.60	0.25	180.92	903.37	0.83	11.33	0.00	11.33	0.00	3.06	0.00	0.00	0.00	0.00	9.06	0.00	0.	0.00
83	2.770		0.26	185.92	918.80	0.83	11.41	0.00	11.41	0.00	3.07	0.00	0.00	0.00	0.00	9.34	0.00	0.	0.00
84	2.760	28.63		190.91	934.16		11.49	0.00	11.49	0.00	3.07	0.00	0.00	0.00	0.00	9.62	0.00	0.	0.00
85	2.750		0.28	195.88	949.45		11.56	0.00	11.56	0.00	3.08	0.00	0.00	0.00	0.00	9.89	0.00	0.	0.00
86	2.740	28.66	0.29	200.82	964.69	0.83	11.63	0.00	11.63	0.00	3.09	0.00	0.00	0.00	0.00	10.17	0.00	0.	0.00
87	2.730	28.68	0.30	205.75	979.87		11.69	0.00	11.69	0.00	3.10	0.00	0.00	0.00	0.00	10.45	0.00	0.	0.00
88	2.720	28.70		210.66	994.99		11.75	0.00	11.75	0.00	3.10	0.00	0.00	0.00		10.73	0.00	0.	0.00
89	2.710	28.71		215.55			11.81	0.00	11.81	0.00	3.11	0.00	0.00	0.00	0.00	11.01	0.00	0.	0.00
90	2.700		0.33		1025.07		11.86	0.00	11.86	0.00	3.11	0.00	0.00	0.00		11.29	0.00	0.	0.00
91	2.690	28.74	0.34	225.28			11.90	0.00	11.90	0.00	3.12	0.00	0.00	0.00		11.57	0.00	0.	0.00
92	2.680	28.76			1054.94		11.95	0.00	11.95	0.00	3.12	0.00	0.00	0.00		11.85	0.00	0.	0.00
93	2.670	28.77	0.36		1069.80		11.99	0.00	11.99	0.00	3.12	0.00	0.00	0.00		12.13	0.00	0.	0.00
94	2.660		0.37		1084.61		12.03	0.00	12.03	0.00	3.12	0.00	0.00	0.00		12.40	0.00	0.	0.00
95	2.650	28.81			1099.38		12.06	0.00	12.06	0.00	3.13	0.00	0.00	0.00		12.68	0.00	0.	0.00
96	2.640	28.82			1114.10		12.09	0.00		0.00	3.13	0.00	0.00	0.00		12.96	0.00	0.	0.00
97	2.630	28.84	0.40		1128.78		12.12	0.00	12.12	0.00	3.13	0.00	0.00	0.00		13.24	0.00	0.	0.00
98	2.620	28.85	0.41		1143.41		12.15	0.00	12.15	0.00	3.13	0.00	0.00	0.00		13.52	0.00	0.	0.00
99	2.610		0.42		1158.01		12.17	0.00	12.17	0.00	3.13	0.00	0.00	0.00	0.00	13.80	0.00	0.	0.00
100	2.600		0.43		1172.56		12.20	0.00		0.00	3.13	0.00	0.00	0.00		14.08	0.00	0.	0.00
101	2.590	28.90	0.44		1187.07		12.22	0.00	12.22	0.00	3.13	0.00	0.00	0.00		14.36	0.00	0.	0.00
102	2.580	28.91			1201.54		12.24	0.00		0.00	3.13	0.00	0.00	0.00		14.64	0.00	0.	0.00
103	2.570	28.93	0.47	282.40			12.25	0.00	12.25	0.00	3.13	0.00	0.00	0.00	0.00	14.91	0.00	0.	0.00
104 105	2.560 2.550	28.95 28.96			1230.38 1244.74		12.27 12.28	0.00		0.00	3.12 3.12	0.00	0.00	0.00		15.19 15.47	0.00	0. 0.	0.00
105	2.530		0.49		1259.06		12.28	0.00	12.28	0.00	3.12	0.00	0.00	0.00		15.47	0.00	0.	0.00
107	2.530	28.99	0.50		1273.36		12.30	0.00	12.31	0.00	3.12	0.00	0.00	0.00	0.00	16.03	0.00	0.	0.00
107	2.520	29.01			1287.61		12.31	0.00		0.00	3.11	0.00	0.00	0.00		16.31	0.00	0.	0.00
100	2.520	29.01	0.52	310.28			12.32	0.00	12.32	0.00	3.11	0.00	0.00	0.00	0.00	16.59	0.00	0.	0.00
110	2.500		0.53		1316.03		12.33	0.00		0.00	3.11	0.00	0.00	0.00		16.87	0.00	0.	0.00
111	2.490	29.04	0.55	319.48		1.01	12.34	0.00	12.34	0.00	3.10	0.00	0.00	0.00	0.00	17.15	0.00	0.	0.00
112	2.480	29.07			1344.31		12.35	0.00		0.00	3.10	0.00	0.00	0.00		17.42	0.00	0.	0.00
113	2.470	29.09	0.57		1358.41		12.35	0.00	12.35	0.00	3.10	0.00	0.00	0.00		17.70	0.00	0.	0.00
114	2.460		0.58		1372.47		12.36	0.00		0.00	3.09	0.00	0.00	0.00		17.98	0.00	0.	0.00
115	2.450	29.12	0.59		1386.50		12.36	0.00	12.36	0.00	3.09	0.00	0.00	0.00	0.00	18.26	0.00	0.	0.00
116	2.440		0.60		1400.51		12.36	0.00		0.00	3.08	0.00	0.00	0.00		18.54	0.00	0.	0.00
117	2.430	29.15	0.61		1414.49	1.08	12.36	0.00	12.36	0.00	3.08	0.00	0.00	0.00	0.00	18.82	0.00	0.	0.00
118	2.420	29.17			1428.44		12.37	0.00		0.00	3.07	0.00	0.00	0.00		19.10	0.00	0.	0.00
119	2.410	29.18	0.63				12.37	0.00	12.37	0.00	3.07	0.00	0.00	0.00	0.00	19.38	0.00	0.	0.00
120	2.400	29.20	0.64		1456.25		12.37			0.00	3.06	0.00	0.00	0.00		19.66	0.00	0.	0.00
121	2.390	29.21	0.65		1470.12	1.12	12.37	0.00	12.37	0.00	3.06	0.00	0.00	0.00	0.00	19.93	0.00	0.	0.00
122	2.380	29.23	0.66		1483.96		12.37	0.00		0.00	3.05	0.00	0.00	0.00	0.00	20.21	0.00	0.	0.00
123	2.370	29.24	0.67		1497.77	1.14	12.37	0.00	12.37	0.00	3.04	0.00	0.00	0.00	0.00	20.49	0.00	0.	0.00
124	2.360	29.26			1511.56		12.36		12.36	0.00	3.04	0.00	0.00	0.00	0.00		0.00	0.	0.00

125	2.350	29.27	0.69	382.83	1525.32	1.16	12.36	0.00	12.36	0.00	3.03	0.00	0.00	0.00	0.00	21.05	0.00	0.	0.00
126	2.340	29.29	0.70	387.29	1539.06	1.17	12.36	0.00	12.36	0.00	3.03	0.00	0.00	0.00	0.00	21.33	0.00	0.	0.00
127	2.330	29.31	0.71	391.75	1552.77	1.18	12.36	0.00	12.36	0.00	3.02	0.00	0.00	0.00	0.00	21.61	0.00	0.	0.00
128	2.320	29.32	0.72	396.19	1566.46	1.19	12.36	0.00	12.36	0.00	3.01	0.00	0.00	0.00	0.00	21.89	0.00	0.	0.00
129	2.310	29.34	0.73	400.63	1580.13	1.20	12.36	0.00	12.36	0.00	3.01	0.00	0.00	0.00	0.00	22.17	0.00	0.	0.00
130	2.300	29.35	0.74	405.06	1593.77	1.21	12.35	0.00	12.35	0.00	3.00	0.00	0.00	0.00	0.00	22.44	0.00	0.	0.00
131	2.290	29.37	0.75		1607.39		12.35		12.35	0.00	2.99	0.00	0.00	0.00	0.00	22.72	0.00	0.	0.00
132	2.280	29.38	0.76	413.89	1620.99	1.23	12.35	0.00	12.35	0.00	2.99	0.00	0.00	0.00	0.00	23.00	0.00	0.	0.00
133	2.270	29.40	0.77	418.30	1634.56	1.24	12.35	0.00	12.35	0.00	2.98	0.00	0.00	0.00	0.00	23.28	0.00	0.	0.00
134	2.260	29.42	0.78	422.70	1648.11	1.25	12.35	0.00	12.35	0.00	2.97	0.00	0.00	0.00	0.00	23.56	0.00	0.	0.00
135	2.250	29.43	0.79	427.09	1661.65	1.27	12.35	0.00	12.35	0.00	2.97	0.00	0.00	0.00	0.00	23.84	0.00	0.	0.00
136	2.240	29.45	0.80		1675.16		12.34		12.34	0.00	2.96	0.00	0.00	0.00	0.00	24.12	0.00	0.	0.00
137	2.230	29.46	0.81		1688.64		12.34	0.00	12.34	0.00	2.95	0.00	0.00	0.00	0.00	24.40	0.00	0.	0.00
138	2.220	29.48	0.82		1702.11	1.30	12.34	0.00	12.34	0.00	2.95	0.00	0.00	0.00	0.00	24.68	0.00	0.	0.00
139	2.210	29.49	0.83		1715.56		12.34	0.00	12.34	0.00	2.94	0.00	0.00	0.00	0.00	24.00	0.00	0.	0.00
140	2.210	29.51	0.84	448.96	1728.98	1.32	12.34	0.00	12.34	0.00	2.94	0.00	0.00	0.00	0.00	25.23	0.00	0.	0.00
	2.200	29.53			1742.39		12.34		12.34		2.94					25.51		0.	0.00
141			0.85							0.00	2.93	0.00	0.00	0.00	0.00		0.00		
142	2.180	29.54	0.86		1755.78	1.35	12.34	0.00	12.34	0.00		0.00	0.00	0.00	0.00	25.79	0.00	0.	0.00
143	2.170	29.56	0.87	462.00	1769.14	1.36	12.34	0.00	12.34	0.00	2.92	0.00	0.00	0.00	0.00	26.07	0.00	0.	0.00
144	2.160	29.57	0.88		1782.49	1.37	12.35	0.00	12.35	0.00	2.91	0.00	0.00	0.00	0.00	26.35	0.00	0.	0.00
145	2.150	29.59	0.89		1795.82	1.38	12.35	0.00	12.35	0.00	2.90	0.00	0.00	0.00	0.00	26.63	0.00	0.	0.00
146	2.140	29.60	0.90		1809.13		12.35	0.00	12.35	0.00	2.90	0.00	0.00	0.00	0.00	26.91	0.00	0.	0.00
147	2.130	29.62	0.91		1822.42	1.41		0.00	12.35	0.00	2.89	0.00	0.00	0.00	0.00	27.19	0.00	0.	0.00
148	2.120	29.64	0.93	483.60	1835.69	1.42	12.36	0.00	12.36	0.00	2.88	0.00	0.00	0.00	0.00	27.46	0.00	0.	0.00
149	2.110	29.65	0.94		1848.95		12.36	0.00	12.36	0.00	2.88	0.00	0.00	0.00	0.00	27.74	0.00	0.	0.00
150	2.100	29.67	0.95	492.20	1862.18	1.45	12.37	0.00	12.37	0.00	2.87	0.00	0.00	0.00	0.00	28.02	0.00	0.	0.00
151	2.090	29.68	0.96		1875.40		12.37		12.37	0.00	2.87	0.00	0.00	0.00	0.00	28.30	0.00	0.	0.00
152	2.080	29.70	0.97		1888.61		12.38	0.00	12.38	0.00	2.86	0.00	0.00	0.00	0.00	28.58	0.00	0.	0.00
153	2.070	29.71	0.98		1901.79		12.39	0.00	12.39	0.00	2.86	0.00	0.00	0.00	0.00	28.86	0.00	0.	0.00
154	2.060	29.73	0.99		1914.96		12.39	0.00	12.39	0.00	2.85	0.00	0.00	0.00	0.00	29.14	0.00	0.	0.00
155	2.050		1.00		1928.11	1.53	12.40	0.00	12.40	0.00	2.85	0.00	0.00	0.00	0.00	29.42	0.00	0.	0.00
156	2.040	29.76	1.01	517.87	1941.24	1.55	12.41	0.00	12.41	0.00	2.84	0.00	0.00	0.00	0.00	29.70	0.00	0.	0.00
157	2.030	29.78	1.02		1954.36	1.56	12.42	0.00	12.42	0.00	2.84	0.00	0.00	0.00	0.00	29.97	0.00	0.	0.00
158	2.020	29.79	1.03	526.39	1967.46	1.58	12.44	0.00	12.44	0.00	2.83	0.00	0.00	0.00	0.00	30.25	0.00	0.	0.00
159	2.010	29.81	1.04	530.63	1980.55	1.60	12.45	0.00	12.45	0.00	2.83	0.00	0.00	0.00	0.00	30.53	0.00	0.	0.00
160	2.000	29.82	1.05	534.88	1993.62	1.62	12.46	0.00	12.46	0.00	2.83	0.00	0.00	0.00	0.00	30.81	0.00	0.	0.00
161	1.990	29.84	1.06	539.12	2006.68	1.64	12.48	0.00	12.48	0.00	2.82	0.00	0.00	0.00	0.00	31.09	0.00	0.	0.00
162	1.980	29.85	1.07	543.35	2019.72	1.66	12.49	0.00	12.49	0.00	2.82	0.00	0.00	0.00	0.00	31.37	0.00	0.	0.00
163	1.970	29.87	1.08	547.58	2032.74	1.68	12.51	0.00	12.51	0.00	2.82	0.00	0.00	0.00	0.00	31.65	0.00	0.	0.00
164	1.960	29.89	1.09	551.80	2045.75	1.71	12.53	0.00	12.53	0.00	2.82	0.00	0.00	0.00	0.00	31.93	0.00	0.	0.00
165	1.950	29.90	1.10	556.02	2058.75	1.73	12.55	0.00	12.55	0.00	2.82	0.00	0.00	0.00	0.00	32.21	0.00	0.	0.00
166	1.940	29.92	1.11	560.24	2071.73	1.76	12.57	0.00	12.57	0.00	2.82	0.00	0.00	0.00	0.00	32.48	0.00	0.	0.00
167	1.930	29.93	1.12	564.45	2084.69		12.60	0.00	12.60	0.00	2.82	0.00	0.00	0.00	0.00	32.76	0.00	0.	0.00
168	1.920		1.13	568.65	2097.64	1.82	12.62	0.00	12.62	0.00	2.82	0.00	0.00	0.00	0.00	33.04	0.00	0.	0.00
169	1.910	29.96	1.14	572.85	2110.58	1.85	12.65	0.00	12.65	0.00	2.82	0.00	0.00	0.00	0.00	33.32	0.00	0.	0.00
170	1.900		1.15	577.05	2123.50	1.88	12.67	0.00	12.67	0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
-																			

FINAL REPORT HEADWATER
REACH NO. 3 RKM 1.9 to 1.5

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

****	*****	*****	*****	*****	* * * * * * * * * * *	*****	REACH I	NPUTS *	*****	****	*****	*****	****	****	*****	*****	* *	
ELEM	TYPE	FLOW	TEMP	SAI	LN Chloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	PHOS		COLI	NCM
NO.			deg C	pl	pt mg/L	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	#/100mL	
171	UPR RCH	0.00450	29.98	1.1	15 577 05	2123.50	1 9.9	12.67	0 00	12.67	0.00	2.82	0.00	0.00	0.00	33.60	0.00	0.00
1/1	OFK KCH	0.00430	29.90	⊥•.	15 577.05	2123.30	1.00	12.07	0.00	12.07	0.00	2.02	0.00	0.00	0.00	33.00	0.00	0.00
****	*****	*****	*****	****	*****	** HYDRAU	LIC PARA	METER V	ALUES *	****	*****	*****	****	****	*****	*****	**	
ELEM	BEGIN	ENDING	FLOW	PCT	ADVCTV	TRAVEL	DEPTH	WIDTH	VOLU	ME	SURFACE	X-SECT	mт	DAL '	TIDAL	DISPRSN	MEAN	
NO.	DIST	DIST	r llow	EFF	VELO	TIME	DEFIU	WIDIR	VOLO	ME	AREA	AREA		ISM	VELO	DISERSN	VELO	
	km	km	m³/s		m/s	days	m	m		m³	m²	m²		m³	m/s	m²/s		
171	1.90	1.89	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4133		0.003	0.197		
172	1.89	1.88	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4194		0.003	0.200		
173	1.88	1.87	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4255		0.003	0.203		
174	1.87	1.86	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4316		0.003	0.206		
175	1.86	1.85	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4377		0.003	0.209		
176	1.85	1.84	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4438		0.003	0.211		
177	1.84	1.83	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4499		0.003	0.214	0.003	
178	1.83	1.82	0.00450		0.00014	0.85	1.19	27.74	329.		277.37	32.98	4559		0.003	0.217		
179	1.82	1.81	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4620		0.003	0.220		
180	1.81	1.80	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4681		0.003	0.223		
181	1.80	1.79	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4742		0.003	0.226		
182	1.79	1.78	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4803		0.003	0.229		
183	1.78	1.77	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4864		0.003	0.232		
184	1.77	1.76	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4925		0.003	0.235		
185	1.76	1.75	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	4986		0.003	0.237		
186	1.75	1.74	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5046		0.003	0.240		
187	1.74	1.73	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5107		0.004	0.243		
188	1.73	1.72	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5168		0.004	0.246		
189	1.72	1.71	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5229		0.004	0.249		
190	1.71	1.70	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5290		0.004	0.252		
191	1.70	1.69	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5351		0.004	0.255		
192	1.69	1.68	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5412		0.004	0.258		
193	1.68	1.67	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5473		0.004	0.261		
194	1.67	1.66	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5533		0.004	0.263		
195	1.66	1.65	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5594		0.004	0.266		
196	1.65	1.64	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5655		0.004	0.269		
197	1.64	1.63	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5716		0.004	0.272		
198	1.63	1.62	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5777		0.004	0.275		
199	1.62	1.61	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	5838		0.004	0.278		
200 201	1.61 1.60	1.60	0.00450	82.2 82.2	0.00014	0.85	1.19	27.74 27.74	329.		277.37	32.98	5899		0.004	0.281		
		1.59	0.00450		0.00014	0.85	1.19		329.		277.37	32.98	5960		0.004	0.284		
202	1.59	1.58	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	6021		0.004	0.287		
203	1.58	1.57	0.00450	82.2	0.00014	0.85	1.19	27.74	329.		277.37	32.98	6081		0.004	0.289		
204 205	1.57 1.56	1.56 1.55	0.00450	82.2 82.2	0.00014 0.00014	0.85 0.85	1.19 1.19	27.74 27.74	329. 329.		277.37 277.37	32.98 32.98	6142 6203		0.004	0.292 0.295		
203	1.55	1.54	0.00450		0.00014	0.85	1.19	27.74	329.		277.37	32.98	6264		0.004	0.293		
200	1.00	1.04	0.00430	04.4	0.00014	0.00	T • T 2	21.14	٥٧٥.	1)	211.31	24.90	0204	· J∠	0.004	0.290	0.004	

207 208 209 210	1.54 1.53 1.52 1.51	1.53 1.52 1.51 1.50	0.00450 0.00450 0.00450 0.00450	82.2 82.2 82.2 82.2	0.00014 0.00014 0.00014 0.00014	0.85 0.85 0.85 0.85	1.19 1.19 1.19 1.19	27.74 27.74 27.74 27.74	329.79 329.79 329.79 329.79	277.37 277.37 277.37 277.37	32.98 32.98 32.98 32.98	6325.39 6386.27 6447.15 6508.02	0.004 0.004 0.004 0.004	0.301 0.304 0.307 0.310	0.004 0.004 0.004 0.004
TOT					0.0001	33.93	1 10	07.74	13191.72	11094.80	32.00				
AVG CUM					0.0001	95.88	1.19	27.74			32.98				

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
171	1.890	7.51	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.63	5.63	5.63	0.12	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
172	1.880	7.51	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.63	5.63	5.63	0.12	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
173	1.870		0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.64	5.64	5.64	0.13	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
174	1.860		0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.64	5.64	5.64	0.13	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
175	1.850		0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.65	5.65	5.65	0.13	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
176	1.840	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.65	5.65	5.65	0.13	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
177	1.830	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.66	5.66	5.66	0.13	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
178	1.820	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.66	5.66	5.66	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
179		7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.67	5.67	5.67	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
180	1.800		0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.67	5.67	5.67	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
181	1.790		0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.68	5.68	5.68	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
182	1.780		0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.68	5.68	5.68	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
183	1.770 1.760	7.49	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.69	5.69 5.69	5.69 5.69	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
184 185	1.750	7.49 7.48	0.71 0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.69 5.70	5.70	5.70	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
186		7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.70	5.70	5.70	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
187		7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.70	5.70	5.70	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
188		7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.70	5.70		0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
189		7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.71	5.71	5.71	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
190		7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.72	5.72	5.72	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
191	1.690	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.72	5.72	5.72	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
192	1.680	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.73	5.73	5.73	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
193	1.670	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.73	5.73	5.73	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
194	1.660	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.74	5.74	5.74	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
195	1.650	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.74	5.74	5.74	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
196	1.640	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.75	5.75	5.75	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
197	1.630	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.75	5.75	5.75	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
198	1.620	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.76	5.76	5.76	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
199	1.610	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.76	5.76	5.76	0.15	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
200	1.600	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.77	5.77	5.77	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
201	1.590	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.77	5.77	5.77	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
202		7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.78	5.78	5.78	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
203	1.570	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.78	5.78	5.78	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
204	1.560	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.79	5.79	5.79	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
205	1.550	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.79	5.79	5.79	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00

206	1.540	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.80	5.80	5.80	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
207	1.530	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.80	5.80	5.80	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
208	1.520	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.81	5.81	5.81	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
209	1.510	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.81	5.81	5.81	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
210	1.500	7.43	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.82	5.82	5.82	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
AVG 2	0 DEG C	RATE	0.59	0.06	0.05	0.00	0.00	0.00	0.00	3.00			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1	BOD#2 mg/L	EBOD#1	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
171	1.890		1.16	581.06	2135.88		12.70	0.00		0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
172	1.880	30.01	1.16	584.91	2147.71	1.94	12.73	0.00	12.73	0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
173	1.870	30.02	1.17	588.72	2159.46	1.97	12.76	0.00		0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
174	1.860	30.03	1.18	592.51	2171.12	1.99	12.78	0.00		0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
175	1.850	30.05	1.19	596.26	2182.69	2.02	12.81	0.00		0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
176	1.840	30.06	1.19	599.99	2194.18	2.04	12.83	0.00		0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
177	1.830	30.07		603.70	2205.58		12.86	0.00		0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
178	1.820	30.09	1.21	607.37	2216.91	2.08	12.88	0.00		0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
179	1.810	30.10	1.22	611.02	2228.16	2.09	12.91	0.00		0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
180	1.800	30.11	1.23	614.65	2239.33	2.11	12.93	0.00		0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
181	1.790	30.13	1.23	618.25	2250.42	2.12	12.96	0.00		0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
182	1.780	30.14	1.24	621.83	2261.44	2.14	12.98	0.00		0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
183	1.770	30.15	1.25	625.38	2272.39	2.15	13.01	0.00		0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
184	1.760	30.17	1.25	628.91	2283.26	2.16	13.03	0.00		0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
185	1.750	30.18	1.26	632.42	2294.07	2.18	13.06	0.00		0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
186	1.740	30.19	1.27	635.91	2304.80	2.19	13.08	0.00		0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
187	1.730	30.21	1.28	639.37	2315.47	2.20	13.11	0.00		0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
188	1.720	30.22	1.28	642.81	2326.07	2.21	13.13	0.00		0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
189	1.710	30.23	1.29	646.23	2336.61	2.22	13.16	0.00		0.00	2.86	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
190	1.700	30.25	1.30	649.63	2347.08	2.23	13.19	0.00		0.00	2.86	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
191	1.690	30.26	1.31	653.01	2357.49	2.25	13.21	0.00		0.00	2.86	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
192	1.680	30.27	1.32	656.37	2367.84	2.26	13.24	0.00		0.00	2.87	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
193	1.670	30.28	1.32	659.71	2378.13	2.27	13.26	0.00		0.00	2.87	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
194	1.660	30.30	1.33	663.03	2388.36	2.28	13.29	0.00		0.00	2.87	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
195	1.650	30.31	1.34	666.33	2398.53	2.29	13.32	0.00		0.00	2.88	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
196	1.640	30.32	1.35	669.62	2408.64	2.30	13.34	0.00		0.00	2.88	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
197	1.630		1.35	672.88	2418.69	2.31	13.37	0.00		0.00	2.88	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
198	1.620	30.35	1.36	676.13	2428.69	2.33	13.40	0.00		0.00	2.89	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
199	1.610	30.36	1.37	679.35	2438.63	2.34	13.43	0.00		0.00	2.89	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
200	1.600	30.38	1.38	682.57	2448.52	2.35	13.46	0.00		0.00	2.90	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
201	1.590	30.39	1.38	685.76	2458.36	2.37	13.48	0.00		0.00	2.90	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
202	1.580	30.40	1.39	688.93	2468.14	2.38	13.51	0.00		0.00	2.91	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
203	1.570	30.42	1.40	692.09	2477.87	2.40	13.54	0.00		0.00	2.91	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
204	1.560	30.43	1.41	695.24	2487.56	2.41	13.57	0.00	13.57	0.00	2.92	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
205	1.550	30.44	1.41	698.36	2497.19	2.43	13.60	0.00	13.60	0.00	2.92	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00

206	1.540	30.46	1.42	701.47	2506.77	2.45	13.63	0.00	13.63	0.00	2.93	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
207	1.530	30.47	1.43	704.57	2516.30	2.47	13.67	0.00	13.67	0.00	2.93	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
208	1.520	30.48	1.44	707.65	2525.79	2.49	13.70	0.00	13.70	0.00	2.94	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
209	1.510	30.50	1.44	710.71	2535.23	2.51	13.73	0.00	13.73	0.00	2.94	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
210	1.500	30.51	1.45	713.76	2544.62	2.53	13.76	0.00	13.76	0.00	2.95	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00

FINAL REPORT HEADWATER REACH NO. 4 RKM 1.5 to 1.1

BAYOU CANE WATERSHED MODEL
BAYOU CANE FINAL CALIBRATION RUN

NCM

211 UPR RCH 0.00450 30.51 1.45 713.76 2544.62 2.53 13.76 0.00 13.76 0.00 2.95 0.00 0.00 33.60 0.00 0.00

ELEM NO.	BEGIN DIST km	ENDING DIST km	FLOW m³/s	PCT EFF	ADVCTV VELO m/s	TRAVEL TIME days	DEPTH m	WIDTH m	VOLUME m³	SURFACE AREA m²	X-SECT AREA m²	TIDAL PRISM m³	TIDAL VELO m/s	DISPRSN m²/s	MEAN VELO m/s
211	1.50	1.49	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6570.24	0.005	0.314	0.005
212	1.49	1.48	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6632.45	0.005	0.317	0.005
213	1.48	1.47	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6694.67	0.005	0.320	0.005
214	1.47	1.46	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6756.88	0.005	0.323	0.005
215	1.46	1.45	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6819.09	0.005	0.326	0.005
216	1.45	1.44	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6881.31	0.005	0.329	0.005
217	1.44	1.43	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	6943.52	0.005	0.332	0.005
218	1.43	1.42	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7005.74	0.005	0.335	0.005
219	1.42	1.41	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7067.95	0.006	0.338	0.006
220	1.41	1.40	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7130.16	0.006	0.341	0.006
221	1.40	1.39	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7192.38	0.006	0.344	0.006
222	1.39	1.38	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7254.59	0.006	0.346	0.006
223	1.38	1.37	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7316.80	0.006	0.349	0.006
224	1.37	1.36	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7379.02	0.006	0.352	0.006
225	1.36	1.35	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7441.23	0.006	0.355	0.006
226	1.35	1.34	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7503.45	0.006	0.358	0.006
227	1.34	1.33	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7565.66	0.006	0.361	0.006
228	1.33	1.32	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7627.87	0.006	0.364	0.006
229	1.32	1.31	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7690.09	0.006	0.367	0.006
230	1.31	1.30	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7752.30	0.006	0.370	0.006
231	1.30	1.29	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7814.52	0.006	0.373	0.006
232	1.29	1.28	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7876.73	0.006	0.376	0.006
233	1.28	1.27	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7938.94	0.006	0.379	0.006
234	1.27	1.26	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8001.16	0.006	0.382	0.006
235	1.26	1.25	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8063.37	0.006	0.385	0.006
236	1.25	1.24	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8125.58	0.006	0.388	0.006

237	1.24	1.23	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8187.80	0.006	0.391	0.006
238	1.23	1.22	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8250.01	0.006	0.394	0.006
239	1.22	1.21	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8312.23	0.006	0.397	0.007
240	1.21	1.20	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8374.44	0.007	0.400	0.007
241	1.20	1.19	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8436.65	0.007	0.403	0.007
242	1.19	1.18	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8498.87	0.007	0.406	0.007
243	1.18	1.17	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8561.08	0.007	0.409	0.007
244	1.17	1.16	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8623.30	0.007	0.412	0.007
245	1.16	1.15	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8685.51	0.007	0.415	0.007
246	1.15	1.14	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8747.72	0.007	0.418	0.007
247	1.14	1.13	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8809.94	0.007	0.421	0.007
248	1.13	1.12	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8872.15	0.007	0.424	0.007
249	1.12	1.11	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8934.37	0.007	0.427	0.007
250	1.11	1.10	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8996.58	0.007	0.430	0.007
TOT						29.77			11576.51	11338.40					
AVG					0.0002	23.11	1.02	28.35	11370.31	11330.40	28.94				
CUM					0.0002	125.66	1.02	20.33			20.77				
C 01·1						123.00									

ELEM	ENDING	SAT	REAER	- "		ABOD#1	- "	- "	ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST	D.O.	RATE	DECAY	SETT	DECAY	DECAY	SETT	DECAY	SOD *	SOD *	SOD *	DECAY 1/da	SETT	DECAY	SRCE *	RATE 1/da	SRCE *	PROD **	PROD **	DECAY	DECAY	SETT
		mg/L	1/da	1/da	1/da	1/da	1/da	1/da	1/da	^	^	^	1/da	1/da	1/da	^	1/da	^	^ ^	^ ^	1/da	1/da	1/da
211	1.490	7.43	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.66	4.66	4.66	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
212	1.480	7.43	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.66	4.66	4.66	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
213	1.470	7.43	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.66	4.66	4.66	0.15	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
214	1.460	7.43	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.67	4.67	4.67	0.15	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
215	1.450	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.67	4.67	4.67	0.15	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
216	1.440	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.68	4.68	4.68	0.16	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
217	1.430	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.68	4.68	4.68	0.16	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
218	1.420	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.68	4.68	4.68	0.16	0.06	0.00	0.00	0.00	0.00	2.65	0.00	0.00	0.00	0.00
219	1.410	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.69	4.69	4.69	0.16	0.06	0.00	0.00	0.00	0.00	2.64	0.00	0.00	0.00	0.00
220	1.400	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.69	4.69	4.69	0.16	0.06	0.00	0.00	0.00	0.00	2.64	0.00	0.00	0.00	0.00
221	1.390	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.70	4.70	4.70	0.16	0.06	0.00	0.00	0.00	0.00	2.63	0.00	0.00	0.00	0.00
222	1.380	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.70	4.70	4.70	0.16	0.06	0.00	0.00	0.00	0.00	2.62	0.00	0.00	0.00	0.00
223	1.370	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.70	4.70	4.70	0.16	0.06	0.00	0.00	0.00	0.00	2.61	0.00	0.00	0.00	0.00
224	1.360	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.71	4.71	4.71	0.16	0.06	0.00	0.00	0.00	0.00	2.60	0.00	0.00	0.00	0.00
225	1.350	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.71	4.71	4.71	0.16	0.06	0.00	0.00	0.00	0.00	2.59	0.00	0.00	0.00	0.00
226	1.340	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.71				0.06	0.00	0.00	0.00	0.00	2.58	0.00	0.00	0.00	0.00
227	1.330		0.83	0.09	0.06	0.00	0.00	0.00	0.00		4.72			0.06	0.00	0.00	0.00	0.00	2.57	0.00	0.00	0.00	0.00
228	1.320	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.72	4.72	4.72		0.06	0.00	0.00	0.00	0.00	2.56	0.00	0.00	0.00	0.00
229	1.310	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00		4.73	4.73		0.06	0.00	0.00	0.00	0.00	2.56	0.00	0.00	0.00	0.00
230	1.300	7.39	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.73	4.73	4.73	0.16	0.06	0.00	0.00	0.00	0.00	2.55	0.00	0.00	0.00	0.00
231	1.290	7.39	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.73	4.73	4.73	0.16	0.06	0.00	0.00	0.00	0.00	2.54	0.00	0.00	0.00	0.00
232	1.280	7.39	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.74	4.74	4.74		0.06	0.00	0.00	0.00	0.00	2.53	0.00	0.00	0.00	0.00
233	1.270	7.39	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.74	4.74	4.74	0.16	0.06	0.00	0.00	0.00	0.00	2.52	0.00	0.00	0.00	0.00
234	1.260	7.39	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.75	4.75	4.75	0.16	0.06	0.00	0.00	0.00	0.00	2.51	0.00	0.00	0.00	0.00
235	1.250	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.75	4.75	4.75	0.16	0.06	0.00	0.00	0.00	0.00	2.50	0.00	0.00	0.00	0.00

236	1.240	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.75	4.75	4.75	0.16	0.06	0.00	0.00	0.00	0.00	2.49	0.00	0.00	0.00	0.00
237	1.230	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.76	4.76	4.76	0.16	0.06	0.00	0.00	0.00	0.00	2.48	0.00	0.00	0.00	0.00
238	1.220	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.76	4.76	4.76	0.17	0.06	0.00	0.00	0.00	0.00	2.47	0.00	0.00	0.00	0.00
239	1.210	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.77	4.77	4.77	0.17	0.06	0.00	0.00	0.00	0.00	2.47	0.00	0.00	0.00	0.00
240	1.200	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.77	4.77	4.77	0.17	0.06	0.00	0.00	0.00	0.00	2.46	0.00	0.00	0.00	0.00
241	1.190	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.77	4.77	4.77	0.17	0.06	0.00	0.00	0.00	0.00	2.45	0.00	0.00	0.00	0.00
242	1.180	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.78	4.78	4.78	0.17	0.06	0.00	0.00	0.00	0.00	2.44	0.00	0.00	0.00	0.00
243	1.170	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.78	4.78	4.78	0.17	0.06	0.00	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00
244	1.160	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.79	4.79	4.79	0.17	0.06	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
245	1.150	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.79	4.79	4.79	0.17	0.06	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
246	1.140	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.79	4.79	4.79	0.17	0.06	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
247	1.130	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.80	4.80	4.80	0.17	0.06	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
248	1.120	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.80	4.80	4.80	0.17	0.06	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
249	1.110	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.81	4.81	4.81	0.17	0.06	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
250	1.100	7.35	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.81	4.81	4.81	0.17	0.06	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
AVG 2	0 DEG C	RATE	0.69	0.06	0.05	0.00	0.00	0.00	0.00	2.40			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM NO.	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 mg/L	EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
211	1.490	30.52	1.46	716.99	2554.56	2.56	13.80	0.00	13.80	0.00	2.96	0.00	0.00	0.00	0.00	33.47	0.00	0.	0.00
212	1.480	30.54	1.47	720.41	2565.11	2.59	13.83	0.00	13.83	0.00	2.97	0.00	0.00	0.00	0.00	33.34	0.00	0.	0.00
213	1.470	30.55	1.47	723.83	2575.62	2.61	13.87	0.00	13.87	0.00	2.97	0.00	0.00	0.00	0.00	33.22	0.00	0.	0.00
214	1.460	30.56	1.48	727.22	2586.09	2.63	13.90	0.00	13.90	0.00	2.98	0.00	0.00	0.00	0.00	33.09	0.00	0.	0.00
215	1.450	30.58	1.49	730.61	2596.51	2.65	13.94	0.00	13.94	0.00	2.99	0.00	0.00	0.00	0.00	32.96	0.00	0.	0.00
216	1.440	30.59	1.50	733.97	2606.88	2.67	13.97	0.00	13.97	0.00	3.00	0.00	0.00	0.00	0.00	32.83	0.00	0.	0.00
217	1.430	30.60	1.50	737.33	2617.21	2.69	14.00	0.00	14.00	0.00	3.00	0.00	0.00	0.00	0.00	32.71	0.00	0.	0.00
218	1.420	30.62	1.51	740.67	2627.50	2.71	14.03	0.00	14.03	0.00	3.01	0.00	0.00	0.00	0.00	32.58	0.00	0.	0.00
219	1.410	30.63	1.52	743.99	2637.74	2.73	14.06	0.00	14.06	0.00	3.02	0.00	0.00	0.00	0.00	32.45	0.00	0.	0.00
220	1.400	30.64	1.53	747.30	2647.94	2.74	14.09	0.00	14.09	0.00	3.02	0.00	0.00	0.00	0.00	32.32	0.00	0.	0.00
221	1.390	30.66	1.54	750.60	2658.10	2.76	14.12	0.00	14.12	0.00	3.03	0.00	0.00	0.00	0.00	32.20	0.00	0.	0.00
222	1.380	30.67	1.54	753.88	2668.22	2.77	14.15	0.00	14.15	0.00	3.03	0.00	0.00	0.00	0.00	32.07	0.00	0.	0.00
223	1.370	30.68	1.55	757.16	2678.30	2.79	14.17	0.00	14.17	0.00	3.04	0.00	0.00	0.00	0.00	31.94	0.00	0.	0.00
224	1.360	30.70	1.56	760.41	2688.33	2.80	14.20	0.00	14.20	0.00	3.05	0.00	0.00	0.00	0.00	31.81	0.00	0.	0.00
225	1.350	30.71	1.57	763.66	2698.33	2.82	14.22	0.00	14.22	0.00	3.05	0.00	0.00	0.00	0.00	31.69	0.00	0.	0.00
226	1.340	30.72	1.57	766.89	2708.28	2.83	14.25	0.00	14.25	0.00	3.06	0.00	0.00	0.00	0.00	31.56	0.00	0.	0.00
227	1.330	30.74	1.58	770.11	2718.20	2.85	14.27	0.00	14.27	0.00	3.07	0.00	0.00	0.00	0.00	31.43	0.00	0.	0.00
228	1.320	30.75	1.59	773.32	2728.07	2.86	14.29	0.00	14.29	0.00	3.07	0.00	0.00	0.00	0.00	31.30	0.00	0.	0.00
229	1.310	30.76	1.60	776.51	2737.91	2.87	14.32	0.00	14.32	0.00	3.08	0.00	0.00	0.00	0.00	31.18	0.00	0.	0.00
230	1.300	30.78	1.61	779.69	2747.71	2.89	14.34	0.00	14.34	0.00	3.08	0.00	0.00	0.00	0.00	31.05	0.00	0.	0.00
231	1.290	30.79	1.61	782.86	2757.48	2.91	14.36	0.00	14.36	0.00	3.09	0.00	0.00	0.00	0.00	30.92	0.00	0.	0.00
232	1.280	30.80	1.62	786.02	2767.20	2.92	14.38	0.00	14.38	0.00	3.09	0.00	0.00	0.00	0.00	30.80	0.00	0.	0.00
233	1.270	30.81	1.63	789.16	2776.89	2.94	14.40	0.00	14.40	0.00	3.10	0.00	0.00	0.00	0.00	30.67	0.00	0.	0.00
234	1.260	30.83	1.64	792.30	2786.55	2.96	14.42	0.00	14.42	0.00	3.11	0.00	0.00	0.00	0.00	30.54	0.00	0.	0.00
235	1.250	30.84	1.64	795.42	2796.16	2.98	14.44	0.00	14.44	0.00	3.11	0.00	0.00	0.00	0.00	30.41	0.00	0.	0.00

236	1.240	30.85	1.65	798.53	2805.74	2.99	14.46	0.00	14.46	0.00	3.12	0.00	0.00	0.00	0.00	30.28	0.00	0.	0.00
237	1.230	30.87	1.66	801.63	2815.29	3.01	14.48	0.00	14.48	0.00	3.12	0.00	0.00	0.00	0.00	30.16	0.00	0.	0.00
238	1.220	30.88	1.67	804.72	2824.80	3.04	14.50	0.00	14.50	0.00	3.13	0.00	0.00	0.00	0.00	30.03	0.00	0.	0.00
239	1.210	30.89	1.67	807.79	2834.28	3.06	14.51	0.00	14.51	0.00	3.14	0.00	0.00	0.00	0.00	29.90	0.00	0.	0.00
240	1.200	30.91	1.68	810.86	2843.72	3.08	14.53	0.00	14.53	0.00	3.14	0.00	0.00	0.00	0.00	29.77	0.00	0.	0.00
241	1.190	30.92	1.69	813.92	2853.13	3.11	14.55	0.00	14.55	0.00	3.15	0.00	0.00	0.00	0.00	29.65	0.00	0.	0.00
242	1.180	30.93	1.70	816.96	2862.51	3.14	14.57	0.00	14.57	0.00	3.16	0.00	0.00	0.00	0.00	29.52	0.00	0.	0.00
243	1.170	30.95	1.71	819.99	2871.86	3.16	14.58	0.00	14.58	0.00	3.16	0.00	0.00	0.00	0.00	29.39	0.00	0.	0.00
244	1.160	30.96	1.71	823.02	2881.17	3.19	14.60	0.00	14.60	0.00	3.17	0.00	0.00	0.00	0.00	29.26	0.00	0.	0.00
245	1.150	30.97	1.72	826.03	2890.45	3.23	14.61	0.00	14.61	0.00	3.18	0.00	0.00	0.00	0.00	29.14	0.00	0.	0.00
246	1.140	30.99	1.73	829.03	2899.70	3.26	14.63	0.00	14.63	0.00	3.18	0.00	0.00	0.00	0.00	29.01	0.00	0.	0.00
247	1.130	31.00	1.74	832.02	2908.91	3.30	14.64	0.00	14.64	0.00	3.19	0.00	0.00	0.00	0.00	28.88	0.00	0.	0.00
248	1.120	31.01	1.74	835.01	2918.10	3.33	14.66	0.00	14.66	0.00	3.20	0.00	0.00	0.00	0.00	28.75	0.00	0.	0.00
249	1.110	31.03	1.75	837.98	2927.25	3.37	14.67	0.00	14.67	0.00	3.20	0.00	0.00	0.00	0.00	28.63	0.00	0.	0.00
250	1.100	31.04	1.76	840.94	2936.38	3.42	14.69	0.00	14.69	0.00	3.21	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 5 RKM 1.1 to 0.3

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

******	*****	*****	*****	******	*****	REACH I	NPUTS *	*****	*****	*****	****	*****	*****	*****	*****	**	
ELEM TYPE	FLOW	TEMP deg C	SALN (Conduct umhos/cm					EBOD#2 mg/L			NO3+2 mg/L		CHL A µg/L	COLI #/100mL	NCM
251 UPR RCH	0.00450	31.04	1.76	840.94	2936.38	3.42	14.69	0.00	14.69	0.00	3.21	0.00	0.00	0.00	28.50	0.00	0.00

****	*****	******	******	****	*****	*** HYDRAU	JLIC PAR	AMETER VA	ALUES ****	*****	*****	****	*****	*****	ŧ
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLUME	SURFACE AREA	X-SECT AREA	TIDAL PRISM	TIDAL VELO	DISPRSN	MEAN VELO
	km	km	m^3/s		m/s	days	m	m	m³	m²	m²	m³	m/s	m^2/s	m/s
251	1.10	1.09	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9047.29	0.008	0.554	0.008
252	1.09	1.08	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9098.00	0.008	0.557	0.008
253	1.08	1.07	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9148.71	0.008	0.560	0.008
254	1.07	1.06	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9199.43	0.008	0.563	0.008
255	1.06	1.05	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9250.14	0.008	0.566	0.008
256	1.05	1.04	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9300.85	0.008	0.569	0.008
257	1.04	1.03	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9351.56	0.008	0.572	0.008
258	1.03	1.02	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9402.27	0.008	0.576	0.008
259	1.02	1.01	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9452.99	0.008	0.579	0.008
260	1.01	1.00	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9503.70	0.008	0.582	0.008
261	1.00	0.99	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9554.41	0.008	0.585	0.008
262	0.99	0.98	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9605.12	0.008	0.588	0.008
263	0.98	0.97	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9655.83	0.008	0.591	0.008
264	0.97	0.96	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9706.55	0.008	0.594	0.008
265	0.96	0.95	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9757.26	0.008	0.597	0.008
266	0.95	0.94	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9807.97	0.009	0.600	0.009

0.65			0 00450			0 65		04 40	0.00	044.00	0.6.00	0050 60		0 600	
267	0.94	0.93	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9858.68	0.009	0.603	0.009
268	0.93	0.92	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9909.39	0.009	0.607	0.009
269	0.92	0.91	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9960.11	0.009	0.610	0.009
270	0.91	0.90	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10010.82	0.009	0.613	0.009
271	0.90	0.89	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10061.53	0.009	0.616	0.009
272	0.89	0.88	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10112.24	0.009	0.619	0.009
273	0.88	0.87	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10162.95	0.009	0.622	0.009
274	0.87	0.86	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10213.67	0.009	0.625	0.009
275	0.86	0.85	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10264.38	0.009	0.628	0.009
276	0.85	0.84	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10315.09	0.009	0.631	0.009
277	0.84	0.83	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10365.80	0.009	0.634	0.009
278	0.83	0.82	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10416.51	0.009	0.638	0.009
279	0.82	0.81	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10467.22	0.009	0.641	0.009
280	0.81	0.80	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10517.94	0.009	0.644	0.009
281	0.80	0.79	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10568.65	0.009	0.647	0.009
282	0.79	0.78	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10619.36	0.009	0.650	0.009
283	0.78	0.77	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10670.07	0.009	0.653	0.009
			0.00450						260.00			10720.78	0.009	0.656	0.009
284	0.77	0.76		82.2	0.00017	0.67	1.21	21.49		214.88	26.00				
285	0.76	0.75	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10771.50	0.009	0.659	0.009
286	0.75	0.74	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10822.21	0.009	0.662	0.009
287	0.74	0.73	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10872.92	0.009	0.665	0.009
288	0.73	0.72	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10923.63	0.009	0.669	0.010
289	0.72	0.71	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10974.34	0.010	0.672	0.010
290	0.71	0.70	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11025.06	0.010	0.675	0.010
291	0.70	0.69	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11075.77	0.010	0.678	0.010
292	0.69	0.68	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11126.48	0.010	0.681	0.010
293	0.68	0.67	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11177.19	0.010	0.684	0.010
294	0.67	0.66	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11227.90	0.010	0.687	0.010
295	0.66	0.65	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11278.62	0.010	0.690	0.010
296	0.65	0.64	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11329.33	0.010	0.693	0.010
297		0.63	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11380.04	0.010	0.696	0.010
	0.64														
298	0.63	0.62	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11430.75	0.010	0.700	0.010
299	0.62	0.61	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11481.46	0.010	0.703	0.010
300	0.61	0.60	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11532.17	0.010	0.706	0.010
301	0.60	0.59	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11582.89	0.010	0.709	0.010
302	0.59	0.58	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11633.60	0.010	0.712	0.010
303	0.58	0.57	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11684.31	0.010	0.715	0.010
304	0.57	0.56	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11735.02	0.010	0.718	0.010
305	0.56	0.55	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11785.73	0.010	0.721	0.010
306	0.55	0.54	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11836.45	0.010	0.724	0.010
307	0.54	0.53	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11887.16	0.010	0.727	0.010
308	0.53	0.52	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11937.87	0.010	0.731	0.010
309	0.52	0.52	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11988.58	0.010	0.734	0.010
310				82.2											
	0.51	0.50	0.00450		0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12039.29	0.010	0.737	0.010
311	0.50	0.49	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12090.01	0.011	0.740	0.011
312	0.49	0.48	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12140.72	0.011	0.743	0.011
313	0.48	0.47	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12191.43	0.011	0.746	0.011
314	0.47	0.46	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12242.14	0.011	0.749	0.011
315	0.46	0.45	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12292.85	0.011	0.752	0.011
316	0.45	0.44	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12343.57	0.011	0.755	0.011
317	0.44	0.43	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12394.28	0.011	0.758	0.011

210	0 40	0 40	0 00450	00 0	0 00017	0 67	1 01	01 40	260 00	014 00	06.00	10444 00	0 011	0.760	0 011
318	0.43	0.42	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12444.99	0.011	0.762	0.011
319	0.42	0.41	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12495.70	0.011	0.765	0.011
320	0.41	0.40	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12546.41	0.011	0.768	0.011
321	0.40	0.39	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12597.12	0.011	0.771	0.011
322	0.39	0.38	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12647.84	0.011	0.774	0.011
323	0.38	0.37	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12698.55	0.011	0.777	0.011
324	0.37	0.36	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12749.26	0.011	0.780	0.011
325	0.36	0.35	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12799.97	0.011	0.783	0.011
326	0.35	0.34	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12850.68	0.011	0.786	0.011
327	0.34	0.33	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12901.40	0.011	0.789	0.011
328	0.33	0.32	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12952.11	0.011	0.793	0.011
329	0.32	0.31	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	13002.82	0.011	0.796	0.011
330	0.31	0.30	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	13053.53	0.011	0.799	0.011
TOT						53.50			20800.37	17190.40					
					0 0000	55.50	1 01	21 40	20000.37	1/1/0.40	26.00				
AVG					0.0002		1.21	21.49			26.00				
CUM						179.16									

ELEM	ENDING	SAT	REAER		- "	ABOD#1		- "	ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST	D.O.	RATE	DECAY	SETT	DECAY	DECAY	SETT	DECAY	SOD	SOD	SOD	DECAY	SETT	DECAY	SRCE	RATE	SRCE	PROD	PROD	DECAY	DECAY	SETT
		mg/L	1/da	1/da	1/da	1/da	1/da	1/da	1/da	*	*	*	1/da	1/da	1/da	*	1/da	*	* *	* *	1/da	1/da	1/da
0.54	4 000		0 00		0 0 0					0 01	0 01	0 01	0 4 5										
251	1.090		0.90	0.09	0.06	0.00	0.00			3.81			0.17		0.00	0.00		0.00		0.00	0.00	0.00	0.00
252	1.080	7.35	0.90	0.09	0.06	0.00	0.00	0.00	0.00			3.81	0.18	0.06	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
253		7.35	0.90	0.09	0.06	0.00	0.00	0.00	0.00		3.81		0.18	0.06	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
254	1.060	7.35	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.81		3.81	0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
255		7.35	0.90	0.09	0.07	0.00	0.00	0.00	0.00		3.82		0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
256	1.040	7.35	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.82		3.82	0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
257	1.030	7.35	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.82	3.82		0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
258	1.020	7.35	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.82		3.82	0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
259		7.35	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.82	3.82	3.82	0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
260	1.000	7.34	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.82		3.82	0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
261	0.990	7.34	0.90	0.09	0.07	0.00	0.00	0.00	0.00	3.83		3.83	0.18	0.07	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
262		7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.83	3.83		0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
263		7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.83	3.83		0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
264		7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00		3.83		0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
265	0.950	7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.83	3.83	3.83	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
266	0.940	7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.83	3.83	3.83	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
267	0.930	7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.84	3.84	3.84	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
268	0.920	7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.84	3.84	3.84	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
269	0.910	7.34	0.90	0.10	0.07	0.00	0.00	0.00	0.00	3.84	3.84	3.84	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
270	0.900	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.84	3.84	3.84	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
271	0.890	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.84	3.84	3.84	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
272	0.880	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.84	3.84	3.84	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
273	0.870	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.85	3.85	3.85	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
274	0.860	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.85	3.85	3.85	0.18	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
275	0.850	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.85	3.85	3.85	0.19	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
276	0.840	7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.85	3.85	3.85	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00

0.55		0 04								0 0 5												
277	0.830 7.33			0.07	0.00	0.00				3.85			0.07	0.00				2.39		0.00	0.00	0.00
278	0.820 7.33		0.10	0.07	0.00	0.00	0.00	0.00	3.85	3.85	3.85	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
279	0.810 7.33	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.86	3.86	3.86	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
280	0.800 7.32	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.86	3.86	3.86	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
281	0.790 7.32			0.07	0.00	0.00		0.00		3.86		0.19	0.07		0.00	0.00		2.39	0.00	0.00	0.00	0.00
282	0.780 7.32		0.10	0.07	0.00		0.00	0.00		3.86		0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
283	0.770 7.32		0.10	0.07	0.00		0.00	0.00		3.86	3.86	0.19	0.07		0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
284	0.760 7.32		0.10	0.07	0.00	0.00				3.86			0.07		0.00			2.39	0.00	0.00	0.00	0.00
285	0.750 7.32	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.87	3.87	3.87	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
286	0.740 7.32	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.87	3.87	3.87	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
287	0.730 7.32	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.87	3.87	3.87	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
288	0.720 7.32	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.87	3.87	3.87	0.19	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
289	0.710 7.32		0.10	0.07	0.00		0.00	0.00		3.87	3.87	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
290	0.700 7.32		0.10	0.07	0.00		0.00	0.00		3.87	3.87	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
291	0.690 7.31		0.10	0.07	0.00	0.00			3.88		3.88		0.07		0.00	0.00		2.40	0.00	0.00	0.00	0.00
292	0.680 7.31		0.10	0.07	0.00	0.00				3.88	3.88	0.19	0.07		0.00		0.00	2.40	0.00	0.00	0.00	0.00
293	0.670 7.31		0.10	0.07	0.00		0.00				3.88	0.19	0.07		0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
294	0.660 7.31	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.88	3.88	3.88	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
295	0.650 7.31	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.88	3.88	3.88	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
296	0.640 7.31	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.88	3.88	3.88	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
297	0.630 7.31	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.89	3.89	3.89	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
298	0.620 7.31		0.10	0.07	0.00		0.00	0.00	3.89		3.89	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
299	0.610 7.31		0.10	0.07	0.00	0.00		0.00	3.89		3.89	0.19	0.07		0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
300	0.600 7.31		0.10	0.07	0.00	0.00		0.00	3.89		3.89	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
301	0.590 7.30		0.10	0.07	0.00		0.00			3.89	3.89	0.19	0.07		0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
302	0.580 7.30		0.10	0.07	0.00	0.00			3.89		3.89	0.19	0.07		0.00		0.00	2.41	0.00	0.00	0.00	0.00
303	0.570 7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
304	0.560 7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
305	0.550 7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
306	0.540 7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
307	0.530 7.30		0.10	0.07	0.00		0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
308	0.520 7.30		0.10	0.07	0.00	0.00		0.00	3.90	3.90	3.90	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
309	0.510 7.30			0.07									0.07		0.00					0.00	0.00	0.00
			0.10		0.00	0.00				3.91		0.20				0.00	0.00	2.41	0.00			
310	0.500 7.30		0.10	0.07	0.00	0.00					3.91	0.20	0.07		0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
311	0.490 7.30		0.10	0.07	0.00	0.00				3.91		0.20	0.07		0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
312	0.480 7.29		0.10	0.07	0.00	0.00	0.00	0.00	3.91	3.91	3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
313	0.470 7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.91	3.91	3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
314	0.460 7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.91	3.91	3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
315	0.450 7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.92	3.92	3.92	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
316	0.440 7.29		0.10	0.07	0.00		0.00			3.92		0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
317	0.430 7.29		0.10	0.07	0.00	0.00		0.00		3.92		0.20	0.07	0.00	0.00	0.00		2.42	0.00	0.00	0.00	0.00
318	0.420 7.29		0.10	0.07	0.00	0.00				3.92		0.20	0.07	0.00	0.00	0.00		2.42	0.00	0.00	0.00	0.00
319	0.410 7.29		0.10	0.07	0.00	0.00			3.92		3.92	0.20	0.07		0.00		0.00	2.42	0.00	0.00	0.00	0.00
320	0.400 7.29		0.10	0.07	0.00	0.00				3.93		0.20	0.07		0.00			2.42	0.00	0.00	0.00	0.00
321	0.390 7.29		0.10	0.07	0.00	0.00	0.00	0.00	3.93		3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
322	0.380 7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93	3.93	3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
323	0.370 7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93	3.93	3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
324	0.360 7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93	3.93	3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
325	0.350 7.28		0.10	0.07	0.00	0.00	0.00	0.00		3.93	3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
326	0.340 7.28		0.10	0.07	0.00	0.00	0.00	0.00	3.94	3.94	3.94	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
327	0.330 7.28			0.07	0.00	0.00				3.94			0.07		0.00			2.42		0.00	0.00	0.00
341	0.330 7.20	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94	J. 54	3.34	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00

329	0.320 7.28 0.310 7.28 0.300 7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94	3.94	3.94	0.20	0.07	0.00	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00	
AVG 20	O DEG C RATE	0.74	0.06	0.05	0.00	0.00	0.00	0.00	1.90			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00	

* g/m²/d ** mg/L/day

ELEM	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 mg/L	EBOD#1	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
251	1.090	31.05	1.76	843.69	2944.83		14.70	0.00		0.00	3.22	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
252	1.080	31.05	1.77	846.25	2952.72	3.50	14.71	0.00	14.71	0.00	3.23	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
253	1.070	31.06	1.77	848.80	2960.58		14.72	0.00	14.72	0.00	3.23	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
254	1.060	31.07	1.77	851.34	2968.42	3.57	14.73	0.00	14.73	0.00	3.24	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
255	1.050	31.07	1.77	853.88	2976.24	3.60	14.74	0.00	14.74	0.00	3.24	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
256	1.040	31.08	1.78	856.42	2984.05	3.63	14.75	0.00	14.75	0.00	3.25	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
257	1.030	31.09	1.78	858.95	2991.84	3.66	14.76	0.00	14.76	0.00	3.26	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
258	1.020	31.10	1.78	861.47	2999.60	3.69	14.77	0.00	14.77	0.00	3.26	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
259	1.010	31.10	1.78	863.98	3007.35	3.72	14.77	0.00	14.77	0.00	3.27	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
260	1.000	31.11	1.79	866.49	3015.08	3.75	14.78	0.00	14.78	0.00	3.28	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
261	0.990	31.12	1.79	869.00	3022.79	3.77	14.78	0.00	14.78	0.00	3.28	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
262	0.980	31.12	1.79	871.49	3030.48	3.80	14.79	0.00	14.79	0.00	3.29	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
263	0.970	31.13	1.80	873.98	3038.16	3.82	14.80	0.00	14.80	0.00	3.30	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
264	0.960		1.80	876.47	3045.81	3.85	14.80	0.00	14.80	0.00	3.30	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
265	0.950	31.14	1.80	878.95	3053.45	3.87	14.80	0.00	14.80	0.00	3.31	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
266	0.940	31.15	1.80	881.42	3061.07	3.89	14.81	0.00	14.81	0.00	3.31	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
267	0.930	31.16	1.81	883.89	3068.67	3.91	14.81	0.00	14.81	0.00	3.32	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
268	0.920	31.16	1.81	886.36	3076.26	3.93	14.81	0.00	14.81	0.00	3.33	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
269	0.910	31.17	1.81	888.81	3083.83	3.95	14.81	0.00	14.81	0.00	3.33	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
270	0.900	31.18	1.82	891.26	3091.38	3.97	14.81	0.00	14.81	0.00	3.34	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
271	0.890	31.18	1.82	893.71	3098.91	3.99	14.81	0.00	14.81	0.00	3.35	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
272	0.880	31.19	1.82	896.15	3106.43	4.01	14.81	0.00	14.81	0.00	3.35	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
273	0.870	31.20	1.82	898.59	3113.93	4.03	14.81	0.00	14.81	0.00	3.36	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
274	0.860	31.20	1.83	901.02	3121.41	4.05	14.81	0.00	14.81	0.00	3.37	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
275	0.850		1.83	903.44	3128.88	4.06	14.81	0.00	14.81	0.00	3.38	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
276	0.840	31.22	1.83	905.86	3136.33	4.08	14.81	0.00	14.81	0.00	3.38	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
277	0.830	31.23	1.83	908.27	3143.76	4.10	14.81	0.00	14.81	0.00	3.39	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
278	0.820	31.23	1.84	910.68	3151.18	4.11	14.80	0.00	14.80	0.00	3.40	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
279	0.810	31.24	1.84	913.09	3158.58	4.13	14.80	0.00	14.80	0.00	3.40	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
280	0.800	31.25	1.84	915.48	3165.97	4.15	14.80	0.00	14.80	0.00	3.41	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
281	0.790	31.25	1.85	917.88	3173.34	4.16	14.79	0.00	14.79	0.00	3.42	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
282	0.780	31.26	1.85	920.26	3180.69	4.18	14.79	0.00	14.79	0.00	3.43	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
283	0.770	31.27	1.85	922.65	3188.03	4.20	14.78	0.00	14.78	0.00	3.43	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
284	0.760	31.27	1.85	925.02	3195.35	4.21	14.78	0.00	14.78	0.00	3.44	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
285	0.750	31.28	1.86	927.40	3202.66	4.23	14.77	0.00	14.77	0.00		0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
286	0.740	31.29	1.86	929.76	3209.95	4.25	14.77	0.00	14.77	0.00	3.46	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
287	0.730	31.29	1.86	932.13	3217.22	4.26	14.76	0.00	14.76	0.00	3.47	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

288	0.720	31.30 1.	. 86	934.48	3224.48	4.28	14.75	0.00	14.75	0.00	3.47	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
289	0.710	31.31 1.	. 87	936.84	3231.73	4.30	14.74	0.00	14.74	0.00	3.48	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
290	0.700	31.32 1.	. 87	939.19	3238.96	4.31	14.73	0.00	14.73	0.00	3.49	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
291	0.690	31.32 1.		941.53	3246.18	4.33	14.73	0.00	14.73	0.00	3.50	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
292	0.680	31.33 1.	. 88	943.87	3253.38	4.35	14.72	0.00	14.72	0.00	3.51	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
293	0.670	31.34 1.	. 88	946.20	3260.56	4.37	14.71	0.00	14.71	0.00	3.52	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
294	0.660	31.34 1.	. 88	948.53	3267.74	4.39	14.70	0.00	14.70	0.00	3.53	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
295	0.650	31.35 1.	. 88	950.85	3274.89	4.41	14.69	0.00	14.69	0.00	3.54	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
296	0.640	31.36 1.	. 89	953.17	3282.04	4.42	14.68	0.00	14.68	0.00	3.55	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
297	0.630	31.36 1.	. 89	955.49	3289.16	4.44	14.66	0.00	14.66	0.00	3.56	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
298	0.620	31.37 1.	. 89	957.80	3296.28	4.46	14.65	0.00	14.65	0.00	3.57	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
299	0.610	31.38 1.	. 89	960.10	3303.38	4.48	14.64	0.00	14.64	0.00	3.58	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
300	0.600	31.38 1.	. 90	962.40	3310.46	4.51	14.63	0.00	14.63	0.00	3.59	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
301	0.590	31.39 1.	. 90	964.70	3317.54	4.53	14.61	0.00	14.61	0.00	3.60	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
302	0.580	31.40 1.	. 90	966.99	3324.59	4.55	14.60	0.00	14.60	0.00	3.61	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
303	0.570	31.40 1.	. 91	969.28	3331.64	4.57	14.59	0.00	14.59	0.00	3.62	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
304	0.560	31.41 1.	. 91	971.56	3338.67	4.60	14.57	0.00	14.57	0.00	3.63	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
305	0.550	31.42 1.	. 91	973.84	3345.69	4.62	14.56	0.00	14.56	0.00	3.64	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
306	0.540	31.43 1.	. 91	976.12	3352.69	4.64	14.54	0.00	14.54	0.00	3.65	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
307	0.530	31.43 1.	. 92	978.39	3359.68	4.67	14.53	0.00	14.53	0.00	3.67	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
308	0.520	31.44 1.	. 92	980.65	3366.66	4.70	14.51	0.00	14.51	0.00	3.68	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
309	0.510	31.45 1.	. 92	982.91	3373.62	4.72	14.49	0.00	14.49	0.00	3.69	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
310	0.500	31.45 1.	. 93	985.17	3380.57	4.75	14.48	0.00	14.48	0.00	3.70	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
311	0.490	31.46 1.	. 93	987.42	3387.51	4.78	14.46	0.00	14.46	0.00	3.72	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
312	0.480	31.47 1.	. 93	989.67	3394.43	4.81	14.44	0.00	14.44	0.00	3.73	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
313	0.470	31.47 1.		991.91	3401.34		14.42	0.00	14.42	0.00	3.74	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
314	0.460	31.48 1.	. 94	994.15	3408.24	4.88	14.40	0.00	14.40	0.00	3.76	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
315	0.450	31.49 1.		996.39	3415.12		14.38	0.00	14.38	0.00	3.77	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
316	0.440	31.49 1.	94	998.62	3422.00	4.94	14.36	0.00	14.36	0.00	3.78	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
317	0.430	31.50 1.	94	1000.85	3428.86	4.98	14.34	0.00	14.34	0.00	3.80	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
318	0.420	31.51 1.	95	1003.07	3435.70	5.02	14.32	0.00	14.32	0.00	3.81	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
319	0.410	31.51 1.		1005.29	3442.54	5.05	14.30	0.00	14.30	0.00	3.83	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
320	0.400	31.52 1.		1007.51	3449.36	5.09	14.28	0.00	14.28	0.00	3.84	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
321	0.390		96	1009.72	3456.17	5.13	14.26	0.00	14.26	0.00	3.86	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
322	0.380	31.53 1.	96	1011.93	3462.97	5.18	14.24	0.00	14.24	0.00	3.87	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
323	0.370	31.54 1.		1014.13	3469.76	5.22	14.21	0.00	14.21	0.00	3.89	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
324	0.360	31.55 1.		1016.33	3476.53		14.19	0.00	14.19	0.00	3.91	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
325	0.350	31.56 1.		1018.53	3483.30		14.17	0.00	14.17	0.00	3.92	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
326	0.340	31.56 1.		1020.72	3490.05	5.36	14.14	0.00	14.14	0.00	3.94	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
327	0.330	31.57 1.		1022.91	3496.79	5.41	14.12	0.00	14.12	0.00	3.96	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
328	0.320	31.58 1.		1025.09	3503.51	5.47	14.09	0.00	14.09	0.00	3.98	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
329	0.310		. 98	1023.03	3510.23	5.52	14.07	0.00	14.07	0.00	4.00	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
330	0.310	31.59 1.		1027.27	3516.93	5.58	14.04	0.00	14.04	0.00	4.01	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
550	0.500	JI.JJ I.		1027.17	5515.55	0.00	T 1.04	0.00	11.01	0.00	1 · O 1	0.00	0.00	0.00	0.00	20.00	0.00	٠.	0.00

FINAL REPORT HEADWATER
REACH NO. 6 RKM 0.3 to 0.0

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

ELEM ENDING SAT

ELEM NO.	TYPE	FLOW	TEMP deg C	SALN ppt	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 EB mg/L	OD#1 E mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 1	NO3+2 mg/L	PHOS mg/L	CHL A µg/L	COLI #/100mL	NCM
331	UPR RCH	0.00450	31.59	1.98	1029.45	3516.93	5.58	14.04	0.00 1	4.04	0.00	4.01	0.00	0.00	0.00	28.50	0.00	0.00
****	****	*****	*****	*****	*****	** HYDRAU	LIC PARA	METER V	ALUES ***	*****	*****	*****	****	*****	*****	****	**	
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLUME	SU	JRFACE AREA	X-SECT AREA	TIDA PRIS		'IDAL VELO	DISPRSN	MEAN VELO	
NO.	km	km	m³/s	EFF	m/s	days	m	m	m³		MREA m ²	MREA m²		w₃ om	m/s	m²/s	m/s	
						_												
331	0.30	0.29	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13100.2		.013	0.876	0.013	
332	0.29	0.28	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13147.0		.013	0.879	0.013	
333	0.28	0.27	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13193.8		.013	0.882	0.013	
334	0.27	0.26	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13240.5		.013	0.885	0.013	
335	0.26	0.25	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13287.3		.013	0.889	0.013	
336	0.25	0.24	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13334.0		.013	0.892	0.013	
337	0.24	0.23	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13380.8		.013	0.895	0.013	
338	0.23	0.22	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13427.5		.013	0.898	0.013	
339 340	0.22 0.21	0.21 0.20	0.00450		0.00020 0.00020	0.59 0.59	1.16 1.16	19.81 19.81	229.03 229.03		198.12 198.12		13474.3		.013	0.901	0.013 0.013	
340	0.21	0.20	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13521.0		.013	0.904	0.013	
341	0.20	0.19	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13614.		.013	0.907	0.013	
342	0.19	0.18	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13661.3		.013	0.910	0.013	
343	0.10	0.17	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13708.		.013	0.914	0.013	
345	0.17	0.15	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13754.8		.014	0.917	0.014	
346	0.15	0.14	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13801.6		.014	0.923	0.014	
347	0.14	0.13	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13848.3		.014	0.926	0.014	
348	0.13	0.12	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13895.1		.014	0.929	0.014	
349	0.12	0.11	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13941.8		.014	0.932	0.014	
350	0.11	0.10	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		13988.		.014	0.935	0.014	
351	0.10	0.09	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		14035.4		.014	0.939	0.014	
352	0.09	0.08	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		14082.1		.014	0.942	0.014	
353	0.08	0.07	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		14128.9		.014	0.945	0.014	
354	0.07	0.06	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		14175.6		.014	0.948	0.014	
355	0.06	0.05	0.00450		0.00020	0.59	1.16	19.81	229.03		198.12		14222.4		.014	0.951	0.014	
356	0.05	0.04	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03		198.12		14269.		.014	0.954	0.014	
357	0.04	0.03	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	1	198.12	22.90	14315.9	94 0	.014	0.957	0.014	
358	0.03	0.02	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	1	198.12	22.90	14362.	70 0	.014	0.960	0.014	
359	0.02	0.01	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	1	198.12	22.90	14409.4	45 0	.014	0.964	0.014	
360	0.01	0.00	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	1	198.12	22.90	14456.2	21 0	.014	0.967	0.014	
TOT					0.0000	17.67	1 16	10 01	6870.80	59	943.60	22.22						
AVG CUM					0.0002	196.83	1.16	19.81				22.90						
****	*****	*****	*****	*****	***** BI(OLOGICAL A	AND PHYS	ICAL CO	EFFICIENT	'S ****	*****	*****	*****	****	****	*****	* *	

REAER BOD#1 BOD#1 ABOD#1 BOD#2 BOD#2 ABOD#2 BKGD FULL CORR ORGN ORGN

NH3 NH3 DENIT PO4 ALG MAC COLI NCM NCM

NO.	DIST	D.O. mg/L	RATE 1/da	DECAY 1/da	SETT 1/da	DECAY 1/da	DECAY 1/da	SETT 1/da	DECAY 1/da	SOD *	SOD *	SOD *	DECAY 1/da	SETT 1/da	DECAY 1/da	SRCE *	RATE 1/da	SRCE *	PROD **	PROD **	DECAY 1/da	DECAY 1/da	SETT 1/da
		_																					
331	0.290		0.95	0.11		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00		2.43	0.00	0.00	0.00	0.00
332	0.280		0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
333	0.270		0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
334			0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
335	0.250		0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
336		7.29	0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
337		7.29	0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
338		7.29	0.95	0.11	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
339		7.29	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
340		7.29	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
341	0.190		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00		0.00	2.41	0.00	0.00	0.00	0.00
342	0.180		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
343	0.170	7.30	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
344	0.160	7.30	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
345	0.150	7.30	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
346	0.140	7.30	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
347	0.130	7.30	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
348	0.120	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
349	0.110	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
350	0.100	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
351	0.090	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
352	0.080	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
353	0.070	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
354	0.060	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
355	0.050	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
356	0.040	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
357	0.030	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
358	0.020	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
359	0.010	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
360	0.000	7.33	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
AVG 20	DEG C	RATE	0.77	0.06	0.05	0.00	0.00	0.00	0.00	0.00			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM	ENDING				Conduct											CHL A		COLI	NCM
NO.	DIST	DEG C	PPT	mg/L	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	g/m³	#/100mL	
331	0.290	31.58	1.98	1031.67	3523.75	5.64	14.01	0.00	14.01	0.00	4.03	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
332	0.280	31.56	1.98	1033.92	3530.70	5.69	13.98	0.00	13.98	0.00	4.05	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
333	0.270	31.55	1.99	1036.17	3537.63	5.75	13.94	0.00	13.94	0.00	4.06	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
334	0.260	31.54	1.99	1038.42	3544.56	5.80	13.90	0.00	13.90	0.00	4.07	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
335	0.250	31.52	1.99	1040.67	3551.48	5.86	13.85	0.00	13.85	0.00	4.08	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
336					3558.38												0.00	0.	0.00
337	0.230	31.49	1.99	1045.15	3565.28	5.95	13.73	0.00	13.73	0.00	4.07	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

338	0.220	31.48	1.99	1047.39	3572.17	6.00	13.66	0.00	13.66	0.00	4.07	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
339	0.210	31.47	2.00	1049.63	3579.06	6.04	13.59	0.00	13.59	0.00	4.05	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
340	0.200	31.45	2.00	1051.86	3585.93	6.09	13.51	0.00	13.51	0.00	4.04	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
341	0.190	31.44	2.00	1054.09	3592.79	6.13	13.42	0.00	13.42	0.00	4.02	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
342	0.180	31.43	2.00	1056.31	3599.65	6.17	13.33	0.00	13.33	0.00	4.00	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
343	0.170	31.41	2.00	1058.54	3606.50	6.20	13.23	0.00	13.23	0.00	3.97	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
344	0.160	31.40	2.00	1060.76	3613.33	6.24	13.13	0.00	13.13	0.00	3.94	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
345	0.150	31.39	2.01	1062.97	3620.16	6.27	13.02	0.00	13.02	0.00	3.91	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
346	0.140	31.37	2.01	1065.19	3626.98	6.31	12.91	0.00	12.91	0.00	3.87	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
347	0.130	31.36	2.01	1067.40	3633.80	6.34	12.79	0.00	12.79	0.00	3.83	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
348	0.120	31.34	2.01	1069.61	3640.60	6.37	12.67	0.00	12.67	0.00	3.79	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
349	0.110	31.33	2.01	1071.82	3647.40	6.40	12.54	0.00	12.54	0.00	3.74	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
350	0.100	31.32	2.01	1074.02	3654.18	6.42	12.40	0.00	12.40	0.00	3.68	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
351	0.090	31.30	2.01	1076.22	3660.96	6.45	12.26	0.00	12.26	0.00	3.63	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
352	0.080	31.29	2.02	1078.42	3667.73	6.47	12.11	0.00	12.11	0.00	3.57	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
353	0.070	31.28	2.02	1080.62	3674.49	6.49	11.96	0.00	11.96	0.00	3.51	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
354	0.060	31.26	2.02	1082.81	3681.24	6.51	11.80	0.00	11.80	0.00	3.44	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
355	0.050	31.25	2.02	1085.00	3687.99	6.53	11.63	0.00	11.63	0.00	3.37	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
356	0.040	31.23	2.02	1087.19	3694.72	6.55	11.46	0.00	11.46	0.00	3.29	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
357	0.030	31.22	2.03	1089.37	3701.45	6.57	11.29	0.00	11.29	0.00	3.21	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
358	0.020	31.21	2.03	1091.55	3708.17	6.58	11.11	0.00	11.11	0.00	3.13	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
359	0.010	31.19	2.03	1093.73	3714.88	6.59	10.92	0.00	10.92	0.00	3.05	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
360	0.000	31.18	2.03	1095.91	3721.59	6.61	10.73	0.00	10.73	0.00	2.96	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
0										0 0								٠.	

STREAM SUMMARY HEADWATER

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

TRAVEL TIME 196.83 DAYS MAXIMUM EFFLUENT = 82.22 PERCENT FLOW = 0.00080 TO 0.00450 m³/s = 0.0097 TO 0.9667 DISPERSION m²/s VELOCITY = 0.00014 TO 0.00083 m/s DEPTH = 1.02 1.21 TO WIDTH = 4.88 TO 28.35 m 0.11 BOD DECAY 0.03 TO per day NH3 DECAY = 0.00 TO 0.00 per day 0.00 6.56 SOD TO q/m²/d NH3 SOURCE 0.00 TO 0.00 g/m²/d REAERATION = 0.71 TO 0.95 per day BOD SETTLING = 0.06 TO 0.07 per day NBOD DECAY 0.00 TO 0.28 per day NBOD SETTLING 0.06 TO 0.07 per day TEMPERATURE = 28.14 TO 31.59 deg C DISSOLVED OXYGEN = 0.83 TO 6.61 mg/L

....EXECUTION COMPLETED

Appendix B2 – Calibration Justification

	Ba	you Cane Ca	libration Justification
DAT	TA TYPE	3 - PROGRAM (CONSTANTS
CONSTANT NAME	VALUE	UNITS	DATA SOURCE
KL MINIMUM	0.7	m/day	The minimum KL of 2.3 ft/day converted to 0.70 m/day.
INHIBITION CONTROL VALUE	3		The water column dissolved oxygen demand is assumed to come primarily from facultative bacteria under anoxic conditions and SOD is not influenced by modeled dissolved oxygen levels in the upper water column.
K2 MAXIMUM	10	1/day at 20 deg C	Model default.
HYDRAULIC CALCULATION METHOD	2		The low slopes in this waterbody cause a substantial amount of water to be present during critical flow conditions. This method allows the model to predict a more accurate depth and width during low flow conditions.
SETTLING RATE UNITS	2		Input settling in 1/day.
DISPERSION EQUATION	3		Equation used to account for all modes of transport.
ALGAE OXYGEN PROD	0.05	mg O/ug chl-a/day	Used to account for the net oxygen production per unit of chlorophyll-a
TIDE HEIGHT	0.236	m	Calculated from level monitor data.
TIDAL PERIOD	24.58	hours	Calculated from level monitor data.
PERIOD OF TIDAL RISE	11.625	hours	Calculated from level monitor data.
EFFECTIVE BOD DUE TO ALGAE	0		Used to model effects of algae

		Bayou Cane	Calibrati	on Justifica	tion	
Reach	ID	DATA TYPE 8 - RE Name		Downstream River		Data Source
1	ВС	RKM 3.6 to RKM 2.8	3.6	2.8	10	ARC MAP Calc.
2	ВС	RKM 2.8 to RKM 1.9	2.8	1.9	10	Same as Reach 1
3	ВС	RKM 1.9 to 1.5	1.9	1.5	10	Same as Reach 1
4	ВС	RKM 1.5 to 1.1	1.5	1.1	10	Same as Reach 1
5	ВС	RKM 1.1 to 0.3	1.1	0.3	10	Same as Reach 1
6	ВС	RKM 0.3 to 0.0	0.3	0.0	10	Same as Reach 1

	Bayou Cane Calibration Justification								
			Data Ty	pe 9 - Advective Hy	draulic Coefficients				
Reach	Name	Width Coeff. "a"	Width Exp. "b"	Width Const. "c"	Data Source	Depth Coeff. "d"	Depth Exp. "e"	Depth Const. "f"	Data Source
1	RKM 3.6 to RKM 2.8	0	0	4.877	3665	0	0	1.113	3665
2	RKM 2.8 to RKM 1.9	0	0	15.850	BC04 (3752)	0	0	1.085	BC04 (3752)
3	RKM 1.9 to 1.5	0	0	27.737	BC05 (3753)	0	0	1.189	BC05 (3753)
4	RKM 1.5 to 1.1	0	0	28.346	BC06 (3754)	0	0	1.021	BC06 (3754)
5	RKM 1.1 to 0.3	0	0	21.488	BC07 (3755)	0	0	1.210	BC07 (3755)
6	RKM 0.3 to 0.0	0	0	19.812	3666	0	0	1.156	3666

	Bayou Cane Calibration Justification								
		DATA TYPE 1	0 - DISPI	ERSIVE H	YDRAUL	IC COE	FFICIENTS		
Reach	Tidal Range	Data Source	a	b	c	d	Data Source		
1	0.95	Level monitor	60.00	0.833	0.0	1.0	"a" obtained from calibration. "b, c, and d" Tracor eqn.		
2	0.95	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1		
3	0.93	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1		
4	0.93	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1		
5	1.00	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1		
6	1.00	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1		

	Bayou Cane Calibration Justification										
	DATA TYPE 11-INITIAL CONDITIONS										
Reach	Name	Temp, deg C	Sal, ppt	Data Source	DO, mg/l	Data Source	Chlorophyll <u>a</u>	Data Source			
1	RKM 3.6 to RKM 2.8	28.13	0.10	CONT MONT AVG (3665)	0.47	CONT MONT AVG (3665)	8.5	3665			
2	RKM 2.8 to RKM 1.9	28.57	0.23	CONT MONT AVG (3752-BC04)	0.86	CONT MONT AVG (3752-BC04)	8.5	3665			
3	RKM 1.9 to 1.5	29.98	1.15	CONT MONT AVG (3753-BC05)	1.79	CONT MONT AVG (3753-BC05)	33.6	BC05 (3753)			
4	RKM 1.5 to 1.1	30.51	1.45	CONT MONT AVG (BC05, BC07)	2.66	CONT MONT AVG (BC05, BC07)	33.6	BC05 (3753)			
5	RKM 1.1 to 0.3	31.04	1.76	CONT MONT AVG (3755-BC07)	3.52	CONT MONT AVG (3755-BC07)	28.5	3666			
6	RKM 0.3 to 0.0	31.59	1.98	CONT MONT AVG (3666)	6.12	CONT MONT AVG (3666)	28.5	3666			

Bayou Cane Calibration Justification DATA TYPE 12 - REAERATION, SEDIMENT OXYGEN DEMAND AND BOD COEFFICIENTS BKGRND SOD, K2 Aerobic BOD1 Dec **BOD1 SETT RATE REACH** NAME **Data Source** gmO2/m2/day at 20 **Data Source Data Source OPT** Rate (1/day) (1/day) deg C Lab, Calibration Texas Equation 3.50 0.0440 0.05 1 RKM 3.6 to RKM 2.8 11 Calibration 2 Texas Equation RKM 2.8 to RKM 1.9 Same as Reach 1 0.0680 0.05 Same as Reach 1 11 3.50 3 RKM 1.9 to 1.5 Texas Equation 3.00 Same as Reach 1 0.0570 0.05 Same as Reach 1 11 Same as Reach 1 4 RKM 1.5 to 1.1 Texas Equation 2.40 Same as Reach 1 0.0570 0.05 11 Mattingly equation-5 RKM 1.1 to 0.3 1 1.90 Same as Reach 1 0.0570 0.05 Same as Reach 1 wind influence Mattingly equation-6 RKM 0.3 to 0.0 1 0.00 Same as Reach 1 0.0620 0.05 Same as Reach 1 wind influence

	Bayou Cane Calibration Justification DATA TYPE 13 - NITROGEN AND PHOSPHORUS COEFFICIENTS									
Reach	Name	NBOD decay rate, 1/day	Data Source	NBOD settling rate, 1/day	Data Source					
1	RKM 3.6 to RKM 2.8	0.20	Calibration	0.05	Calibration					
2	RKM 2.8 to RKM 1.9	0.10	Same as Reach 1	0.05	Same as Reach 1					
3	RKM 1.9 to 1.5	0.10	Same as Reach 1	0.05	Same as Reach 1					
4	RKM 1.5 to 1.1	0.10	Same as Reach 1	0.05	Same as Reach 1					
5	RKM 1.1 to 0.3	0.10	Same as Reach 1	0.05	Same as Reach 1					
6	RKM 0.3 to 0.0	0.10	Same as Reach 1	0.05	Same as Reach 1					

	Bayou Cane Calibration Justification								
	DATA TY	PE 19 - NONPO	INT SOURCE	E DATA					
Reach	Reach Name	Length of Reach, km	UCBOD1, kg/day	UCBOD2, kg/day	NBOD, kg/day	Data Source			
1	RKM 3.6 to RKM 2.8	0.80	5.00		1.80	Calibration			
2	RKM 2.8 to RKM 1.9	0.90	24.00		4.00	Same as Reach 1			
3	RKM 1.9 to 1.5	0.40	26.00		7.30	Same as Reach 1			
4	RKM 1.5 to 1.1	0.40	28.00		8.00	Same as Reach 1			
5	RKM 1.1 to 0.3	0.80	55.00		16.50	Same as Reach 1			
6	RKM 0.3 to 0.0	0.30	47.00		28.00	Same as Reach 1			

Bayou Cane Calibration Justification DATA TYPE 20 - HEADWATER DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES								
Headwater Name	Element No.	Headwater Flow, cms	Data Source	Temp, deg C	Salinity	Conductivity	Chlorides	Data Source
Headwater 1	1	0.0008	Site 3665		0.1	215.38	21.50	SALINITY - CONT MONT AVG (3665) CHLORIDE - LAB DATA (3665) CONDUCTIVITY - CONT MONT AVG (3665)

	Bayou Cane Calibration Justification									
	DATA TYPE 21 - HEADWATER DATA FOR DO, BOD, AND NITROGEN									
Headwater Name	Dissolved Oxygen, mg/L	UCBOD1, mg/l	UCBOD2, mg/l	NBOD, mg/l	Data Source					
Headwater 1	0.47	13.528		2.315	DO - CONT MONT AVG (3665) BOD1 AND NBOD - (3665)					

	Bayou Cane Calibration Justification									
		DATA TYPE 24 - WASTELOAD DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES								
Wasteload / Withdrawal Name	EL#	Flow, cms	Data Source	Temperature, deg C	Salinity	Conductivity	Chlorides	Data Source		
Southeast Louisiana State Hospital, AI 9371	18	0.0037	Facility personnel during survey		0.22	458.0	22.5	Lab and insitu		

Bayou Cane Calibration Justification									
DATA TYPE 25 - WASTELOAD DATA FOR DO, BOD, AND NITROGEN									
Wasteload / Withdrawal Name	EL # DO, mg/l								
Southeast Louisiana State Hospital, AI 9371	18	8.09	Measured during survey	3.7250		0.9840	Lab data		

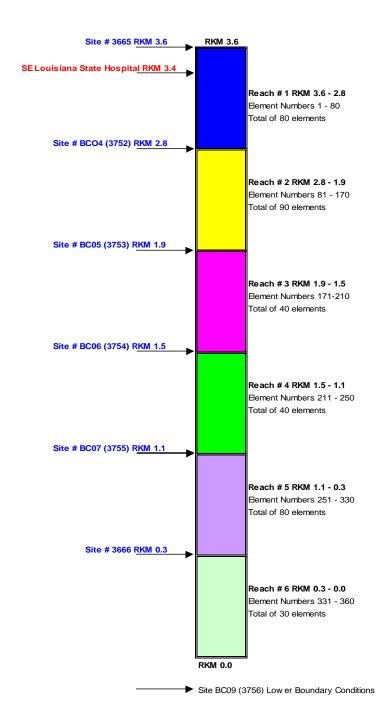
DATA	Bayou Cane Calibration Justification									
DATA TYPE 27 - LOWER BOUNDARY CONDITIONS										
Parameter	Value	Units	Data Source							
TEMPERATURE	31.1800	$^{\mathrm{o}}\mathrm{C}$	BC09 (3756) Cont Mont							
SALINITY	2.0300	ppt	BC09 (3756) Cont Mont							
CHLORIDES	1097.0000	mg/L	BC09 (3756) Lab							
CONDUCTIVITY	3724.9400	umhos/cm	BC09 (3756) Cont Mont							
DISSOLVED OXYGEN	6.6100	mg/L	BC09 (3756) Cont Mont							
CBOD1	10.6260	mg/L	BC09 (3756) Lab							
CHLOROPHYLL A	28.5000	ug/L	3666 Lab							
NBOD	2.9100	mg/L	BC09 (3756) Lab							

Appendix B3 - Wind-aided Reaeration Calculations

		CALIBRAT	TON WIND-AIDE	REAERATIO	ON CALCULA	TIONS		
REACH	AVG DEPTH (D)	AVG VELOCITY (V)	K2 ₂₀ =TEXAS EQUATION	K2 ₂₀ =0.7/D	MAX K2 ₂₀	V _W (10 m)	V _{WS} (0.3 m)	WIND-AIDED K2 ₂₀
	(m)	(m/s)	(1/d)	(1/d)	(1/d)	m/s	(m/s)	(1/d)
1	,		` '	` ′	,		` ′	` /
2								
3								
4								
5	1.21	0.0096	0.456	0.579	0.579	1.80	1.09	0.738
6	1.156	0.0136	0.522	0.606	0.606	1.80	1.09	0.773
Wind Data								
Station	Date	knots	mi/hr	m/s				
Slidell	6/16/2008	2.5	2.877	1.286				
	6/17/2008	1.7	1.956	0.875				
	6/18/2008	2.1	2.417	1.080				
	6/19/2008	2.7	3.107	1.389				
	6/20/2008	2.8	3.222	1.440				
			avg=	1.214				
Turtle Cove	6/16/2008		4.8	2.146				
Turtio Coto	6/17/2008		5.3	2.369				
	6/18/2008		4.8	2.146				
	6/19/2008		6.8	3.040				
	6/20/2008		5	2.235				
			avg=	2.387				
Average of t	he two stations:	1.801	m/s					

Sources:

Slidell: http://www.losc.lsu.edu/products/climate/asd/jun_2008.html


Turtle Cove:

 $\frac{http://www2.lsuagcenter.com/weather/midnight2.asp?StationID=21\&SMonth=06\&SYear=2008\&SDay=16\&EDay=20\&EMonth=06\&EYear=2008$

 ${\bf Appendix} \; {\bf C} \; - \qquad \quad {\bf Calibration} \; {\bf Model} \; {\bf Development}$

Appendix C1 – Vector Diagram

Bayou Cane Model Layout Subsegments 040903 and 040904 RKM 3.6 to RKM 0.0

Survey Site Descriptions

(3665) Most upstream site. Just above Southeast Louisiana State Hospital discharge point.

(3752) Bayou Cane just above Highway 190 4.1 miles southeast of Mandeville, 3.9 miles northwest of Lacombe

(3753) Bayou Cane below Highway 190 3.8 miles southeast of Mandeville, 4.3 miles northwest of Lacombe, 1.0 miles southwest of Big Branch

(3754) Dye Dump

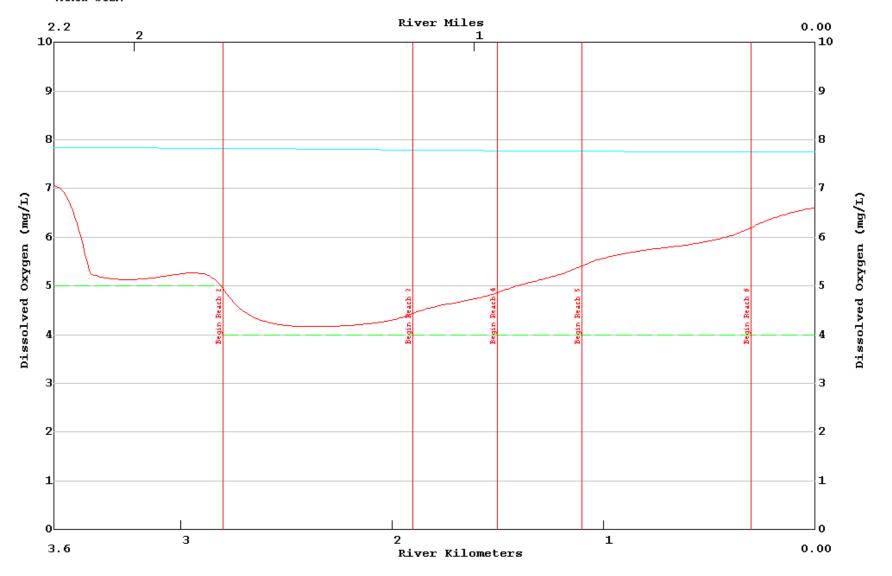
(3755) Bayou Cane north of Lake Pontchartrain 4.3 miles northwest of Lacombe, 1.3 miles southwest of Big Branch, 3.7 miles southeast of Mandeville

(3666) Most downstream site on Bayou Cane. Just above Lake Pontchartrain.

(3756) Lake Pontchartrain about 150 yards south of the mouth of Bayou Cane 3.9 miles southeast of Mandeville, 4.6 miles west of Lacombe, 1.9 miles southwest of Big Branch

Appendix C2 –

Calibration Loading


Calibration Model Non-Po	int Load	Equivalent (Calculations	:							
Modeled stream or	water body:				BAYO	OU CANE (SUE	SEGMENT 04	0903)			
Shaded cells are input values for calcula	ations.	If modeling the n	itrogen series, be	sure that column	"I" is clear of all v	/alues.					
REACH NUMBER & DESCRIPTION	Calibration Model Reach Length	Calibration Model Average Reach Width	Calibration Model UCBOD1 Nonpoint loading	Total UCBOD	UNBOD	Total UNBOD	UCBODI	Total UCBOD	TOTAL UNBOD	SOD	Calibration Model TOTAL Benthic Load
	km	meters	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	g O ₂ / [(m ²)(day)]				
Reach 1 - Site 3665 to 3752- BC04	0.80	4.877	5.00	5.00	1.80	1.80	1.282	1.282	0.461	3.50	5.24

Calibration Model Non-Po	int Load	Equivalent (Calculations	:								
Modeled stream or	r water body:		Į.			BAYOU CAN	E (SUBSEGM	ENT 040904)	I.			
Shaded cells are input values for calcul	ations.	If modeling the n	itrogen series, be	sure that column	"I" is clear of all v	values.						
REACH NUMBER & DESCRIPTION	Calibration Model Reach Length	Calibration Model Average Reach Width	CCBODI	UCBOD2	Total UCBOD	Calibration Model UNBOD Nonpoint loading	Total UNBOD	CCBODI	Total UCBOD	Total UNBOD	SOD	Calibration Model TOTAL Benthic Load
	km	meters	kg O ₂ /day	kg O ₂ /day	$gO_2/[(m^2)(day)]$	$gO_2/[(m^2)(day)]$	$gO_2/[(m^2)(day)]$	g O ₂ / [(m ²)(day)]	$gO_2/[(m^2)(day)]$			
Reach 2 - Site 3752-BC04 to 3753-BC05	0.90	15.850	24.00	0.00	24.00	4.00	4.00	1.682	1.682	0.280	3.50	5.46
Reach 3 - Site 3753-BC05 to 3754-BC06	0.40	27.737	26.00	0.00	26.00	7.30	7.30	2.343	2.343	0.658	3.00	6.00
Reach 4 - Site 3754-BC06 to 3755-BC07	0.40	28.346	28.00	0.00	28.00	8.00	8.00	2.469	2.469	0.706	2.40	5.58
Reach 5 - Site 3755-BC07 to 3666	0.80	21.488	55.00	0.00	55.00	16.50	16.50	3.199	3.199	0.960	1.90	6.06
Reach 6 - Site 3666 to Lake Pontchartrain	0.30	19.812	47.00	0.00	47.00	28.00	28.00	7.908	7.908	4.711	0.00	12.62

Appendix D – Projection Model Input, Output, and Input Sources

Appendix D1 –Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6 -- DO Graph, Input, and Output for Subsegments 040903 & 040904

LA-QUAL Version 8.11 Run at 13:28 on 04/20/2010 File \\Alpha nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\programmin= 4.16 max= 7.06 :MAIN STEM

BAYOU CANE, SUMMER, 90% OVERALL REDUCTION IN REACH 1, 60% OVERALL REDUCTION IN REACHES 2-6, INPUT DATA SET

```
TITLE01
           BAYOU CANE WATERSHED MODEL
           SUMR, 4,5 DO, Overall Reduc, 90% reduc rch 1,60% reduc rch 2-6, hosp5/2
TITLE02
CONTROL YES METRIC UNITS
ENDATA01
MODOPT01 NO TEMPERATURE
MODOPT02 NO SALINITY
MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES
                                                              mq/L
                                                                       Chloride
MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY
                                                              umhos/cm Conduct
MODOPT05 YES DISSOLVED OXYGEN
MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND
MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND
MODOPT08 YES NBOD OXYGEN DEMAND
MODOPT10 NO PHOSPHORUS
MODOPT11 NO CHLOROPHYLL A
MODOPT12 NO MACROPHYTES
MODOPT13 NO COLIFORM
ENDATA02
                                     = 3.
PROGRAM DISPERSION EQUATION
PROGRAM OCEAN EXCHANGE RATIO
                                     = 1.0
                                     = 0.236
PROGRAM TIDE HEIGHT
PROGRAM TIDAL PERIOD
                                     = 24.58
                                   = 11.625
PROGRAM PERIOD OF TIDAL RISE
PROGRAM KL MINIMUM
                                      = 0.7
PROGRAM INHIBITION CONTROL VALUE
                                     = 3.
                                     = 0.0
PROGRAM EFFECTIVE BOD DUE TO ALGAE
                                     = 0.05
PROGRAM ALGAE OXYGEN PROD
PROGRAM K2 MAXIMUM
                                      = 10.0
PROGRAM HYDRAULIC CALCULATION METHOD = 2.
PROGRAM SETTLING RATE UNITS
ENDATA03
!Temperature Correction Constants
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       ******
ENDATA04
ENDATA05
ENDATA06
```

```
ENDATA07
!Reach Identification Data
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
            __ ************************
1
        R# ID
               REACH NAME
                                              RKM
                                                           LENGTH
                                                      RKM
        1 BC RKM 3.6 to 2.8
                                              3.6
                                                      2.8
REACH ID
                                                             0.01
         2 BC RKM 2.8 to 1.9
                                              2.8
                                                      1.9
                                                             0.01
REACH ID
         3 BC RKM 1.9 to 1.5
                                              1.9
                                                      1.5
REACH ID
                                                             0.01
         4 BC RKM 1.5 to 1.1
                                             1.5
                                                      1.1
                                                             0.01
REACH ID
         5 BC RKM 1.1 to 0.3
                                             1.1
                                                      0.3
REACH ID
                                                             0.01
         6 BC RKM 0.3 to 0.0
                                              0.3
                                                      0.0
                                                             0.01
REACH ID
ENDATA08
!Advective Hydraulic Coefficients
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
                                            f
                               d
             а
                   b
                          C
                                     е
             WIDTH WIDTH
                         WIDTH DEPTH
                                    DEPTH
                                          DEPTH
         R#
            COEFF
                   EXP
                         CONST COEFF
                                     EXP
                                          CONST SLOPE MANNING
! Reach 1 - 3665
HYDR-1
        1 0.00
                  0.00
                         4.877 0.00
                                    0.00
                                          1.113
1
! Reach 2 - BC04 (3752)
HYDR-1
         2 0.00 0.00
                        15.85 0.00
                                    0.00
                                          1.085
!
! Reach 3 - BC05 (3753)
HYDR-1
         3 0.00 0.00
                        27.737 0.00
                                    0.00
                                          1.189
! Reach 4 - BC06 (3754)
HYDR-1
         4 0.00 0.00
                        28.346 0.00
                                    0.00
                                          1.021
! Reach 5 - BC07 (3755)
HYDR-1
         5 0.00 0.00
                        21.488 0.00
                                    0.00
                                          1.21
1
! Reach 6 - 3666
HYDR-1
          6 0.00
                        19.812 0.00
                                          1.156
                  0.00
                                    0.00
ENDATA09
!Dispersive Hydraulic Coefficients
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
```

!To take into consideration all modes of transport, equation 3 (E=aD^bO^cVm^d) in Laqual was used. !Using b=5/6, c=0, and d=1 will take into account all modes of transport in the manner of the Tracor and QUAL2E equations.

!The value for coefficient "a" was varied during calibration until the measured dispersion value was obtained.

```
R# RANGE
                               b
                                        С
                                                 d
1
HYDR-2
         1 0.95
                     60.0
                             0.833
                                      0.0
                                               1.0
                             0.833
HYDR-2
          2 0.95
                     60.0
                                      0.0
                                               1.0
         3 0.93
                             0.833
                                      0.0
                                               1.0
HYDR-2
                     60.0
         4 0.93
                  60.0
                             0.833
                                    0.0
                                               1.0
HYDR-2
          5 1.00
                             0.833
                                      0.0
                                               1.0
HYDR-2
                     60.0
       6 1.00
                     60.0
                             0.833
                                      0.0
                                               1.0
HYDR-2
ENDATA10
!Initial Conditions
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
1
               TEMP SALINITY DO
                                    NH3 N NIT NIT PHOS CHL A MACROPHYTES
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3665)
!DO - Criterion for subsegment 040903
!Chlorophyll A - Best professional judgement
INITIAL 1 27.91
                       0.10
                             5.00
                                                          10.0
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3752-BC04)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
        2
               27.91
                       0.23
                            4.00
                                                          10.0
!
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3753-BC05)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
         3
             27.91 1.15 4.00
                                                          10.0
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (BC05, BC07)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
       4 27.91 1.45
                            4.00
                                                          10.0
```

```
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3755-BC07)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
       5
               27.91
                      1.76
                             4.00
                                                          10.0
1
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3666)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
             27.91 1.98 4.00
         6
                                                          10.0
INITIAL
ENDATA11
!Reaeration, Sediment Oxygen Demand and BOD Coefficients
!23456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
              REA
                                         BOD 1 BOD 1
                                                       BOD 1
                                                                  BOD 2
                                                                          BOD 2
         R#
              ΕO
                                     SOD DECAY SETT
                                                       CONV
                                                                  DECAY
                                                                          SETT
!Texas Equation used for reaches 1-4.
!Mattingly equation was used for reaches 5 & 6 to account for wind reaeration.
!Settling rates determined through calibration. Decay rates from lab.
!CB0D1 DECAY (3665)
COEF-1 1 11.0
                                   0.438 0.0440 0.05
!CB0D1 DECAY (3752-BC04)
COEF-1
          2 11.0
                                  1.750 0.0680 0.05
!CB0D1 DECAY (3753-BC05)
COEF-1
          3 11.0
                                  1.500 0.0570 0.05
!CB0D1 DECAY - Avg (3753-BC05, 3755-BC07)
COEF-1
          4 11.0
                                   1.200 0.0570 0.05
!CB0D1 DECAY (3755-BC07)
          5 1.0 0.738
                                 0.950 0.0570 0.05
COEF-1
!CB0D1 DECAY (3666)
         6 1.0 0.773
                               0.000 0.0620 0.05
COEF-1
ENDATA12
!Nitrogen and Phosphorus Coefficients
```

```
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       *** _____******
          NBOD
                 NBOD
       R# DECAY
                 SETT
!Settling rates determined through calibration. Began with decay rates from lab but adjusted
!them during calibration.
!NBOD Decay (3665)
COEF-2
     1 0.200
                 0.05
!NBOD Decay (3752-BC04)
COEF-2
      2 0.100
                 0.05
1
!NBOD Decay (3753-BC05)
COEF-2
      3 0.100
                 0.05
!NBOD Decay - Avg (3753-BC05, 3755-BC07)
COEF-2
     4 0.100
                 0.05
!NBOD Decay (3755-BC07)
COEF-2 5 0.100
                 0.05
!NBOD Decay (3666)
COEF-2
        6 0.100
                 0.05
ENDATA13
ENDATA14
!Coliform and Nonconservative Cofficients
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____******
1
ENDATA15
!Incremental Data for Flow, Temperature, Salinity, and Conservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
           OUTFLOW
                 INFLOW TEMP
                              SALINITY CHLORIDE COND
ENDATA16
!Incremental Data for DO, BOD, and Nitrogen
·-----5-----6-----7-----8
```

```
BOD 1
                           NBOD
                                  NH3 N NIT NIT
                                                 BOD 2
ENDATA17
!Incremental Data for Phosphorus, Chlorophyll, Coliform and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** ----*******
        R#
            PHOSPH
                    CHL A COLIFORM NONCONSERVATIVE
ENDATA18
!Nonpoint Source Data
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
          _____************
             BOD 1
                     NBOD
                         COLIFORM NONCONS
                                          DO
        R#
                                                BOD 2
             0.625
                    0.225
NONPOINT
         1
         2
            12.000
                    2.000
NONPOINT
            13,000
                    3.650
NONPOINT
            14.000
                    4.000
NONPOINT
             27.500
                   8.250
NONPOINT
             23.500 14.000
NONPOINT
ENDATA19
!Headwater Data for Flow, Temperature, Salinity, and Conservatives
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
           _____*****************************
       Ε#
            NAME
                                FLOW
                                       TEMP SALIN
                                                 CHLORIDE
                                                          COND
!Flow - Summer LTP default
!Salinity - Cont Mont (3665)
!Chloride - Lab Data (3665)
!Conductivity - Cont Mont (3665)
HDWTR-1
        1 HEADWATER
                                0.0028
                                            0.10
                                                   21.5
                                                         215.38
ENDATA20
!Headwater Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       **** _____***********
                     BOD 1
                           NBOD
                                  NH3-N
                                         NIT NIT BOD 2
!DO - 90% saturation at water quality monitoring site 0302 at 90 percentile
!seasonal temperature
!BOD1 and NBOD - 90% overall reduction
```

```
7.06
                   1.69
                           0.29
HDWTR-2
         1
ENDATA21
!Headwater Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        E# PHOSPHOR CHL A COLIFORM NONCONSERVATIVE
ENDATA22
ENDATA23
!Wasteload Data for Flow, Temperature, Salinity, and Conservatives
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
        E#
              NAME
                                     TEMP
                             FLOW
                                           SALINITY CHLORIDE COND
!Southeast Louisiana State Hospital AI# 9371
!Flow - Design capacity/expected flow (0.28 MGD) from permit plus 20% MOS
!Salinity from insitu during survey. Chloride and conductivity from lab data
!during survey
WSTLD-1
                                              0.22
                                                    22.5
                                                           458
        18 SE LA State Hospital 0.0153
ENDATA24
!Wasteload Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       NH3-N
                DO
                    BOD 1
                               NBOD
!Southeast Louisiana State Hospital AI# 9371. Facility has post-aeration.
!Limits of 5/2. UCBOD=CBOD5*2.3. UNBOD=NH3-N*4.3
WSTLD-2
       18
               5.00 11.500
                               8.600
ENDATA25
!Wasteload Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!234567890123456789012345678901234567890123457890123456789012345678901234567890
       **** ____*********
        E# PHOSPHOR CHL A
                          COLIFORM NONCONSERVATIVE
ENDATA26
!Lower Boundary Conditions
!90th percentile temp for water quality monitoring site 0302
LOWER BC TEMPERATURE
                                   = 27.91
1
!Site 3756-BC09 Cont Mont
```

```
= 2.03
LOWER BC SALINITY
!Site 3756-BC09 Lab
LOWER BC CONSERVATIVE MATERIAL I (CHLORIDES) = 1097
!Site 3756-BC09 Cont Mont
LOWER BC CONSERVATIVE MATERIAL II (COND)
                                       = 3724.94
!Site 3756-BC09 Cont Mont
LOWER BC DISSOLVED OXYGEN
                                       = 6.61
!Site 3756-BC09 Lab
LOWER BC BOD1 BIOCHEMICAL OXYGEN DEMAND
                                       = 10.626
!Best professional judgement
LOWER BC CHLOROPHYLL A
                                       = 10.0
1
!Site 3756-BC09 Lab
LOWER BC NBOD
                                           2.91
ENDATA27
!Dam Data
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        **** ************ ** ****** ** ****** ***
ENDATA28
SENSITIV BASEFLOW 30
                       -30
SENSITIV VELOCITY 30 -30
SENSITIV DEPTH
                 30 -30
SENSITIV DISPERSI
                30
                       -30
SENSITIV REAERATI
                  30
                       -30
SENSITIV BOD DECA
                 30
                       -30
SENSITIV BOD SETT
                  30
                       -30
SENSITIV TRANGE
                  30
                       -30
SENSITIV NBOD DEC
                  30
                       -30
                  30
                       -30
SENSITIV NBOD SET
                      -30
SENSITIV BENTHAL
                       -2
SENSITIV TEMPERAT
SENSITIV SALINITY
                  30
                       -30
                  30 -30
SENSITIV CHLOR A
SENSITIV HDW FLOW 30
                       -30
                       -30
SENSITIV HDW DO
```

```
Bayou Cane Watershed TMDL
Subsegments 040903 and 040904
Originated: February 4, 2011
                      -30
SENSITIV HDW BOD
                 30
SENSITIV HDW NBOD
                 30
                      -30
SENSITIV WSL FLOW
                 30
                      -30
                 30
                      -30
SENSITIV WSL DO
                 30
                      -30
SENSITIV WSL BOD
                 30
                      -30
SENSITIV WSL NBOD
                 30
                      -30
SENSITIV OXR
                       -2
SENSITIV LBC TEMP
SENSITIV LBC DO
                 30
                      -30
                 30
                      -30
SENSITIV LBC BOD
SENSITIV LBC NBOD
                 30
                      -30
                      -30
SENSITIV NPS BOD
                 30
                 30
                      -30
SENSITIV NPS NBOD
ENDATA29
NUMBER OF PLOTS = 1
NUMBER OF REACHES IN PLOT 1 =
                                                   INCREMENT = 0.1
PLOT RCH 1 2 3 4 5 6
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        ENDATA30
OVERLAY 1 bayoucaneovl.txt
                                      :MAIN STEM
ENDATA31
```

BAYOU CANE, SUMMER, 90% OVERALL REDUCTION IN REACH 1, 60% OVERALL REDUCTION IN REACHES 2-6, OUTPUT

```
$$$ DATA TYPE 2 (MODEL OPTIONS) $$$
CARD TYPE
              MODEL OPTION
MODOPT01 NO TEMPERATURE
MODOPT02 NO SALINITY
MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES
                                                              mq/L
                                                                        Chloride
MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY
                                                                umhos/cm Conduct
MODOPT05 YES DISSOLVED OXYGEN
MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND
MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND
MODOPT08 YES NBOD OXYGEN DEMAND
MODOPT10 NO PHOSPHORUS
MODOPT11 NO CHLOROPHYLL A
MODOPT12 NO MACROPHYTES
MODOPT13 NO COLIFORM
ENDATA02
$$$ DATA TYPE 3 (PROGRAM CONSTANTS) $$$
CARD TYPE
                                                       VALUE
            DESCRIPTION OF CONSTANT
                                                3.00000 (values entered as a function of D,Q,Vmean) 1.00000
PROGRAM
           DISPERSION EQUATION
          OCEAN EXCHANGE RATIO
          PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
        K2 MAXIMUM =
HYDRAULIC CALCULATION METHOD =
SETTLING RATE UNITS =
PROGRAM
PROGRAM
PROGRAM
ENDATA03
$$$ DATA TYPE 4 (TEMPERATURE CORRECTION CONSTANTS FOR RATE COEFFICIENTS) $$$
CARD TYPE
           RATE CODE
                         THETA VALUE
ENDATA04
$$$ CONSTANTS TYPE 5 (TEMPERATURE DATA) $$$
CARD TYPE
              DESCRIPTION OF CONSTANT
                                                       VALUE
ENDATA05
$$$ DATA TYPE 6 (ALGAE CONSTANTS) $$$
CARD TYPE
              DESCRIPTION OF CONSTANT
                                                       VALUE
ENDATA06
$$$ DATA TYPE 7 (MACROPHYTE CONSTANTS) $$$
CARD TYPE
             DESCRIPTION OF CONSTANT
                                                       VALUE
```

ENDATA07

\$\$\$ DATA TYPE 8	(REACH IDEN	TIFICATION DAT	TA) \$\$\$	DEGT		FIND		DELLON	F. F. F.	DECTY	THE			
CARD TYPE REACH	H ID NAME			BEGIN REACH kr	ł	END REACH km	ELEM LENGTH km	REACH LENGTH km	ELEMS PER RCH	BEGIN ELEM NUM	END ELEM NUM			
REACH ID 1	BC RKM 3	.6 to 2.8		3.60) то	2.80	0.0100	0.80	80	1	80			
REACH ID 2		.8 to 1.9		2.80		1.90	0.0100	0.90	90	81	170			
REACH ID 3	BC RKM 1.	.9 to 1.5		1.90		1.50	0.0100	0.40	40	171	210			
REACH ID 4	BC RKM 1.	.5 to 1.1		1.50) TO	1.10	0.0100	0.40	40	211	250			
REACH ID 5	BC RKM 1.	.1 to 0.3		1.10) TO	0.30	0.0100	0.80	80	251	330			
REACH ID 6		.3 to 0.0) TO	0.00	0.0100	0.30	30	331	360			
ENDATA08														
\$\$\$ DATA TYPE 9	(ADVECTIVE H	HYDRAULIC COE	FFICIENTS) \$	\$\$										
CARD TYPE REACH	H ID V	WIDTH WI	IDTH W	IDTH I	DEPTH	DEF	TH	DEPTH	SLOPE	MANNING	S			
		"A"	'B"	"C"	"D"	"E	"	"F"		"N"				
HYDR-1 1	BC (0.000 0.	.000 4	.877 (0.000	0.0	00	1.113	0.00000	0.000				
HYDR-1 2					0.000	0.0		1.085	0.00000	0.000				
HYDR-1 3					0.000	0.0		1.189	0.00000	0.000				
HYDR-1 4					0.000	0.0		1.021	0.00000	0.000				
HYDR-1 5					0.000	0.0		1.210	0.00000	0.000				
HYDR-1 6					0.000	0.0		1.156	0.00000	0.000				
ENDATA09	DC (0.000	.000 19	.012	.000	0.0	00	1.130	0.00000	0.000				
\$\$\$ DATA TYPE 10	O (DISPERSIVE	E HYDRAULIC CO	DEFFICIENTS)	\$\$\$										
CARD TYPE REACH	ודיי מד וי	DAL DISPER	RSTON DT.	SPERSION	DISE	PERSION	DISPER	STON						
CHIE THE RESIDEN		NGE "A'		"B"		'C"	"D"							
HYDR 1	BC 0.	.95 60.0	000	0.833	(0.000	1.0	00						
HYDR 2	BC 0.	.95 60.0	000	0.833	(0.000	1.0	00						
HYDR 3	BC 0.	.93 60.0	000	0.833	(0.000	1.0	00						
HYDR 4	BC 0.	.93 60.0	000	0.833	(0.000	1.0	00						
HYDR 5	BC 1.	.00 60.0	000	0.833	(0.000	1.0	00						
HYDR 6	BC 1.	.00 60.0		0.833		0.000	1.0	00						
ENDATA10														
\$\$\$ DATA TYPE 13	1 (INITIAL CO	ONDITIONS) \$\$	\$											
CARD TYPE	REACH ID	TEMP	SALIN	DO N	NH3	NO3+2	PHOS	CHL A	MACRO					
INITIAL	1 BC	27.91	0.10	5.00 0.	.00	0.00	0.00	10.00	0.00					
INITIAL	2 BC	27.91			.00	0.00	0.00		0.00					
INITIAL	3 BC	27.91			.00	0.00	0.00		0.00					
INITIAL	4 BC	27.91			.00	0.00	0.00	10.00	0.00					
INITIAL	5 BC	27.91			.00	0.00	0.00		0.00					
INITIAL	6 BC	27.91			.00	0.00	0.00		0.00					
ENDATA11	0 50	21.71	1.70	1.00		0.00	0.00	10.00	0.00					
\$\$\$ DATA TYPE 12	2 (REAERATION	N, SEDIMENT OX	KYGEN DEMAND	, BOD COEFFI	CIENT	rs) \$\$\$								
									BOD	ANAEF			BOD2	ANAER
	CH K2			K2 K2		BKGRND	BOD	BOD	CONV	BOD2			CONV	BOD2
TYPE NUM	ID OPT		"A" "	B" "C'		SOD	DECAY	SETT	TO SOD	DECAY			TO SOD	DECAY
					Ġ	g/m²/d p	er day	m/d		per day	per day	m/d		per day

COEF-1 1 COEF-1 2 COEF-1 3 COEF-1 4 COEF-1 5 COEF-1 6 ENDATA12	BC 11 BC 11 BC 11 BC 1	TEXAS TEXAS TEXAS TEXAS K2=a K2=a		0.000 0.000 0.000 0.000 0.000 0.738 0.773	0.000 0.000 0.000 0.000 0.000 0.000	0.000	0.438 1.750 1.500 1.200 0.950 0.000	0.044 0.068 0.057 0.057 0.057 0.062	0.050 0.050 0.050 0.050 0.050 0.050	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
\$\$\$ DATA TYPE	13 (NITR	OGEN AN	ND PHOSPHOR	RUS COEFFIC	CIENTS) \$\$\$	3								
CARD TYPE	REACH	ID	NBOD DECA	NBOD SETT	ORGN CONV TO NH3 SRCE	NH3 DECA	NH SRC		DENIT RATE					
COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 ENDATA13	2 3 4 5	BC BC BC BC BC BC	0.200 0.100 0.100 0.100 0.100 0.100	0.050 0.050 0.050 0.050 0.050 0.050	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00	0 0.000 0 0.000 0 0.000 0 0.000	0.000 0.000 0.000 0.000 0.000					
\$\$\$ DATA TYPE	14 (ALGA	E AND M	MACROPHYTE	COEFFICIE	NTS) \$\$\$									
CARD TYPE	REACH	ID	SECCHI DEPTH	ALGAE: CHL A	ALGAE SETT	ALG CONV	7 ALG GR					IG		
ENDATA14														
\$\$\$ DATA TYPE	15 (COLI	FORM AN	ND NONCONSE	CRVATIVE CO	DEFFICIENTS	3) \$\$\$								
CARD TYPE	REACH		COLIFORM DIE-OFF	NCM DECAY	NCM SETT	NCM CONV TO SOD								
ENDATA15														
\$\$\$ DATA TYPE	16 (INCR	REMENTAL	L DATA FOR	FLOW, TEM	PERATURE, S	SALINITY, A	AND CONSE	RVATIVES) \$	\$\$					
CARD TYPE	REACH	ID	OUTFLOW	INFLO	MET WC	MP SALI	IN C	M-I CM-	II IN/DIS	T OUT/DI	ST			
ENDATA16														
\$\$\$ DATA TYPE	17 (INCR	REMENTAL	L DATA FOR	DO, BOD, A	AND NITROGE	IN) \$\$\$								
CARD TYPE	REACH	ID	DO	BOD	NBOD			BOD#2						
ENDATA17														
\$\$\$ DATA TYPE	18 (INCR	REMENTAL	L DATA FOR	PHOSPHORUS	S, CHLOROPE	HYLL, COLIE	FORM, AND	NONCONSERV	ATIVES) \$\$\$;				
CARD TYPE	REACH	ID	PHOS	CHL A	COLI	NCM								
ENDATA18														
\$\$\$ DATA TYPE	19 (NONP	OINT SC	OURCE DATA)	\$\$\$										
CARD TYPE	REACH	ID	BOD#1	NBOD	COLI	NCM	DO	BOD#2						

0.000 0.000 0.000 0.000 0.000

NONPOINT NONPOINT NONPOINT NONPOINT ENDATA19	3 4 5 6	BC BC BC BC	13.00 14.00 27.50 23.50	3.65 4.00 8.25 14.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00				
\$\$\$ DATA TYPE 2	0 (HE	ADWATE	R FOR FLOW, T	EMPERATURE,	SALINITY	AND CONSERV	VATIVES) \$	\$\$\$				
CARD TYPE E	LEMENT	IAN T	ME	UNIT	FLOW m³/s	FLOW cfs	TEMP deg C	SALIN ppt	CM-I mg/L	CM-II umhos/cm		
HDWTR-1 ENDATA20	1	HEA	ADWATER	0	0.00280	0.099	0.00	0.10	21.500	215.380	0.00	
\$\$\$ DATA TYPE 2	1 (HE <i>I</i>	ADWATE	R DATA FOR DO	, BOD, AND	NITROGEN)	\$\$\$						
CARD TYPE E	LEMENT	nAl	ME		DO mg/L	BOD#1 mg/L	NBOD mg/L	mg/L	mg/L	BOD#2 mg/L		
HDWTR-2 ENDATA21	1	HEA	ADWATER		7.06	1.69	0.29	0.00	0.00	0.00		
\$\$\$ DATA TYPE 2	2 (HE	ADWATE	R DATA FOR PH	OSPHORUS, C	HLOROPHYLL	, COLIFORM,	, AND NONC	CONSERVAT	IVES) \$\$;		
CARD TYPE E	LEMENT	IAN T	ME		PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L				
ENDATA22												
\$\$\$ DATA TYPE 2	3 (JUN	CTION	DATA) \$\$\$									
	CTION EMENT	UPS'										
ENDATA23												
\$\$\$ DATA TYPE 2	4 (WAS	STELOAI	D DATA FOR FL	OW, TEMPERA	TURE, SALI	NITY, AND	CONSERVATI	VES) \$\$\$				
CARD TYPE ELEM	ENT	RKILO	O NAME		FLOW m³/s	FLOW cfs	FLOW MGD	TEMP deg C	SALIN ppt	CM-I mg/L	CM-II umhos/cm	
WSTLD-1 1 ENDATA24	8	3.43	3 SE LA Stat	e Hospital	0.01530	0.54025	0.349	0.00	0.22	22.500	458.000	
\$\$\$ DATA TYPE 2	5 (WAS	STELOAI	D DATA FOR DO	, BOD, AND	NITROGEN)	\$\$\$				2		
CARD TYPE E	LEMENT	I NAI	ME		DO mg/L	BOD mg/L	% BOD RMVL	NBOD mg/L	mg/L	% NITRIF	mg/L	BOD#2 mg/L
WSTLD-2 ENDATA25	18	SE	LA State Hos	pital	5.00	11.50	0.00	8.60	0.00	0.00	0.00	0.00
\$\$\$ DATA TYPE 2	6 (WAS	STELOAI	D DATA FOR PH	OSPHORUS, C	HLOROPHYLL	, COLIFORM,	, AND NONG	CONSERVAT	IVES) \$\$\$;		
CARD TYPE E	LEMENT	I NAI	ME		PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L				
ENDATA26												

\$\$\$ DATA TYPE 27 (LOWER BOUNDARY CONDITIONS) \$\$\$

CARD TYPE	CONSTITUENT		CONCE	ENTRATION					
LOWER BC ENDATA27	TEMPERATURE SALINITY CONSERVATIVE MA CONSERVATIVE MA DISSOLVED OXYGE BOD1 BIOCHEMICA CHLOROPHYLL A NBOD	TERIAL II	(COND) = DEMAND =	= 2.0 = 1097.0 = 3724.9 = 6.6 = 10.6 = 10.0	30 ppt 00 mg/ 40 umh 10 mg/ 26 mg/ 00 µg/	L os/cm L L			
\$\$\$ DATA TY	PE 28 (DAM DATA)	\$\$\$							
CARD TYPE	ELEMENT NAME		EQN	"A"	"B"	"H"			
ENDATA28									
\$\$\$ DATA TY	PE 29 (SENSITIVIT	Y ANALYSI	S DATA) \$\$\$						
CARD TYPE	PARAMETER	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
SENSITIV	BASEFLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	VELOCITY	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	DEPTH	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	DISPERSI	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	REAERATI	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BOD DECA	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BOD SETT	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	TRANGE	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NBOD DEC	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NBOD SET	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BENTHAL	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	TEMPERAT	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	SALINITY	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	CHLOR A	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	OXR	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC TEMP	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
ENDATA29									

\$\$\$ DATA TYPE 30 (PLOT CONTROL CARDS) \$\$\$

NUMBER OF PLOTS = 1

NUMBER OF REACHES IN PLOT 1 = 6 PLOT RCH 1 2 3 4 5 6 ENDATA30

\$\$\$ DATA TYPE 31 (OVERLAY PLOT DATA) \$\$\$

OVERLAY 1 bayoucaneovl.txt

:MAIN STEM

ENDATA31

....NO ERRORS DETECTED IN INPUT DATAHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 5 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED

3.41 3.40 0.01810 84.5 0.00333

3.40 3.39 0.01810 84.5 0.00333

FINAL REPORT HEADWATER REACH NO. 1 RKM 3.6 to 2.8 BAYOU CANE WATERSHED MODEL

SUMR, 4,5 DO, OverallReduc, 90% reduc rch 1,60% reduc rch 2-6, hosp5/2

48.77 5.43 218.68 0.001

48.77 5.43 229.62 0.001

0.219 0.003

0.219 0.003

****	******	*****	******	*****	*****	*****	REACH 1	INPUTS *	*****	*****	*****	*****	*****	*****	*****	*****	**	
ELEM NO.	TYPE	FLOW	TEMP deg C	SAL pp	N Chloride t mg/L	Conduct umhos/cm		BOD#1 mg/L	BOD#2 mg/L	EBOD#1	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	PHOS mg/L	CHL A µg/L	COLI #/100mL	NCM
1 18	HDWTR WSTLD	0.00280 0.01530		0.1		215.38 458.00		1.69 11.50	0.00	1.69 11.50		0.29 8.60	0.00	0.00	0.00	10.00	0.00	0.00
****	*****	*****	******	*****	*****	** HYDRAU	LIC PARA	AMETER V	ALUES *	*****	*****	*****	****	*****	*****	*****	**	
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLU	JME	SURFACE AREA	X-SECT AREA		DAL T	TIDAL VELO	DISPRSN	MEAN VELO	
	km	km	m³/s		m/s	days	m	m		m³	m²	m²		m³	m/s	m²/s	m/s	
1	3.60	3.59	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
2	3.59	3.58	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
3	3.58	3.57	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
4	3.57	3.56	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
5	3.56	3.55	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
6	3.55	3.54	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
7	3.54	3.53	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.034		
8	3.53	3.52	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.035		
9	3.52	3.51	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.000	0.037		
10	3.51	3.50	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43	109		0.000	0.039		
11	3.50	3.49	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43	120		0.001	0.041	0.001	
12	3.49	3.48	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43	131		0.001	0.044		
13	3.48	3.47	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43	142		0.001	0.046		
14	3.47	3.46	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43	153		0.001	0.049		
15	3.46	3.45	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43	164		0.001	0.051		
16	3.45	3.44	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.001	0.054		
17	3.44	3.43	0.00280	0.0	0.00052	0.22	1.11	4.88	54.		48.77	5.43			0.001	0.057		
18	3.43	3.42	0.01810	84.5	0.00333	0.03	1.11	4.88	54.	.28	48.77	5.43	196	.82 (0.001	0.219	0.003	
19	3.42	3.41	0.01810	84.5	0.00333	0.03	1.11	4.88	54.	.28	48.77	5.43	207	.75 (0.001	0.219	0.003	

4.88

1.11 4.88

0.03 1.11

0.03

54.28

54.28

22	3.39	3.38	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	240.55	0.001	0.219	0.003
23	3.38	3.37	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	251.49	0.001	0.219	0.003
24	3.37	3.36	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	262.42	0.001	0.219	0.003
25	3.36	3.35	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	273.36	0.001	0.219	0.003
26	3.35	3.34	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	284.29	0.001	0.219	0.003
27	3.34	3.33	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	295.22	0.001	0.219	0.003
28	3.33	3.32	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	306.16	0.001	0.219	0.003
29	3.32	3.31	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	317.09	0.001	0.219	0.003
30	3.31	3.30	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	328.03	0.001	0.219	0.003
31	3.30	3.29	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	338.96	0.001	0.219	0.003
32	3.29	3.28	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	349.90	0.001	0.219	0.003
33	3.28	3.27	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	360.83	0.002	0.219	0.003
34	3.27	3.26	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	371.76	0.002	0.219	0.003
35	3.26	3.25	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	382.70	0.002	0.219	0.003
36	3.25	3.24	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	393.63	0.002	0.219	0.003
37	3.24	3.23	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	404.57	0.002	0.219	0.003
38	3.23	3.22	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	415.50	0.002	0.219	0.003
39	3.22	3.21	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	426.44	0.002	0.219	0.003
40	3.21	3.20	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	437.37	0.002	0.219	0.003
41	3.20	3.19	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	448.30	0.002	0.219	0.003
42	3.19	3.18	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	459.24	0.002	0.219	0.003
					0.00333									0.219	0.003
43	3.18	3.17	0.01810	84.5		0.03	1.11	4.88	54.28	48.77	5.43	470.17	0.002		
44	3.17	3.16	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	481.11	0.002	0.219	0.003
45	3.16	3.15	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	492.04	0.002	0.219	0.003
46	3.15	3.14	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	502.97	0.002	0.220	0.003
47	3.14	3.13	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	513.91	0.002	0.221	0.003
48	3.13	3.12	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	524.84	0.002	0.222	0.003
49	3.12	3.11	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	535.78	0.002	0.223	0.003
50	3.11	3.10	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	546.71	0.002	0.224	0.003
51	3.10	3.09	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	557.65	0.002	0.226	0.003
52	3.09	3.08	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	568.58	0.002	0.227	0.003
53	3.08	3.07	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	579.51	0.002	0.229	0.003
54	3.07	3.06	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	590.45	0.002	0.231	0.004
55	3.06	3.05	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	601.38	0.003	0.233	0.004
56	3.05	3.04	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	612.32	0.003	0.234	0.004
57	3.04	3.03	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	623.25	0.003	0.236	0.004
58	3.03	3.02	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	634.19	0.003	0.238	0.004
59	3.02	3.01	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	645.12	0.003	0.240	0.004
60	3.01	3.00	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	656.05	0.003	0.242	0.004
61	3.00	2.99	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	666.99	0.003	0.244	0.004
62	2.99	2.98	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	677.92	0.003	0.246	0.004
63	2.98	2.97	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	688.86	0.003	0.248	0.004
64	2.97	2.96	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	699.79	0.003	0.251	0.004
65	2.96	2.95	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	710.72	0.003	0.253	0.004
66	2.95	2.94	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	721.66	0.003	0.255	0.004
67	2.94	2.93	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	732.59	0.003	0.257	0.004
68	2.93	2.92	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	743.53	0.003	0.259	0.004
69	2.92	2.91	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	754.46	0.003	0.262	0.004
70	2.91	2.90	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	765.40	0.003	0.264	0.004
71	2.90	2.89	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	776.33	0.003	0.266	0.004
72	2.89	2.88	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	787.26	0.003	0.269	0.004
73	2.88	2.87	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	798.20	0.003	0.271	0.004
74	2.87	2.86	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	809.13	0.003	0.273	0.004
75	2.86	2.85	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	820.07	0.003	0.276	0.004
76	2.85	2.84	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	831.00	0.003	0.278	0.004
77	2.84	2.83	0.01810	84.5	0.00333	0.03	1.11		54.28	48.77	5.43	841.94	0.003	0.278	0.004
78			0.01810					4.88							
78 79	2.83	2.82	0.01810	84.5 84.5	0.00333	0.03	1.11	4.88	54.28 54.28	48.77	5.43 5.43	852.87 863.80	0.004	0.283 0.286	0.004
										48.77					0.004
80	2.81	2.80	0.01810	84.5	0.00333	0.03	1.11	4.88	54.28	48.77	5.43	874.74	0.004	0.288	0.004

TOT		6.00			4342.48	3901.60	
AVG	0.0015		1.11	4.88			5.43
CUM		6.00					

****	*****	*****	*****	*****	*****	******	BIOLOGI	.CAL AN	ID PHYSI	CAL CO	EF.F.ICI	ENTS *	*****	*****	*****	*****	*****	*****	*****	*			
ELEM NO.	ENDING DIST		REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	DECAY	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
1	3.590	7.84	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.33	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
2		7.84	0.73	0.06	0.06	0.00	0.00	0.00			0.72	0.72	0.33	0.06	0.00	0.00	0.00		0.72	0.00	0.00	0.00	0.00
3	3.570		0.73		0.06	0.00		0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
4		7.84	0.73	0.06	0.06	0.00		0.00		0.72		0.72	0.33			0.00		0.00		0.00	0.00	0.00	0.00
5	3.550		0.73	0.06	0.06	0.00	0.00	0.00			0.72			0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
6	3.540		0.73	0.06	0.06	0.00	0.00	0.00		0.72		0.72		0.06		0.00		0.00		0.00	0.00	0.00	0.00
7	3.530		0.73	0.06	0.06	0.00	0.00	0.00		0.72		0.72		0.06	0.00	0.00	0.00		0.72	0.00	0.00	0.00	0.00
8	3.520		0.73			0.00		0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
9	3.510		0.73	0.06	0.06	0.00		0.00		0.72		0.72	0.33	0.06		0.00		0.00		0.00	0.00	0.00	0.00
10	3.500		0.73		0.06	0.00		0.00			0.72			0.06	0.00			0.00		0.00	0.00	0.00	0.00
11	3.490		0.73	0.06	0.06	0.00	0.00	0.00		0.72		0.72	0.33	0.06		0.00		0.00		0.00	0.00	0.00	0.00
12	3.480		0.73		0.06	0.00	0.00	0.00			0.72		0.32	0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
13	3.470		0.73	0.06	0.06	0.00		0.00		0.72		0.72		0.06		0.00		0.00		0.00	0.00	0.00	0.00
14	3.460		0.73	0.06	0.06	0.00	0.00	0.00		0.72		0.72	0.32	0.06		0.00			0.72	0.00	0.00	0.00	0.00
15	3.450		0.73		0.06	0.00		0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
16	3.440		0.73	0.06	0.06	0.00		0.00		0.72		0.72		0.06		0.00		0.00		0.00	0.00	0.00	0.00
17	3.430		0.73	0.06	0.06	0.00	0.00	0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
18	3.420		0.73	0.06	0.06	0.00		0.00		0.72		0.72		0.06		0.00		0.00		0.00	0.00	0.00	0.00
19	3.410		0.73		0.06	0.00	0.00	0.00		0.72		0.72		0.06	0.00	0.00	0.00		0.72	0.00	0.00	0.00	0.00
20	3.400		0.73	0.06	0.06	0.00	0.00	0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
21	3.390		0.73		0.06	0.00		0.00			0.72			0.06	0.00			0.00		0.00	0.00	0.00	0.00
22	3.380		0.73	0.06	0.06	0.00		0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
23	3.370		0.73	0.06	0.06	0.00	0.00	0.00				0.72	0.31			0.00			0.72	0.00	0.00	0.00	0.00
24	3.360		0.73		0.06	0.00		0.00			0.72			0.06		0.00		0.00		0.00	0.00	0.00	0.00
25	3.350		0.73	0.06	0.06	0.00		0.00		0.72		0.72		0.06		0.00		0.00		0.00	0.00	0.00	0.00
26	3.340		0.73	0.06	0.06	0.00	0.00	0.00	0.00		0.72	0.72	0.31	0.06	0.00	0.00	0.00		0.72	0.00	0.00	0.00	0.00
27	3.330	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00		0.72	0.72		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
28	3.320	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
29	3.310	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
30	3.300	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
31	3.290	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
32	3.280	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
33	3.270	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
34	3.260	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
35	3.250	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
36	3.240	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
37	3.230	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
38	3.220	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
39	3.210	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
40	3.200	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
41	3.190	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
42	3.180		0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
43	3.170	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
44		7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
45		7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
46	3.140		0.73		0.06	0.00		0.00			0.72			0.06	0.00			0.00		0.00	0.00	0.00	0.00
47	3.130	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00

48	3.120		0.73	0.06	0.06	0.00	0.00	0.00	0.00		0.72			0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
49	3.110		0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
50	3.100		0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
51	3.090		0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
52	3.080		0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
53	3.070		0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
54	3.060	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
55	3.050	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
56	3.040	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
57	3.030	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
58	3.020	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
59	3.010	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
60	3.000	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
61	2.990	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
62	2.980	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
63	2.970	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
64	2.960	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
65	2.950	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
66	2.940	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
67	2.930	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
68	2.920	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
69	2.910	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
70	2.900	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
71	2.890	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
72	2.880	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
73	2.870	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
74	2.860	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
75	2.850	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
76	2.840	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
77	2.830	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
78	2.820	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
79	2.810	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
80	2.800	7.83	0.73	0.06	0.06	0.00	0.00	0.00	0.00	0.72	0.72	0.72	0.31	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
AVG 2	0 DEG C	RATE	0.63	0.04	0.05	0.00	0.00	0.00	0.00	0.44			0.20	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

ELEM NO.	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L		EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
1	3.590	27.91	0.10	21.61	242.67	7.04	2.44	0.00	2.44	0.00	0.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
2	3.580	27.91	0.10	21.63	246.83	7.02	2.56	0.00	2.56	0.00	0.71	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
3	3.570	27.91	0.10	21.65	251.63	7.00	2.71	0.00	2.71	0.00	0.79	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
4	3.560	27.91	0.11	21.67	257.15	6.96	2.88	0.00	2.88	0.00	0.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
5	3.550	27.91	0.11	21.70	263.52	6.91	3.09	0.00	3.09	0.00	1.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
6	3.540	27.91	0.11	21.73	270.86	6.85	3.33	0.00	3.33	0.00	1.17	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
7	3.530	27.91	0.11	21.76	279.31	6.76	3.62	0.00	3.62	0.00	1.36	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
8	3.520	27.91	0.11	21.80	288.86	6.67	3.97	0.00	3.97	0.00	1.59	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
9	3.510	27.91	0.11	21.85	299.39	6.55	4.35	0.00	4.35	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
10	3.500	27.91	0.12	21.89	310.81	6.43	4.78	0.00	4.78	0.00	2.19	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
11	3.490	27.91	0.12	21.94	323.09	6.29	5.26	0.00	5.26	0.00	2.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
12	3.480	27.91	0.12	22.00	336.18	6.14	5.78	0.00	5.78	0.00	2.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
13	3.470	27.91	0.12	22.06	350.06	5.98	6.35	0.00	6.35	0.00	3.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
14	3.460	27.91	0.12	22.12	364.71	5.82	6.97	0.00	6.97	0.00	3.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
15	3 450	27 91	0 12	22 18	380 10	5 65	7 63	0 00	7 63	0 00	4 54	0 00	0 00	0 00	0 00	10 00	0 00	0	0 00

16	3.440 27.91 0.13	22.25	396.23	5.48	8.34	0.00	8.34	0.00	5.19	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
17	3.430 27.91 0.13	22.32	413.07	5.30	9.11	0.00	9.11	0.00	5.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
18	3.420 27.91 0.13	22.35	420.47	5.23	9.45	0.00	9.45	0.00	6.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
19	3.410 27.91 0.13	22.35	420.47	5.22	9.41	0.00	9.41	0.00	6.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
20	3.400 27.91 0.13	22.35	420.47	5.21	9.38	0.00	9.38	0.00	6.10	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
21	3.390 27.91 0.13	22.35	420.47	5.20	9.35	0.00	9.35	0.00	6.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
22	3.380 27.91 0.14	22.35	420.47	5.19	9.31	0.00	9.31	0.00	5.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
23	3.370 27.91 0.14	22.35	420.47	5.18	9.28	0.00	9.28	0.00	5.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
24	3.360 27.91 0.14	22.35	420.47	5.17	9.24	0.00	9.24	0.00	5.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
25	3.350 27.91 0.14	22.35	420.47	5.16	9.21	0.00	9.21	0.00	5.76	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
26	3.340 27.91 0.14	22.35	420.47	5.16	9.18	0.00	9.18	0.00	5.69	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
27	3.330 27.91 0.14	22.35	420.47	5.15	9.14	0.00	9.14	0.00	5.62	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
28	3.320 27.91 0.15	22.35	420.47	5.15	9.11	0.00	9.11	0.00	5.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
29	3.310 27.91 0.15	22.35	420.47	5.14	9.08	0.00	9.08	0.00	5.49	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
30	3.300 27.91 0.15	22.35	420.47	5.14	9.04	0.00	9.04	0.00	5.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
31	3.290 27.91 0.15	22.35	420.48	5.14	9.01	0.00	9.01	0.00	5.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
32	3.280 27.91 0.15	22.35	420.48	5.13	8.98	0.00	8.98	0.00	5.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
33	3.270 27.91 0.15	22.35	420.48	5.13	8.95	0.00	8.95	0.00	5.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
34	3.260 27.91 0.16	22.35	420.48	5.13	8.91	0.00	8.91	0.00	5.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
35	3.250 27.91 0.16	22.35	420.48	5.13	8.88	0.00	8.88	0.00	5.12	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
36	3.240 27.91 0.16	22.35	420.48	5.13	8.85	0.00	8.85	0.00	5.06	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
37	3.230 27.91 0.16	22.35	420.48	5.13	8.82	0.00	8.82	0.00	5.00	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
38	3.220 27.91 0.16	22.35	420.48	5.13	8.78	0.00	8.78	0.00	4.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
39	3.210 27.91 0.16	22.35	420.48	5.13	8.75	0.00	8.75	0.00	4.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
40	3.200 27.91 0.17	22.35	420.48	5.14	8.72	0.00	8.72	0.00	4.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
41	3.190 27.91 0.17	22.35	420.49	5.14	8.69	0.00	8.69	0.00	4.77	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
42	3.180 27.91 0.17	22.35	420.49	5.14	8.65	0.00	8.65	0.00	4.72	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
43	3.170 27.91 0.17	22.35	420.49	5.15	8.62	0.00	8.62	0.00	4.66	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
44	3.160 27.91 0.17	22.35	420.49	5.15	8.59	0.00	8.59	0.00	4.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
45	3.150 27.91 0.17	22.35	420.50	5.16	8.56	0.00	8.56	0.00	4.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
46	3.140 27.91 0.17	22.35	420.50	5.16	8.53	0.00	8.53	0.00	4.50	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
47	3.130 27.91 0.18	22.36	420.50	5.17	8.49	0.00	8.49	0.00	4.44	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
48	3.120 27.91 0.18	22.36	420.51	5.17	8.46	0.00	8.46	0.00	4.39	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
49	3.110 27.91 0.18	22.36	420.51	5.18	8.43	0.00	8.43	0.00	4.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
50	3.100 27.91 0.18	22.36	420.52	5.18	8.40	0.00	8.40	0.00	4.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
51	3.090 27.91 0.18	22.36	420.53	5.19	8.36	0.00	8.36	0.00	4.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
52	3.080 27.91 0.18	22.36	420.53	5.20	8.33	0.00	8.33	0.00	4.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
53	3.070 27.91 0.19	22.37	420.54	5.20	8.30	0.00	8.30	0.00	4.13	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
54	3.060 27.91 0.19	22.37	420.55	5.21	8.27	0.00	8.27	0.00	4.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
55	3.050 27.91 0.19	22.37	420.56	5.22	8.24	0.00	8.24	0.00	4.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
56	3.040 27.91 0.19	22.38	420.58	5.22	8.20	0.00	8.20	0.00	3.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
57	3.030 27.91 0.19	22.38	420.59	5.23	8.17	0.00	8.17	0.00	3.94	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
58	3.020 27.91 0.19	22.39	420.61	5.24	8.14	0.00	8.14	0.00	3.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
59	3.010 27.91 0.20	22.39	420.62	5.24	8.11	0.00	8.11	0.00	3.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
60	3.000 27.91 0.20	22.40	420.64	5.25	8.08	0.00	8.08	0.00	3.79	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
61	2.990 27.91 0.20	22.41	420.67	5.25	8.04	0.00	8.04	0.00	3.75	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
62	2.980 27.91 0.20	22.42	420.69	5.26	8.01	0.00	8.01	0.00	3.70	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
63	2.970 27.91 0.20	22.43	420.72	5.26	7.98	0.00	7.98	0.00	3.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
64	2.960 27.91 0.20	22.44	420.76	5.27	7.95	0.00	7.95	0.00	3.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
65	2.950 27.91 0.21	22.45	420.79	5.27	7.91	0.00	7.91	0.00	3.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
66	2.940 27.91 0.21	22.46	420.83	5.27	7.88	0.00	7.88	0.00	3.52	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
67	2.930 27.91 0.21	22.48	420.88	5.27	7.85	0.00	7.85	0.00	3.47	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
68	2.920 27.91 0.21	22.49	420.93	5.26	7.82	0.00	7.82	0.00	3.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
69	2.910 27.91 0.21	22.51	420.99	5.26	7.78	0.00	7.78	0.00	3.38	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
70	2.900 27.91 0.21	22.53	421.06	5.25	7.75	0.00	7.75	0.00	3.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
71	2.890 27.91 0.22	22.56	421.13	5.24	7.71	0.00	7.71	0.00	3.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
72	2.880 27.91 0.22	22.58	421.21	5.23	7.68	0.00	7.68	0.00	3.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
73	2.870 27.91 0.22	22.61	421.30	5.22	7.64	0.00	7.64	0.00	3.20	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
74	2.860 27.91 0.22	22.65	421.40	5.20	7.61	0.00	7.61	0.00	3.16	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

75	2.850	27.91	0.22	22.68	421.51	5.17	7.57	0.00	7.57	0.00	3.11	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
76	2.840	27.91	0.22	22.72	421.64	5.14	7.53	0.00	7.53	0.00	3.06	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
77	2.830	27.91	0.23	22.77	421.78	5.11	7.49	0.00	7.49	0.00	3.02	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
78	2.820	27.91	0.23	22.82	421.93	5.06	7.45	0.00	7.45	0.00	2.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
79	2.810	27.91	0.23	22.87	422.10	5.02	7.41	0.00	7.41	0.00	2.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
80	2.800	27.91	0.23	22.93	422.29	4.96	7.37	0.00	7.37	0.00	2.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER REACH NO. 2 RKM 2.8 to 1.9 BAYOU CANE WATERSHED MODEL SUMR, 4,5 DO, OverallReduc, 90% reduc rch 1,60% reduc rch 2-6, hosp5/2

ELEM	TYPE	FLOW	TEMP	SALN C	hloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	PHOS	CHL A	COLI	NCM
NO.			deg C	ppt	mg/L	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	#/100mL	
81	UPR RCH	0.01810	27.91	0.23	22.93	422.29	4.96	7.37	0.00	7.37	0.00	2.87	0.00	0.00	0.00	10.00	0.00	0.00

81 UPR RCH 0.01810 27.91 0.23 22.93 422.29 4.96 7.37 0.00 7.37 0.00 2.87 0.00 0.00 0.00 10.00 0.00 FLOW PCT ADVCTV TRAVEL DEPTH WIDTH ELEM BEGIN ENDING VOLUME SURFACE X-SECT TIDAL TIDAL DISPRSN MEAN DIST TIME AREA PRISM VELO VELO NO. DIST EFF VELO AREA km km m³/s m/s days m m³ m² m² m³ m/s m²/s m/s 81 2.80 2.79 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 910.27 0.001 0.092 0.001 82 2.79 2.78 0.01810 84.5 0.00105 1.09 15.85 158.50 17.20 945.81 0.001 0.094 0.001 0.11 171.97 981.34 0.001 83 2.78 2.77 0.01810 84.5 0.00105 1.09 15.85 171.97 158.50 17.20 0.097 0.002 0.11 2.77 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 1016.88 0.001 0.099 84 2.76 0.002 85 2.76 0.01810 84.5 0.00105 171.97 158.50 17.20 1052.42 0.001 0.102 2.75 0.11 1.09 15.85 0.002 86 2.75 2.74 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 1087.95 0.001 0.105 0.002 87 2.74 2.73 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 1123.49 0.001 0.107 0.002 0.00105 171.97 158.50 17.20 1159.02 0.002 88 2.73 2.72 0.01810 84.5 0.11 1.09 15.85 0.110 0.002 89 2.72 2.71 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 1194.56 0.002 0.113 0.002 90 2.71 2.70 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 1230.09 0.002 0.116 0.002 2.70 0.01810 84.5 158.50 17.20 1265.63 91 2.69 0.00105 0.11 1.09 15.85 171.97 0.002 0.118 0.002 92 2.69 2.68 0.01810 84.5 0.00105 0.11 1.09 15.85 171.97 158.50 17.20 1301.17 0.002 0.121 0.002 0.00105 93 2.68 2.67 0.01810 84.5 0.11 1.09 15.85 171.97 158.50 17.20 1336.70 0.002 0.124 0.002 15.85 94 2.67 2.66 0.01810 84.5 0.00105 0.11 1.09 171.97 158.50 17.20 1372.24 0.002 0.127 0.002

TOT

114	2.47	2.46	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2082.95	0.003	0.184	0.003
115	2.46	2.45	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2118.49	0.003	0.187	0.003
116	2.45	2.44	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2154.02	0.003	0.190	0.003
117	2.44	2.43	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2189.56	0.003	0.193	0.003
118	2.43	2.42	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2225.09	0.003	0.196	0.003
119	2.42	2.41	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2260.63	0.003	0.199	0.003
120			0.01810	84.5	0.00105	0.11	1.09	15.85	171.97		17.20	2296.16	0.003	0.202	0.003
	2.41	2.40								158.50					
121	2.40	2.39	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2331.70	0.003	0.205	0.003
122	2.39	2.38	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2367.24	0.003	0.208	0.003
123	2.38	2.37	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2402.77	0.003	0.211	0.003
124	2.37	2.36	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2438.31	0.003	0.214	0.003
125	2.36	2.35	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2473.84	0.003	0.216	0.003
126	2.35	2.34	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2509.38	0.003	0.219	0.003
127	2.34	2.33	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2544.91	0.003	0.222	0.003
128	2.33	2.32	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2580.45	0.003	0.225	0.004
129	2.32	2.31	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2615.98	0.003	0.228	0.004
130	2.31	2.30	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2651.52	0.003	0.231	0.004
131	2.30	2.29	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2687.06	0.004	0.234	0.004
132	2.29	2.28	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2722.59	0.004	0.237	0.004
133	2.28	2.27	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2758.13	0.004	0.240	0.004
134	2.27	2.26	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2793.66	0.004	0.243	0.004
135	2.26	2.25	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2829.20	0.004	0.246	0.004
136	2.25	2.24	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2864.73	0.004	0.249	0.004
137	2.24	2.23	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2900.27	0.004	0.252	0.004
138	2.23	2.22	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2935.81	0.004	0.255	0.004
139	2.22	2.21	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	2971.34	0.004	0.258	0.004
140	2.21	2.20	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3006.88	0.004	0.261	0.004
141	2.20	2.19	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3042.41	0.004	0.264	0.004
142	2.19	2.18	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3077.95	0.004	0.267	0.004
143	2.18	2.17	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3113.48	0.004	0.270	0.004
144	2.17	2.16	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3149.02	0.004	0.273	0.004
145	2.16	2.15	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3184.55	0.004	0.276	0.004
146	2.15	2.14	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3220.09	0.004	0.279	0.004
147	2.14	2.13	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3255.63	0.004	0.281	0.004
148	2.13	2.12	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3291.16	0.004	0.284	0.004
149	2.12	2.11	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3326.70	0.004	0.287	0.004
150	2.11	2.10	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3362.23	0.004	0.290	0.005
151	2.10	2.09	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3397.77	0.004	0.293	0.005
152	2.09	2.08	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3433.30	0.005	0.296	0.005
153	2.08	2.07	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3468.84	0.005	0.299	0.005
154	2.07	2.06	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3504.38	0.005	0.302	0.005
155	2.06	2.05	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3539.91	0.005	0.305	0.005
156	2.05	2.04	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3575.45	0.005	0.308	0.005
157	2.04	2.03	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3610.98	0.005	0.311	0.005
158	2.03	2.02	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3646.52	0.005	0.314	0.005
159	2.02	2.01	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3682.05	0.005	0.317	0.005
160	2.01	2.00	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3717.59	0.005	0.320	0.005
161	2.00	1.99	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3753.13	0.005	0.323	0.005
162	1.99	1.98	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3788.66	0.005	0.326	0.005
163	1.98	1.97	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3824.20	0.005	0.329	0.005
164	1.97	1.96	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3859.73	0.005	0.332	0.005
165	1.96	1.95	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3895.27	0.005	0.335	0.005
166	1.95	1.94	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3930.80	0.005	0.338	0.005
167	1.94	1.93	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	3966.34	0.005	0.341	0.005
168	1.93	1.92	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	4001.87	0.005	0.344	0.005
169	1.92	1.91	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	4037.41	0.005	0.347	0.005
170	1.91	1.90	0.01810	84.5	0.00105	0.11	1.09	15.85	171.97	158.50	17.20	4072.95	0.005	0.350	0.005

15477.53 14265.00

9.90

129

2.310 7.81

0.75

0.10

0.06

0.00

0.00 0.00

AVG 0.0011 1.08 15.85 17.20

CUM 15.90

ELEM ENDING SAT REAER BOD#1 BOD#1 ABOD#1 BOD#2 BOD#2 ABOD#2 BKGD FULL CORR ORGN ORGN NH3 NH3 DENIT MAC COLI NCM NCM PO4 ALG NO. DIST D.O. RATE DECAY SETT DECAY DECAY SETT DECAY SOD SOD SOD DECAY SETT DECAY SRCE RATE SRCE PROD PROD DECAY DECAY SETT mg/L 1/da 2.790 7.83 81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.83 2.780 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.72 0.00 0.00 0.00 82 0.00 0.00 0.00 0.00 0.00 2.88 0.00 83 2.770 7.83 0.75 0.10 0.06 0.00 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 84 2.760 7.83 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 85 2.750 7.83 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 86 2.740 7.83 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 87 2.730 7.83 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 88 2.720 7.83 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 2.88 2.88 2.88 89 2.710 7.83 0.75 0.10 0.06 0.00 0.00 0.00 0.00 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 2.88 2.700 7.83 0.00 0.00 2.88 2.88 0.15 0.00 0.00 90 0.75 0.10 0.06 0.00 0.00 0.06 0.00 0.00 0.72 0.00 0.00 0.00 0.00 2.88 91 2.690 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.82 0.10 0.06 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 92 2.680 0.75 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.82 0.10 0.06 0.00 0.00 0.00 2.88 2.88 2.88 93 2.670 0.75 0.00 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 2.660 0.00 0.00 0.00 2.88 2.88 2.88 2.650 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 2.640 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 97 2.630 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 98 0.00 2.88 2.88 2.88 2.620 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.88 2.88 2.88 99 2.610 7.82 0.75 0.10 0.06 0.00 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 100 2.600 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.00 101 2.590 7.82 0.10 0.06 0.00 0.00 0.00 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.75 102 2.580 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 103 2.570 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.75 104 2.560 7.82 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 105 2.550 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 106 2.540 0.00 0.00 0.00 0.00 2.88 107 2.530 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.82 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 108 2.520 0.75 0.10 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 7.82 0.00 0.00 0.00 2.88 2.88 2.88 0.06 109 2.510 0.75 0.10 0.06 0.00 0.15 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 110 2.500 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.72 111 2.490 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 112 2.480 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 113 2.470 7.82 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 114 2.460 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 115 2.450 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 116 2.440 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 117 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 2.430 7.81 0.00 118 2.420 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 119 2.410 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 2.88 120 2.400 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 121 2.390 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 122 2.380 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 123 2.370 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 124 2.360 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 125 2.350 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 126 2.340 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 2.88 2.88 127 2.330 7.81 0.75 0.10 0.06 0.00 0.00 0.00 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 128 7.81 0.75 0.10 0.06 0.00 0.00 0.00 0.00 2.88 2.88 2.88 0.15 0.06 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 2.320 0.00

0.15 0.06

0.00 0.00

0.00 0.00 0.72

0.00

0.00

0.00

0.00

0.00 2.88 2.88 2.88

130	2.300 7	7.81	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
131	2.290 7	7.81	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
132	2.280 7	7.81	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
133	2.270 7	7.81	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
134	2.260 7	7.81	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
135	2.250 7	7.81	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
136	2.240 7	7.80	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
137	2.230 7	7.80	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
138		7.80	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
139	2.210 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
140	2.200 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
141		7.80	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
142	2.180 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
143	2.170 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
144		7.80	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
145	2.150 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
146	2.140 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
147	2.130 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
148	2.120 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
149	2.110 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
150	2.100 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
151	2.090 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
152	2.080 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
153	2.070 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
154	2.060 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
155	2.050 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
156	2.040 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
157	2.030 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
158	2.020 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
159	2.010 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
160		7.79	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
161	1.990 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
162	1.980 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
163		7.79	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
164	1.960 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
165	1.950 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
166	1.940 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
167	1.930 7		0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
168		7.79	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
169		7.79	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
170		7.79	0.75	0.10	0.06	0.00	0.00	0.00	0.00	2.88	2.88	2.88	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		00	0.10	3.00	0.00	0.00	3.00	0.00				0.10	3.00	0.00	3.00	0.00	3.00	V •	3.00	0.00	J	5.00
AVG 2	O DEG C RA	ATE.	0.65	0.07	0.05	0.00	0 00	0.00	0 00	1.75			0.10	0.05	0.00	0 00	0.00	0 00			0.00	0.00	0.00
1140 2	5 DEG C 10r		0.00	0.07	5.05	0.00	0.00	3.00	0.00	1.75			0.10	3.03	0.00	3.00	0.00	3.00			0.00	J.00	3.00

^{*} g/m²/d ** mg/L/day

ELEM NO.					Conduct umhos/cm														NCM
81	2.790	27.91	0.24	23.00	422.50	4.89	7.32	0.00	7.32	0.00	2.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
82	2.780	27.91	0.25	23.08	422.73	4.83	7.28	0.00	7.28	0.00	2.77	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
83	2.770	27.91	0.26	23.16	422.97	4.77	7.24	0.00	7.24	0.00	2.72	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
84	2.760	27.91	0.27	23.24	423.24	4.72	7.20	0.00	7.20	0.00	2.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
85	2.750	27.91	0.28	23.34	423.53	4.67	7.16	0.00	7.16	0.00	2.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
86	2.740	27.91	0.29	23.44	423.84	4.63	7.12	0.00	7.12	0.00	2.58	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
87	2.730	27.91	0.30	23.55	424.17	4.58	7.08	0.00	7.08	0.00	2.54	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

88	2.720 27.91 0.31	23.66	424.53	4.55	7.04	0.00	7.04	0.00	2.49	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
89	2.710 27.91 0.32	23.79	424.91	4.51	7.00	0.00	7.00	0.00	2.45	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
90	2.700 27.91 0.33	23.92	425.32	4.48	6.97	0.00	6.97	0.00	2.41	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
91	2.690 27.91 0.34	24.06	425.76	4.45	6.93	0.00	6.93	0.00	2.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
92	2.680 27.91 0.35	24.21	426.22	4.42	6.90	0.00	6.90	0.00	2.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
93	2.670 27.91 0.36	24.37	426.71	4.40	6.86	0.00	6.86	0.00	2.30	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
94	2.660 27.91 0.37	24.55	427.24	4.37	6.83	0.00	6.83	0.00	2.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
95	2.650 27.91 0.38	24.73	427.79	4.35	6.80	0.00	6.80	0.00	2.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
96	2.640 27.91 0.39	24.92	428.38	4.33	6.77	0.00	6.77	0.00	2.19	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
97	2.630 27.91 0.40	25.12	429.00	4.32	6.74	0.00	6.74	0.00	2.16	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
98	2.620 27.91 0.41	25.33	429.66	4.30	6.71	0.00	6.71	0.00	2.13	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
99	2.610 27.91 0.42	25.56	430.35	4.28	6.68	0.00	6.68	0.00	2.10	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
100	2.600 27.91 0.43	25.80	431.08	4.27	6.65	0.00	6.65	0.00	2.07	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
101	2.590 27.91 0.44	26.05	431.85	4.26	6.62	0.00	6.62	0.00	2.04	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
102	2.580 27.91 0.45	26.31	432.66	4.25	6.59	0.00	6.59	0.00	2.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
103	2.570 27.91 0.47	26.59	433.51	4.24	6.57	0.00	6.57	0.00	1.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
104	2.560 27.91 0.48	26.88	434.40	4.23	6.54	0.00	6.54	0.00	1.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
105	2.550 27.91 0.49	27.18	435.33	4.22	6.52	0.00	6.52	0.00	1.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
106	2.540 27.91 0.50	27.50	436.31	4.21	6.49	0.00	6.49	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
107	2.530 27.91 0.51	27.83	437.34	4.21	6.47	0.00	6.47	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
108	2.520 27.91 0.52	28.18	438.41	4.20	6.45	0.00	6.45	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
109						0.00				0.00			0.00	10.00		0.	
	2.510 27.91 0.53	28.55	439.54	4.19	6.42		6.42	0.00	1.82		0.00	0.00			0.00		0.00
110	2.500 27.91 0.54	28.93	440.71	4.19	6.40	0.00	6.40	0.00	1.80	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
111	2.490 27.91 0.55	29.33	441.93	4.18	6.38	0.00	6.38	0.00	1.78	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
112	2.480 27.91 0.56	29.74	443.21	4.18	6.36	0.00	6.36	0.00	1.75	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
113	2.470 27.91 0.57	30.18	444.54	4.18	6.34	0.00	6.34	0.00	1.73	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
114	2.460 27.91 0.58	30.63	445.92	4.17	6.32	0.00	6.32	0.00	1.71	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
115						0.00				0.00		0.00		10.00			0.00
	2.450 27.91 0.59	31.10	447.37	4.17	6.30		6.30	0.00	1.69		0.00		0.00		0.00	0.	
116	2.440 27.91 0.60	31.58	448.87	4.17	6.28	0.00	6.28	0.00	1.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
117	2.430 27.91 0.61	32.09	450.43	4.17	6.27	0.00	6.27	0.00	1.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
118	2.420 27.91 0.62	32.62	452.05	4.17	6.25	0.00	6.25	0.00	1.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
119	2.410 27.91 0.63	33.17	453.73	4.17	6.23	0.00	6.23	0.00	1.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
120	2.400 27.91 0.64	33.74	455.48	4.16	6.22	0.00	6.22	0.00	1.60	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
121	2.390 27.91 0.65	34.33	457.29	4.16	6.20	0.00	6.20	0.00	1.58	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
122	2.380 27.91 0.66	34.94	459.17	4.16	6.19	0.00	6.19	0.00	1.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
123	2.370 27.91 0.67	35.57	461.12	4.16	6.17	0.00	6.17	0.00	1.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
124	2.360 27.91 0.68	36.23	463.14	4.16	6.16	0.00	6.16	0.00	1.53	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
125	2.350 27.91 0.69	36.91	465.23	4.16	6.15	0.00	6.15	0.00	1.51	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
						0.00				0.00				10.00			
126	2.340 27.91 0.70	37.61	467.39	4.17	6.13		6.13	0.00	1.50		0.00	0.00	0.00		0.00	0.	0.00
127	2.330 27.91 0.71	38.34	469.63	4.17	6.12	0.00	6.12	0.00	1.48	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
128	2.320 27.91 0.72	39.09	471.94	4.17	6.11	0.00	6.11	0.00	1.47	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
129	2.310 27.91 0.73	39.87	474.33	4.17	6.10	0.00	6.10	0.00	1.46	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
130	2.300 27.91 0.74	40.67	476.80	4.17	6.09	0.00	6.09	0.00	1.44	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
131	2.290 27.91 0.75	41.50	479.35	4.17	6.08	0.00	6.08	0.00	1.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
132	2.280 27.91 0.76	42.36	481.98	4.17	6.07	0.00	6.07	0.00	1.42	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
133	2.270 27.91 0.77	43.24	484.69	4.17	6.06	0.00	6.06	0.00	1.41	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
134	2.260 27.91 0.78	44.15	487.49	4.18	6.06	0.00	6.06	0.00	1.39	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
135	2.250 27.91 0.79	45.09	490.38	4.18	6.05	0.00	6.05	0.00	1.38	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
136	2.240 27.91 0.80	46.06	493.35	4.18	6.04	0.00	6.04	0.00	1.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
137	2.230 27.91 0.81	47.05	496.42	4.18	6.04	0.00	6.04	0.00	1.36	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
138	2.220 27.91 0.82	48.08	499.57	4.18	6.03	0.00	6.03	0.00	1.35	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
139	2.210 27.91 0.83	49.14	502.82	4.19	6.03	0.00	6.03	0.00	1.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
140	2.200 27.91 0.84	50.22	506.17	4.19	6.03	0.00	6.03	0.00	1.33	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
141	2.190 27.91 0.85	51.34	509.61	4.19	6.02	0.00	6.02	0.00	1.32	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
142	2.180 27.91 0.86	52.49	513.14	4.20	6.02	0.00	6.02	0.00	1.32	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
143	2.170 27.91 0.87	53.68	516.78	4.20	6.02	0.00	6.02	0.00	1.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
144	2.160 27.91 0.88	54.89	520.52	4.20	6.02	0.00	6.02	0.00	1.30	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
145	2.150 27.91 0.89	56.14	524.37	4.21	6.02	0.00	6.02	0.00	1.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
146	2.140 27.91 0.90	57.43	528.31	4.21	6.02	0.00	6.02	0.00	1.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

147	2.130	27.91	0.91	58.75	532.37	4.22	6.02	0.00	6.02	0.00	1.28	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
148 149	2.120	27.91 27.91	0.93	60.10 61.49	536.53 540.81	4.22	6.02 6.03	0.00	6.02 6.03	0.00	1.27 1.27	0.00	0.00	0.00	0.00	10.00	0.00	0. 0.	0.00
150	2.100	27.91	0.95	62.91	545.19	4.23	6.03	0.00	6.03	0.00	1.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
151	2.090	27.91	0.96	64.38	549.69	4.23	6.03	0.00	6.03	0.00	1.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
152	2.080	27.91	0.97	65.88	554.30	4.24	6.04	0.00	6.04	0.00	1.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
153	2.070	27.91	0.98	67.42	559.03	4.25	6.05	0.00	6.05	0.00	1.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
154	2.060	27.91	0.99	68.99	563.88	4.25	6.05	0.00	6.05	0.00	1.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
155	2.050		1.00	70.61	568.85	4.26	6.06	0.00	6.06	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
156	2.040		1.01	72.27	573.94	4.27	6.07	0.00	6.07	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
157	2.030		1.02	73.96	579.16	4.27	6.08	0.00	6.08	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
158	2.020		1.03	75.70	584.50	4.28	6.09	0.00	6.09	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
159	2.010		1.04	77.48	589.97	4.29	6.10	0.00	6.10	0.00	1.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
160 161	1.990		1.05	79.30 81.17	595.57 601.31	4.30 4.31	6.12 6.13	0.00	6.12 6.13	0.00	1.23	0.00	0.00	0.00	0.00	10.00	0.00	0. 0.	0.00
162	1.980		1.00	83.07	607.17	4.31	6.14	0.00	6.14	0.00	1.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
163	1.970	27.91		85.02	613.17	4.33	6.16	0.00	6.16	0.00	1.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
164	1.960		1.09	87.02	619.31	4.34	6.18	0.00	6.18	0.00	1.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
165	1.950	27.91		89.06	625.58	4.36	6.19	0.00	6.19	0.00	1.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
166	1.940		1.11	91.15	632.00	4.37	6.21	0.00	6.21	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
167	1.930	27.91	1.12	93.28	638.56	4.38	6.23	0.00	6.23	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
168	1.920	27.91	1.13	95.46	645.27	4.40	6.25	0.00	6.25	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
169	1.910	27.91	1.14	97.69	652.12	4.42	6.28	0.00	6.28	0.00	1.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
170	1.900	27.91	1.15	99.97	659.12	4.43	6.30	0.00	6.30	0.00	1.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 3 RKM 1.9 to 1.5

178

179

180

181

182

183

184

185

1.83

1.82

1.81

1.80

1.79

1.78

1.77

1.76

1.82

1.81

1.80

1.79

1.78

1.77

1.76

1.75

0.01810 84.5

0.01810 84.5

0.01810 84.5

0.01810 84.5

0.01810 84.5

0.01810 84.5

0.01810 84.5

0.01810 84.5

0.00055

0.00055

0.00055

0.00055

0.00055

0.00055

0.00055

0.00055

0.21

0.21

0.21

0.21

0.21

0.21

0.21

0.21

1.19

1.19

1.19

1.19

1.19

1.19

1.19

BAYOU CANE WATERSHED MODEL

SUMR,4,5 DO,OverallReduc,90%reduc rch 1,60%reduc rch 2-6,hosp5/2

								, ., .	,		,		-,		,-			
****	*****	*****	*****	*****	*****	******	REACH :	INPUTS *	*****	*****	*****	*****	****	*****	*****	*****	**	
ELEM NO.	TYPE	FLOW	TEMP deg C	SALI ppi	N Chloride t mg/L	Conduct umhos/cm		BOD#1 mg/L		EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	PHOS mg/L		COLI #/100mL	NCM
171	UPR RCH	0.01810	27.91	1.1	5 99.97	659.12	4.43	6.30	0.00	6.30	0.00	1.25	0.00	0.00	0.00	10.00	0.00	0.00
****	******	*****	*****	*****	******	** HYDRAU	LIC PARA	AMETER V	ALUES *	*****	*****	*****	*****	*****	******	*****	**	
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLU	JME	SURFACE AREA	X-SECT AREA	TII PR:	DAL I	TIDAL VELO	DISPRSN	MEAN VELO	
	km	km	m^3/s		m/s	days	m	m		m 3	m²	m²		m³	m/s	m^2/s	m/s	
171	1.90	1.89	0.01810	84.5	0.00055	0.21	1.19	27.74	329.	79	277.37	32.98	4133	.82 (0.003	0.200	0.003	
172	1.89	1.88	0.01810	84.5	0.00055	0.21	1.19	27.74	329.	79	277.37	32.98	4194	.70 (0.003	0.203	0.003	
173	1.88	1.87	0.01810	84.5	0.00055	0.21	1.19	27.74	329.	79	277.37	32.98	4255	.58 0	0.003	0.206	0.003	
174	1.87	1.86	0.01810	84.5	0.00055	0.21	1.19	27.74	329.	79	277.37	32.98	4316	.45 (0.003	0.208	0.003	
175	1.86	1.85	0.01810	84.5	0.00055	0.21	1.19	27.74	329.		277.37	32.98	4377		0.003	0.211	0.003	
176	1.85	1.84	0.01810	84.5	0.00055	0.21	1.19	27.74	329.		277.37	32.98	4438		0.003	0.214		
177	1.84	1.83	0.01810	84.5	0.00055	0.21	1.19	27.74	329.		277.37	32.98	4499		0.003	0.217	0.003	
1//	1.04	1.05	0.01010	04.5	0.00055	0.21	1.19	21.14	323.	13	211.31	32.90	4433	.00	.005	0.21/	0.003	

27.74

27.74

27.74

27.74

27.74

27.74

27.74

1.19 27.74

329.79

329.79

329.79

329.79

329.79

329.79

329.79

329.79

277.37

277.37

277.37

277.37 32.98

277.37 32.98

277.37 32.98

277.37 32.98

32.98

32.98

32.98

4559.96

4620.84

4681.72

4742.59

4803.47

4864.35

4925.22

277.37 32.98 4986.10 0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.220

0.223

0.226

0.229

0.231

0.234

0.237

0.240 0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

186 187 188 189 190 191 192 193 194 195 196 197	1.75 1.74 1.73 1.72 1.71 1.70 1.69 1.68 1.67 1.66 1.65	1.74 1.73 1.72 1.71 1.70 1.69 1.68 1.67 1.66 1.65 1.64 1.63	0.01810 0.01810 0.01810 0.01810 0.01810 0.01810 0.01810 0.01810 0.01810 0.01810 0.01810 0.01810	84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5	0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19	27.74 27.74 27.74 27.74 27.74 27.74 27.74 27.74 27.74 27.74 27.74	329.79 329.79 329.79 329.79 329.79 329.79 329.79 329.79 329.79 329.79 329.79	277.37 277.37 277.37 277.37 277.37 277.37 277.37 277.37 277.37 277.37 277.37	32.98 32.98 32.98 32.98 32.98 32.98 32.98 32.98 32.98 32.98 32.98 32.98	5046.98 5107.85 5168.73 5229.61 5290.49 5351.36 5412.24 5473.12 5533.99 5594.87 5655.75 5716.62	0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.243 0.246 0.249 0.252 0.257 0.260 0.263 0.266 0.269 0.272 0.275	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
199 200	1.62 1.61	1.61 1.60	0.01810 0.01810	84.5 84.5	0.00055 0.00055	0.21 0.21	1.19 1.19	27.74 27.74	329.79 329.79	277.37 277.37	32.98 32.98	5838.38 5899.25	0.004	0.280 0.283	0.004
201	1.60	1.59	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	5960.13	0.004	0.286	0.004
202	1.59	1.58	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6021.01	0.004	0.289	0.004
203	1.58	1.57	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6081.89	0.004	0.292	0.004
204	1.57	1.56	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6142.76	0.004	0.295	0.004
205	1.56	1.55	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6203.64	0.004	0.298	0.004
206	1.55	1.54	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6264.52	0.004	0.301	0.004
207	1.54	1.53	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6325.39	0.004	0.303	0.004
208	1.53	1.52	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6386.27	0.004	0.306	0.004
209	1.52	1.51	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6447.15	0.004	0.309	0.004
210	1.51	1.50	0.01810	84.5	0.00055	0.21	1.19	27.74	329.79	277.37	32.98	6508.02	0.004	0.312	0.005
TOT AVG CUM					0.0005	8.44 24.33	1.19	27.74	13191.72	11094.80	32.98				

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
171	1.890	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
172	1.880	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
173	1.870	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
174	1.860	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
175	1.850	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
176	1.840	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
177	1.830	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
178	1.820	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
179	1.810	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
180	1.800	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
181	1.790	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
182	1.780	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
183	1.770	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
184	1.760	7.79	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
185	1.750	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
186	1.740	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
187	1.730	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
188	1.720	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
189	1.710	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
190	1.700	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
191	1.690	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
192	1.680	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00

193	1.670	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
194	1.660	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
195	1.650	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
196	1.640	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
197	1.630	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
198	1.620	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
199	1.610	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
200	1.600	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
201	1.590	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
202	1.580	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
203	1.570	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
204	1.560	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
205	1.550	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
206	1.540	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
207	1.530	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
208	1.520	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
209	1.510	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
210	1.500	7.78	0.68	0.08	0.06	0.00	0.00	0.00	0.00	2.47	2.47	2.47	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
AVG 2	DEG C	RATE	0.59	0.06	0.05	0.00	0.00	0.00	0.00	1.50			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

****	******	*****	*****	*****	*****	**** WA	TER QUA	ALITY CO	ONSTITUE	NT VALU	ES ****	*****	*****	*****	*****	*****	*****	**	
ELEM	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN mg/L	NH3	NO3+2	TOTN mg/L	PHOS mg/L	CHL A	MACRO g/m³	COLI #/100mL	NCM
				3.			3.	3.	3.			3.	J.		J.	1 3			
171	1.890	27.91	1.16	102.20	665.97	4.45	6.32	0.00	6.32	0.00	1.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
172	1.880	27.91	1.16	104.37	672.67	4.47	6.35	0.00	6.35	0.00	1.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
173	1.870	27.91	1.17	106.58	679.45	4.48	6.37	0.00	6.37	0.00	1.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
174	1.860	27.91	1.18	108.81	686.32	4.50	6.39	0.00	6.39	0.00	1.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
175	1.850	27.91	1.19	111.08	693.28	4.51	6.41	0.00	6.41	0.00	1.27	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
176	1.840	27.91	1.19	113.37	700.32	4.52	6.44	0.00	6.44	0.00	1.27	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
177	1.830	27.91	1.20	115.68	707.44	4.53	6.46	0.00	6.46	0.00	1.27	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
178	1.820	27.91	1.21	118.03	714.65	4.55	6.48	0.00	6.48	0.00	1.28	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
179	1.810	27.91	1.22	120.40	721.95	4.56	6.50	0.00	6.50	0.00	1.28	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
180	1.800	27.91	1.23	122.80	729.33	4.57	6.52	0.00	6.52	0.00	1.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
181	1.790	27.91	1.23	125.23	736.80	4.58	6.55	0.00	6.55	0.00	1.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
182	1.780	27.91	1.24	127.69	744.35	4.59	6.57	0.00	6.57	0.00	1.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
183	1.770	27.91	1.25	130.17	751.98	4.60	6.59	0.00	6.59	0.00	1.30	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
184	1.760	27.91	1.25	132.68	759.70	4.61	6.61	0.00	6.61	0.00	1.30	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
185	1.750	27.91	1.26	135.22	767.51	4.61	6.63	0.00	6.63	0.00	1.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
186	1.740	27.91	1.27	137.78	775.40	4.62	6.65	0.00	6.65	0.00	1.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
187	1.730	27.91	1.28	140.38	783.37	4.63	6.68	0.00	6.68	0.00	1.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
188	1.720	27.91	1.28	143.00	791.43	4.64	6.70	0.00	6.70	0.00	1.32	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
189	1.710	27.91	1.29	145.64	799.57	4.65	6.72	0.00	6.72	0.00	1.32	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
190	1.700	27.91	1.30	148.32	807.79	4.66	6.74	0.00	6.74	0.00	1.33	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
191	1.690	27.91	1.31	151.02	816.10	4.66	6.76	0.00	6.76	0.00	1.33	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
192	1.680	27.91	1.32	153.75	824.50	4.67	6.79	0.00	6.79	0.00	1.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
193	1.670	27.91	1.32	156.51	832.97	4.68	6.81	0.00	6.81	0.00	1.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
194	1.660	27.91	1.33	159.29	841.53	4.69	6.83	0.00	6.83	0.00	1.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
195	1.650	27.91	1.34	162.10	850.18	4.70	6.85	0.00	6.85	0.00	1.35	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
196	1.640	27.91	1.35	164.94	858.90	4.70	6.88	0.00	6.88	0.00	1.35	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
197	1.630	27.91	1.35	167.81	867.71	4.71	6.90	0.00	6.90	0.00	1.36	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
198	1.620	27.91	1.36	170.70	876.61	4.72	6.92	0.00	6.92	0.00	1.36	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
199	1.610	27.91	1.37	173.62	885.58	4.73	6.95	0.00	6.95	0.00	1.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
200	1.600	27.91	1.38	176.56	894.64	4.74	6.97	0.00	6.97	0.00	1.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

201	1.590	27.91	1.38	179.54	903.79	4.75	7.00	0.00	7.00	0.00	1.38	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
202	1.580	27.91	1.39	182.54	913.01	4.76	7.02	0.00	7.02	0.00	1.38	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
203	1.570	27.91	1.40	185.56	922.32	4.77	7.04	0.00	7.04	0.00	1.39	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
204	1.560	27.91	1.41	188.62	931.71	4.78	7.07	0.00	7.07	0.00	1.40	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
205	1.550	27.91	1.41	191.70	941.18	4.79	7.09	0.00	7.09	0.00	1.40	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
206	1.540	27.91	1.42	194.81	950.74	4.81	7.12	0.00	7.12	0.00	1.41	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
207	1.530	27.91	1.43	197.94	960.38	4.82	7.15	0.00	7.15	0.00	1.41	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
208	1.520	27.91	1.44	201.10	970.10	4.83	7.17	0.00	7.17	0.00	1.42	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
209	1.510	27.91	1.44	204.29	979.90	4.85	7.20	0.00	7.20	0.00	1.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
210	1.500	27.91	1.45	207.51	989.79	4.86	7.23	0.00	7.23	0.00	1.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 4 RKM 1.5 to 1.1

BAYOU CANE WATERSHED MODEL SUMR, 4,5 DO, OverallReduc, 90% reduc rch 1,60% reduc rch 2-6, hosp5/2

NCM

****	*****	*****	*****	****	*****	*** HYDRA	ULIC PARA	AMETER VA	LUES ****	*****	*****	*****	*****	*****	*
ELEM	BEGIN	ENDING	FLOW	PCT	ADVCTV	TRAVEL	DEPTH	WIDTH	VOLUME	SURFACE	X-SECT	TIDAL	TIDAL	DISPRSN	MEAN
NO.	DIST	DIST		EFF	VELO	TIME				AREA	AREA	PRISM	VELO		VELO
	km	km	m^3/s		m/s	days	m	m	m³	m²	m²	m³	m/s	m^2/s	m/s
211	1.50	1.49	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6570.24	0.005	0.316	0.005
212	1.49	1.48	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6632.45	0.005	0.319	0.005
213	1.48	1.47	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6694.67	0.005	0.322	0.005
214	1.47	1.46	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6756.88	0.005	0.325	0.005
215	1.46	1.45	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6819.09	0.005	0.328	0.005
216	1.45	1.44	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6881.31	0.005	0.331	0.005
217	1.44	1.43	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	6943.52	0.005	0.334	0.005
218	1.43	1.42	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7005.74	0.005	0.337	0.006
219	1.42	1.41	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7067.95	0.006	0.340	0.006
220	1.41	1.40	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7130.16	0.006	0.343	0.006
221	1.40	1.39	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7192.38	0.006	0.346	0.006
222	1.39	1.38	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7254.59	0.006	0.349	0.006
223	1.38	1.37	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7316.80	0.006	0.352	0.006
224	1.37	1.36	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7379.02	0.006	0.355	0.006
225	1.36	1.35	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7441.23	0.006	0.358	0.006
226	1.35	1.34	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7503.45	0.006	0.361	0.006
227	1.34	1.33	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7565.66	0.006	0.364	0.006
228	1.33	1.32	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7627.87	0.006	0.367	0.006
229	1.32	1.31	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7690.09	0.006	0.369	0.006
230	1.31	1.30	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7752.30	0.006	0.372	0.006
231	1.30	1.29	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7814.52	0.006	0.375	0.006
232	1.29	1.28	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7876.73	0.006	0.378	0.006
233	1.28	1.27	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	7938.94	0.006	0.381	0.006
234	1.27	1.26	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8001.16	0.006	0.384	0.006
235	1.26	1.25	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8063.37	0.006	0.387	0.006
236	1.25	1.24	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8125.58	0.006	0.390	0.006
237	1.24	1.23	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8187.80	0.006	0.393	0.006
238	1.23	1.22	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8250.01	0.006	0.396	0.006
239	1.22	1.21	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8312.23	0.006	0.399	0.007

240	1.21	1.20	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8374.44	0.007	0.402	0.007
241	1.20	1.19	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8436.65	0.007	0.405	0.007
242	1.19	1.18	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8498.87	0.007	0.408	0.007
243	1.18	1.17	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8561.08	0.007	0.411	0.007
244	1.17	1.16	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8623.30	0.007	0.414	0.007
245	1.16	1.15	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8685.51	0.007	0.417	0.007
246	1.15	1.14	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8747.72	0.007	0.420	0.007
247	1.14	1.13	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8809.94	0.007	0.423	0.007
248	1.13	1.12	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8872.15	0.007	0.426	0.007
249	1.12	1.11	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8934.37	0.007	0.429	0.007
250	1.11	1.10	0.01810	84.5	0.00063	0.19	1.02	28.35	289.41	283.46	28.94	8996.58	0.007	0.432	0.007
TOT						7.40			11576.51	11338.40					
AVG					0.0006		1.02	28.35			28.94				
CUM						31.74									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
211	1.490	7.78	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
212	1.480		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97		1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
213	1.470		0.79	0.08	0.06	0.00	0.00	0.00		1.97			0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
214	1.460	7.78	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
215	1.450	7.78	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
216	1.440	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
217	1.430	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
218	1.420	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
219	1.410	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
220	1.400	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
221	1.390	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.15	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
222	1.380	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
223	1.370	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
224	1.360	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
225	1.350	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
226	1.340		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
227	1.330		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97			0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
228	1.320		0.79	0.08	0.06	0.00	0.00			1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
229	1.310	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
230	1.300		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97		1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
231	1.290		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97		1.97		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
232	1.280		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
233	1.270		0.79	0.08	0.06	0.00	0.00			1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
234	1.260		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97		1.97		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
235	1.250		0.79	0.08	0.06	0.00	0.00			1.97		1.97	0.16		0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
236	1.240		0.79	0.08	0.06	0.00	0.00	0.00		1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
237	1.230		0.79	0.08	0.06	0.00	0.00		0.00	1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
238	1.220		0.79	0.08	0.06	0.00	0.00	0.00	0.00		1.97	1.97		0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
239	1.210		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
240	1.200		0.79	0.08	0.06	0.00	0.00	0.00	0.00		1.97			0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
241	1.190		0.79	0.08	0.06	0.00	0.00			1.97			0.16		0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
242	1.180		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97				0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
243	1.170		0.79	0.08	0.06	0.00	0.00	0.00	0.00		1.97		0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
244	1.160		0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97		1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
245	1.150	7.77	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97		1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
246	1.140	7.76	0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97	1.97	1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00

248 249	1.130 7.76 1.120 7.76 1.110 7.76 1.100 7.76	0.79 0.79	0.08	0.06	0.00	0.00	0.00	0.00	1.97 1.97	1.97 1.97	1.97 1.97	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
AVG 2	O DEG C RATE	0.69	0.06	0.05	0.00	0.00	0.00	0.00	1.20			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM NO.	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1	BOD#2 mg/L	EBOD#1 mg/L	EBOD#2	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A	MACRO g/m³	COLI #/100mL	NCM
							-	-	_	-		-							
211	1.490	27.91		210.95		4.88	7.25	0.00	7.25	0.00	1.44	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
212	1.480	27.91		214.67		4.89	7.28	0.00	7.28	0.00	1.45	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
213	1.470	27.91		218.42		4.91	7.32	0.00	7.32	0.00	1.45	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
214	1.460	27.91	1.48	222.21	1034.99	4.93	7.35	0.00	7.35	0.00	1.46	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
215	1.450		1.49	226.04	1046.76	4.94	7.37	0.00	7.37	0.00	1.47	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
216	1.440	27.91		229.90		4.96	7.40	0.00	7.40	0.00	1.48	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
217	1.430		1.50	233.81		4.97	7.43	0.00	7.43	0.00	1.48	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
218	1.420	27.91		237.75		4.98	7.46	0.00	7.46	0.00	1.49	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
219	1.410	27.91			1095.03	5.00	7.49	0.00	7.49	0.00	1.50	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
220	1.400	27.91		245.75		5.01	7.52	0.00	7.52	0.00	1.51	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
221	1.390		1.54	249.81		5.02	7.55	0.00	7.55	0.00	1.51	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
222	1.380	27.91		253.90		5.03	7.58	0.00	7.58	0.00	1.52	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
223	1.370	27.91		258.04		5.04	7.60	0.00	7.60	0.00	1.53	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
224	1.360	27.91	1.56	262.21	1158.01	5.05	7.63	0.00	7.63	0.00	1.54	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
225	1.350	27.91		266.43		5.07	7.66	0.00	7.66	0.00	1.54	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
226	1.340	27.91		270.68		5.08	7.69	0.00	7.69	0.00	1.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
227	1.330	27.91		274.97	1197.23	5.09	7.71	0.00	7.71	0.00	1.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
228	1.320	27.91	1.59	279.30		5.10	7.74	0.00	7.74	0.00	1.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
229	1.310	27.91	1.60	283.66		5.11	7.77	0.00	7.77	0.00	1.57	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
230	1.300	27.91			1237.51	5.12	7.80	0.00	7.80	0.00	1.58	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
231	1.290	27.91		292.51		5.13	7.82	0.00	7.82	0.00	1.59	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
232	1.280	27.91		297.00		5.14	7.85	0.00	7.85	0.00	1.59	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
233	1.270	27.91	1.63	301.52	1278.88	5.16	7.88	0.00	7.88	0.00	1.60	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
234	1.260	27.91		306.08		5.17	7.90	0.00	7.90	0.00	1.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
235	1.250		1.64	310.68		5.18	7.93	0.00	7.93	0.00	1.62	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
236	1.240	27.91	1.65	315.32	1321.32	5.19	7.96	0.00	7.96	0.00	1.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
237	1.230	27.91		320.00		5.20	7.98	0.00	7.98	0.00	1.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
238	1.220	27.91	1.67	324.72	1350.21	5.22	8.01	0.00	8.01	0.00	1.64	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
239	1.210		1.67	329.47		5.23	8.04	0.00	8.04	0.00	1.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
240	1.200	27.91	1.68	334.27	1379.58	5.24	8.06	0.00	8.06	0.00	1.66	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
241	1.190	27.91	1.69	339.10	1394.45	5.26	8.09	0.00	8.09	0.00	1.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
242	1.180	27.91	1.70	343.98	1409.44	5.27	8.12	0.00	8.12	0.00	1.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
243	1.170	27.91	1.71	348.89	1424.54	5.29	8.15	0.00	8.15	0.00	1.68	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
244	1.160	27.91	1.71	353.84	1439.77	5.30	8.17	0.00	8.17	0.00	1.69	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
245	1.150	27.91	1.72	358.84	1455.12	5.32	8.20	0.00	8.20	0.00	1.70	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
246	1.140	27.91	1.73	363.87	1470.59	5.34	8.23	0.00	8.23	0.00	1.71	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
247	1.130	27.91	1.74	368.94	1486.18	5.35	8.25	0.00	8.25	0.00	1.72	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
248	1.120	27.91	1.74	374.05		5.37	8.28	0.00	8.28	0.00	1.73	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
249	1.110	27.91	1.75	379.19	1517.73	5.39	8.31	0.00	8.31	0.00	1.74	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
250	1.100	27.91	1.76	384.38	1533.68	5.41	8.34	0.00	8.34	0.00	1.75	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 5 RKM 1.1 to 0.3

ELEM TYPE FLOW TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 NO. deg C ppt mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	PHOS CHL A COLI NCM mg/L µg/L #/100mL												
251 UPR RCH 0.01810 27.91 1.76 384.38 1533.68 5.41 8.34 0.00 8.34 0.00 1.75 0.00 0.00	0.00 10.00 0.00 0.00												
**************************************	*****												
	IDAL DISPRSN MEAN VELO VELO												
km km m^3/s m/s days m m m^3 m^2 m^2 m^3	m/s m^2/s m/s												
	.008 0.557 0.008												
	.008 0.560 0.008												
	.008 0.563 0.008												
	.008												
	.008 0.572 0.008												
	.008 0.575 0.008												
	.008 0.578 0.008												
	.008 0.581 0.008												
	.008 0.584 0.008												
261 1.00 0.99 0.01810 84.5 0.00070 0.17 1.21 21.49 260.00 214.88 26.00 9554.41 0.	.008 0.588 0.008												
262 0.99 0.98 0.01810 84.5 0.00070 0.17 1.21 21.49 260.00 214.88 26.00 9605.12 0.	.008 0.591 0.008												
263 0.98 0.97 0.01810 84.5 0.00070 0.17 1.21 21.49 260.00 214.88 26.00 9655.83 0.	.008 0.594 0.008												
	.008 0.597 0.008												
	.008 0.600 0.009												
	.009 0.603 0.009												
	.009 0.606 0.009												
	.009 0.609 0.009												
	.009												
	.009 0.619 0.009												
	.009 0.622 0.009												
	.009 0.625 0.009												
	.009 0.628 0.009												
	.009 0.631 0.009												
	.009 0.634 0.009												
277 0.84 0.83 0.01810 84.5 0.00070 0.17 1.21 21.49 260.00 214.88 26.00 10365.80 0.	.009 0.637 0.009												
	.009 0.640 0.009												
	.009 0.643 0.009												
	.009 0.646 0.009												
	.009 0.649 0.009												
	.009 0.653 0.009												
	.009 0.656 0.009												
	.009 0.659 0.009												
	.009												
	.009 0.668 0.009												
	.009 0.671 0.010												
	.010 0.674 0.010												
	.010 0.677 0.010												
	.010 0.680 0.010												
	.010 0.684 0.010												
293 0.68 0.67 0.01810 84.5 0.00070 0.17 1.21 21.49 260.00 214.88 26.00 11177.19 0	.010 0.687 0.010												

294	0.67	0.66	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11227.90	0.010	0.690	0.010
295	0.66	0.65	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11278.62	0.010	0.693	0.010
296	0.65	0.64	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11329.33	0.010	0.696	0.010
297	0.64	0.63	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11380.04	0.010	0.699	0.010
298	0.63	0.62	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11430.75	0.010	0.702	0.010
299	0.62	0.61	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11481.46	0.010	0.705	0.010
300	0.61	0.60	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11532.17	0.010	0.708	0.010
301	0.60	0.59	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11582.89	0.010	0.711	0.010
302	0.59	0.58	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11633.60	0.010	0.715	0.010
303	0.58	0.57	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11684.31	0.010	0.718	0.010
304	0.57	0.56	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11735.02	0.010	0.721	0.010
305	0.56	0.55	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11785.73	0.010	0.724	0.010
306	0.55	0.54	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11836.45	0.010	0.727	0.010
307	0.54	0.53	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11887.16	0.010	0.730	0.010
308	0.53	0.52	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11937.87	0.010	0.733	0.010
309	0.52	0.51	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	11988.58	0.010	0.736	0.010
310	0.51	0.50	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12039.29	0.010	0.739	0.011
311	0.50	0.49	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12090.01	0.011	0.742	0.011
312	0.49	0.48	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12140.72	0.011	0.746	0.011
313	0.48	0.47	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12191.43	0.011	0.749	0.011
314	0.47	0.46	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12242.14	0.011	0.752	0.011
315	0.46	0.45	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12292.85	0.011	0.755	0.011
316	0.45	0.44	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12343.57	0.011	0.758	0.011
317	0.44	0.43	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12394.28	0.011	0.761	0.011
318	0.43	0.42	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12444.99	0.011	0.764	0.011
319	0.42	0.41	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12495.70	0.011	0.767	0.011
320	0.41	0.40	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12546.41	0.011	0.770	0.011
321	0.40	0.39	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12597.12	0.011	0.773	0.011
322	0.39	0.38	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12647.84	0.011	0.777	0.011
323	0.38	0.37	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12698.55	0.011	0.780	0.011
324	0.37	0.36	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12749.26	0.011	0.783	0.011
325	0.36	0.35	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12799.97	0.011	0.786	0.011
326	0.35	0.34	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12850.68	0.011	0.789	0.011
327	0.34	0.33	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12901.40	0.011	0.792	0.011
328	0.33	0.32	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	12952.11	0.011	0.795	0.011
329	0.32	0.31	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	13002.82	0.011	0.798	0.011
330	0.31	0.30	0.01810	84.5	0.00070	0.17	1.21	21.49	260.00	214.88	26.00	13053.53	0.011	0.801	0.011
TOT						13.30			20800.37	17190.40					
AVG					0.0007		1.21	21.49			26.00				
CUM						45.04									

ELEM NO.	ENDING DIST		REAER RATE 1/da	BOD#1 DECAY 1/da	SETT	ABOD#1 DECAY 1/da	DECAY	SETT	ABOD#2 DECAY 1/da	SOD	FULL SOD *		ORGN DECAY 1/da		NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
251	1.090	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
252	1.080	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
253	1.070	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
254	1.060	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
255	1.050	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
256	1.040	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
257	1.030	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
258	1.020	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
259	1.010	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
260	1.000	7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00

261	0.990 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
262	0.980 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
263	0.970 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56		0.06		0.00			0.72	0.00	0.00	0.00	0.00
264	0.960 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56		0.06		0.00			0.72	0.00	0.00	0.00	0.00
265	0.950 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
266	0.940 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
267	0.930 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1 56	1.56	1 56	0.16	0.06	0.00	0.00	0 00	0.00	0.72	0.00	0.00	0.00	0.00
268	0.920 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56		0.06		0.00			0.72	0.00	0.00	0.00	0.00
269	0.910 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56				0.06	0.00	0.00			0.72	0.00	0.00	0.00	0.00
270	0.900 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
271	0.890 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
272	0.880 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
273	0.870 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
274	0.860 7.76	0.86		0.06	0.00	0.00	0.00		1.56				0.06	0.00			0.00		0.00	0.00	0.00	0.00
275	0.850 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06	0.00			0.00		0.00	0.00	0.00	0.00
276	0.840 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
277	0.830 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
278	0.820 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
279	0.810 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06	0.00			0.00		0.00	0.00	0.00	0.00
280	0.800 7.76	0.86		0.06	0.00		0.00		1.56				0.06	0.00			0.00		0.00	0.00	0.00	0.00
281	0.790 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
282	0.780 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
283	0.770 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
284	0.760 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
285	0.750 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06	0.00			0.00		0.00	0.00	0.00	0.00
286	0.740 7.76	0.86		0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
287	0.730 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
288	0.720 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
289	0.710 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
290	0.700 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
291	0.690 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
292	0.680 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56		0.06		0.00			0.72	0.00	0.00	0.00	0.00
293	0.670 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00			0.72	0.00	0.00	0.00	0.00
294	0.660 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
295	0.650 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
296	0.640 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
297	0.630 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
298	0.620 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
299	0.610 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00		0.00		0.00	0.00	0.00	0.00
300	0.600 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00			0.72	0.00	0.00	0.00	0.00
301	0.590 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
302	0.580 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
303	0.570 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
304	0.560 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56		0.06		0.00			0.72	0.00	0.00	0.00	0.00
305	0.550 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00			0.72	0.00	0.00	0.00	0.00
306	0.540 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06		0.00			0.72	0.00	0.00	0.00	0.00
307	0.530 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56			0.16	0.06	0.00	0.00			0.72	0.00	0.00	0.00	0.00
308	0.520 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
309	0.510 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
310	0.500 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0 00	1.56	1 56	1 56	0.16	0.06	0.00	0.00	0 00	0.00	0.72	0.00	0.00	0.00	0.00
311	0.490 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56				0.06	0.00	0.00			0.72	0.00	0.00	0.00	0.00
	0.480 7.76			0.06																		
312		0.86	0.08		0.00	0.00	0.00		1.56				0.06		0.00			0.72	0.00	0.00	0.00	0.00
313	0.470 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56		0.06		0.00			0.72	0.00	0.00	0.00	0.00
314	0.460 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56				0.06	0.00	0.00			0.72	0.00	0.00	0.00	0.00
315	0.450 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
316	0.440 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
317	0.430 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56		1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
318	0.420 7.76	0.86	0.08	0.06	0.00	0.00	0.00		1.56				0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
319	0.410 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00

320	0.400 7.76	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
321	0.390 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
322	0.380 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
323	0.370 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
324	0.360 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
325	0.350 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
326	0.340 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
327	0.330 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
328	0.320 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
329	0.310 7.75	0.86	0.08	0.06	0.00	0.00	0.00				1.56					0.00	0.00	0.72	0.00	0.00	0.00	0.00
330	0.300 7.75	0.86	0.08	0.06	0.00	0.00	0.00	0.00	1.56	1.56	1.56	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
AVG 2	DEG C RATE	0.74	0.06	0.05	0.00	0.00	0.00	0.00	0.95			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

ELEM	ENDING	TEMP			Conduct	DO	BOD#1		EBOD#1		ORGN	NH3	NO3+2	TOTN	PHOS	CHL A	MACRO	COLI	NCM
NO.	DIST	DEG C	PPT	mg/L	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	g/m³	#/100mL	
251	1.090	27.91	1 76	389 24	1548.63	5.43	8.36	0.00	8.36	0.00	1.76	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
252	1.080	27.91		393.82		5.45	8.39	0.00	8.39	0.00	1.76	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
253	1.070	27.91	1.77	398.43		5.47	8.41	0.00	8.41	0.00	1.77	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
254	1.060	27.91		403.07		5.48	8.44	0.00	8.44	0.00	1.78	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
255	1.050	27.91		407.74		5.50	8.46	0.00	8.46	0.00	1.79	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
256	1.040	27.91		412.44		5.51	8.48	0.00	8.48	0.00	1.80	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
257	1.030	27.91	1.78	417.18	1634.52	5.53	8.51	0.00	8.51	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
258	1.020	27.91		421.94		5.54	8.53	0.00	8.53	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
259	1.010	27.91	1.78	426.74	1663.93	5.56	8.55	0.00	8.55	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
260	1.000	27.91	1.79	431.57	1678.78	5.57	8.58	0.00	8.58	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
261	0.990	27.91	1.79	436.43	1693.73	5.58	8.60	0.00	8.60	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
262	0.980	27.91	1.79	441.32	1708.77	5.59	8.63	0.00	8.63	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
263	0.970	27.91	1.80	446.25	1723.92	5.60	8.65	0.00	8.65	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
264	0.960	27.91	1.80	451.21	1739.16	5.61	8.67	0.00	8.67	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
265	0.950	27.91	1.80	456.20	1754.51	5.62	8.70	0.00	8.70	0.00	1.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
266	0.940	27.91	1.80	461.22		5.63	8.72	0.00	8.72	0.00	1.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
267	0.930		1.81	466.27		5.64	8.74	0.00	8.74	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
268	0.920	27.91		471.36		5.65	8.77	0.00	8.77	0.00	1.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
269	0.910	27.91		476.47		5.66	8.79	0.00	8.79	0.00	1.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
270	0.900	27.91	1.82	481.63	1832.70	5.67	8.81	0.00	8.81	0.00	1.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
271	0.890	27.91		486.81		5.68	8.84	0.00	8.84	0.00	1.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
272	0.880	27.91	1.82	492.02		5.68	8.86	0.00	8.86	0.00	1.94	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
273	0.870	27.91	1.82	497.27	1880.80	5.69	8.88	0.00	8.88	0.00	1.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
274	0.860	27.91		502.55		5.70	8.91	0.00	8.91	0.00	1.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
275	0.850	27.91		507.86		5.70	8.93	0.00	8.93	0.00	1.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
276	0.840	27.91		513.20		5.71	8.95	0.00	8.95	0.00	1.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
277	0.830	27.91		518.58		5.72	8.98	0.00	8.98	0.00	1.99	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
278	0.820	27.91		523.99		5.72	9.00	0.00	9.00	0.00	2.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
279	0.810	27.91	1.84	529.43		5.73	9.03	0.00	9.03	0.00	2.02	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
280	0.800	27.91	1.84	534.91		5.74	9.05	0.00	9.05	0.00	2.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
281	0.790	27.91		540.41	2013.48	5.74	9.07	0.00	9.07	0.00	2.04	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
282	0.780	27.91		545.95		5.75	9.10	0.00	9.10	0.00	2.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
283	0.770	27.91		551.53		5.75	9.12	0.00	9.12	0.00	2.06	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
284	0.760	27.91		557.13	2064.88	5.76	9.15	0.00	9.15	0.00	2.07	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
285	0.750	27.91	1.86	562.77	2082.22	5.76	9.17	0.00	9.17	0.00	2.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
286	0.740	27.91	1.86	568.44	2099.66	5.77	9.20	0.00	9.20	0.00	2.09	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
287	0.730	27.91	1.86	574.14	2117.20	5.77	9.22	0.00	9.22	0.00	2.11	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

288	0.720	27.91	1.86	579.88	2134.84	5.78	9.24	0.00	9.24	0.00	2.12	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
289	0.710	27.91	1.87	585.65	2152.58	5.78	9.27	0.00	9.27	0.00	2.13	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
290	0.700	27.91	1.87	591.45	2170.42	5.79	9.29	0.00	9.29	0.00	2.14	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
291	0.690	27.91	1.87	597.29	2188.36	5.80	9.32	0.00	9.32	0.00	2.16	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
292	0.680	27.91	1.88	603.16	2206.41	5.80	9.34	0.00	9.34	0.00	2.17	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
293	0.670	27.91	1.88	609.06	2224.56	5.81	9.37	0.00	9.37	0.00	2.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
294	0.660	27.91	1.88	614.99	2242.81	5.81	9.40	0.00	9.40	0.00	2.20	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
295	0.650	27.91	1.88	620.96	2261.16	5.82	9.42	0.00	9.42	0.00	2.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
296	0.640	27.91	1.89	626.96	2279.61	5.82	9.45	0.00	9.45	0.00	2.22	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
297	0.630	27.91	1.89	633.00	2298.17	5.83	9.47	0.00	9.47	0.00	2.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
298	0.620	27.91	1.89	639.07	2316.83	5.83	9.50	0.00	9.50	0.00	2.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
299	0.610	27.91	1.89	645.17	2335.59	5.84	9.53	0.00	9.53	0.00	2.27	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
300	0.600	27.91	1.90	651.30	2354.45	5.85	9.55	0.00	9.55	0.00	2.28	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
301	0.590	27.91	1.90	657.47	2373.42	5.85	9.58	0.00	9.58	0.00	2.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
302	0.580	27.91	1.90	663.67	2392.49	5.86	9.61	0.00	9.61	0.00	2.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
303	0.570	27.91	1.91	669.90	2411.66	5.87	9.63	0.00	9.63	0.00	2.33	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
304	0.560	27.91	1.91	676.17	2430.93	5.87	9.66	0.00	9.66	0.00	2.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
305	0.550	27.91	1.91	682.47	2450.31	5.88	9.69	0.00	9.69	0.00	2.36	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
306	0.540	27.91	1.91	688.81	2469.79	5.89	9.72	0.00	9.72	0.00	2.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
307	0.530	27.91	1.92	695.18	2489.38	5.89	9.75	0.00	9.75	0.00	2.39	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
308	0.520	27.91	1.92	701.58	2509.06	5.90	9.77	0.00	9.77	0.00	2.41	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
309	0.510	27.91	1.92	708.02	2528.85	5.91	9.80	0.00	9.80	0.00	2.42	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
310	0.500	27.91	1.93	714.49	2548.75	5.92	9.83	0.00	9.83	0.00	2.44	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
311	0.490	27.91	1.93	720.99	2568.75	5.93	9.86	0.00	9.86	0.00	2.46	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
312	0.480	27.91	1.93	727.53	2588.85	5.94	9.89	0.00	9.89	0.00	2.48	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
313	0.470	27.91	1.93	734.10	2609.06	5.95	9.92	0.00	9.92	0.00	2.50	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
314	0.460	27.91	1.94	740.70	2629.37	5.96	9.95	0.00	9.95	0.00	2.51	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
315	0.450	27.91	1.94	747.34	2649.78	5.97	9.98	0.00	9.98	0.00	2.53	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
316	0.440	27.91	1.94	754.02	2670.30	5.98	10.01	0.00	10.01	0.00	2.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
317	0.430	27.91	1.94	760.72	2690.92	5.99	10.04	0.00	10.04	0.00	2.57	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
318	0.420	27.91	1.95	767.46	2711.65	6.00	10.08	0.00	10.08	0.00	2.59	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
319	0.410	27.91	1.95	774.24	2732.48	6.01	10.11	0.00	10.11	0.00	2.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
320	0.400	27.91	1.95	781.05	2753.42	6.03	10.14	0.00	10.14	0.00	2.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
321	0.390	27.91	1.96	787.89	2774.46	6.04	10.17	0.00	10.17	0.00	2.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
322	0.380	27.91	1.96	794.77	2795.61	6.05	10.20	0.00	10.20	0.00	2.68	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
323	0.370	27.91	1.96	801.68	2816.86	6.07	10.24	0.00	10.24	0.00	2.70	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
324	0.360	27.91	1.96	808.62	2838.22	6.09	10.27	0.00	10.27	0.00	2.72	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
325	0.350	27.91	1.97	815.60	2859.68	6.10	10.31	0.00	10.31	0.00	2.74	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
326	0.340	27.91	1.97	822.62	2881.24	6.12	10.34	0.00	10.34	0.00	2.77	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
327	0.330	27.91	1.97	829.66	2902.92	6.14	10.37	0.00	10.37	0.00	2.79	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
328	0.320	27.91	1.97	836.75	2924.69	6.15	10.41	0.00	10.41	0.00	2.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
329	0.310	27.91	1.98	843.86	2946.57	6.17	10.44	0.00	10.44	0.00	2.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
330	0.300	27.91	1.98	851.01	2968.56	6.19	10.48	0.00	10.48	0.00	2.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 6 RKM 0.3 to 0.0

BAYOU CANE WATERSHED MODEL SUMR,4,5 DO,OverallReduc,90%reduc rch 1,60%reduc rch 2-6,hosp5/2

ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLUME	SURFACE AREA	X-SECT AREA	TIDAL PRISM	TIDAL VELO	DISPRSN	MEAN VELO
	km	km	m^3/s		m/s	days	m	m	m³	m²	m²	m³	m/s	m^2/s	m/s
331	0 20	0.29	0.01810	84.5	0.00079	0.15	1 1 0	10 01	229.03	198.12	22.90	13100.29	0.013	0.879	0.013
331	0.30	0.29	0.01810	84.5	0.00079	0.15	1.16 1.16	19.81 19.81	229.03	198.12	22.90	13147.04	0.013	0.879	0.013
333	0.28	0.27	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13193.80	0.013	0.885	0.013
334	0.27	0.26	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13240.56	0.013	0.888	0.013
335	0.26	0.25	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13287.31	0.013	0.891	0.013
336	0.25	0.24	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13334.07	0.013	0.894	0.013
337	0.24	0.23	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13380.82	0.013	0.898	0.013
338	0.23	0.22	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13427.58	0.013	0.901	0.013
339	0.22	0.21	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13474.33	0.013	0.904	0.013
340	0.21	0.20	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13521.09	0.013	0.907	0.013
341	0.20	0.19	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13567.85	0.013	0.910	0.013
342	0.19	0.18	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13614.60	0.013	0.913	0.013
343	0.18	0.17	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13661.36	0.013	0.916	0.014
344	0.17	0.16	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13708.11	0.014	0.919	0.014
345	0.16	0.15	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13754.87	0.014	0.923	0.014
346	0.15	0.14	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13801.63	0.014	0.926	0.014
347	0.14	0.13	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13848.38	0.014	0.929	0.014
348	0.13	0.12	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13895.14	0.014	0.932	0.014
349	0.12	0.11	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13941.89	0.014	0.935	0.014
350	0.11	0.10	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	13988.65	0.014	0.938	0.014
351	0.10	0.09	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14035.41	0.014	0.941	0.014
352	0.09	0.08	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14082.16	0.014	0.944	0.014
353	0.08	0.07	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14128.92	0.014	0.948	0.014
354	0.07	0.06	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14175.67	0.014	0.951	0.014
355	0.06	0.05	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14222.43	0.014	0.954	0.014
356	0.05	0.04	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14269.18	0.014	0.957	0.014
357	0.04	0.03	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14315.94	0.014	0.960	0.014
358	0.03	0.02	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14362.70	0.014	0.963	0.014
359	0.02	0.01	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14409.45	0.014	0.966	0.014
360	0.01	0.00	0.01810	84.5	0.00079	0.15	1.16	19.81	229.03	198.12	22.90	14456.21	0.014	0.969	0.014
TOT						4.39			6870.80	5943.60					
AVG					0.0008		1.16	19.81			22.90				
CUM						49.43									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
331	0.290	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
332	0.280	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
333	0.270	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
334	0.260	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
335	0.250	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
336	0.240	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
337	0.230	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
338	0.220	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
339	0.210	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
340	0.200	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
341	0.190	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
342	0.180	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
343	0.170	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00

344	0.160	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
345	0.150	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
346	0.140	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
347	0.130	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
348	0.120	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
349	0.110	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
350	0.100	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
351	0.090	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
352	0.080	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
353	0.070	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
354	0.060	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
355	0.050	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
356	0.040	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
357	0.030	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
358	0.020	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
359	0.010	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
360	0.000	7.75	0.90	0.09	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.00	0.00	0.00	0.00	0.72	0.00	0.00	0.00	0.00
AVG 2	0 DEG C	RATE	0.77	0.06	0.05	0.00	0.00	0.00	0.00	0.00			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* g/m²/d ** mg/L/day

0.000 27.91 2.03 1092.64 3711.53 6.61 10.64 0.00 10.64

ELEM ENDING TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 TOTN PHOS CHL A MACRO DIST DEG C PPT mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mq/L mg/L µg/L g/m³ #/100mL 0.00 0.00 331 0.290 27.91 1.98 858.33 2991.08 6.22 10.52 0.00 10.52 0.00 2.89 0.00 0.00 0.00 0.00 10.00 0. 0.280 27.91 1.98 865.84 3014.15 6.24 10.55 0.00 10.55 0.00 2.91 0.00 0.00 0.00 0.00 10.00 0.00 0.00 332 0. 0.270 27.91 1.99 873.38 3037.35 6.26 10.59 0.00 10.59 0.00 0.00 0.00 0.00 0.00 10.00 0.00 333 2.94 0.00 0. 334 0.260 27.91 1.99 880.97 3060.67 6.28 10.62 0.00 10.62 0.00 2.96 0.00 0.00 0.00 0.00 10.00 0.00 0.00 Ω 0.250 27.91 1.99 888.59 3084.12 6.30 10.65 335 0.00 10.65 0.00 2.98 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 0.240 27.91 1.99 896.26 3107.69 6.31 10.67 0.00 10.67 0.00 3.00 0.00 0.00 0.00 0.00 10.00 0.00 336 0.00 0. 337 0.230 27.91 1.99 903.96 3131.39 6.33 10.70 0.00 10.70 0.00 3.01 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 338 0.220 27.91 1.99 911.71 3155.21 6.35 10.72 0.00 10.72 0.00 3.03 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 0.210 27.91 2.00 919.50 3179.16 6.37 10.74 0.00 10.74 0.00 3.04 0.00 10.00 0.00 339 0.00 0.00 0.00 0.00 927.33 3203.24 340 0.200 27.91 2.00 6.38 10.76 0.00 10.76 0.00 3.05 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 341 0.190 27.91 2.00 935.20 3227.44 6.40 10.77 0.00 10.77 0.00 3.06 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 342 0.180 27.91 2.00 943.11 3251.76 6.41 10.79 0.00 10.79 0.00 3.07 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 951.07 3276.22 6.43 10.80 0.00 10.80 0.00 3.07 0.00 10.00 0.00 343 0.170 27.91 2.00 0.00 0.00 0.00 0.00 0.00 344 0.160 27.91 2.00 959.06 3300.80 6.44 10.81 0.00 10.81 0.00 3.08 0.00 0.00 0.00 10.00 0.00 0.00 345 0.150 27.91 2.01 967.10 3325.51 6.45 10.81 0.00 10.81 0.00 3.08 0.00 0.00 0.00 0.00 10.00 0.00 0.00 346 0.140 27.91 2.01 975.17 3350.34 6.47 10.82 0.00 10.82 0.00 3.08 0.00 0.00 0.00 0.00 10.00 0.00 0.00 347 0.130 27.91 2.01 983.29 3375.31 6.48 10.82 0.00 10.82 0.00 3.08 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0.120 27.91 2.01 991.45 3400.40 0.00 10.82 348 6.49 10.82 0.00 3.08 0.00 0.00 0.00 0.00 10.00 0.00 0.00 349 0.110 27.91 2.01 999.65 3425.62 6.50 10.82 0.00 10.82 0.00 3.08 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 0.100 27.91 2.01 1007.90 3450.97 0.00 10.81 0.00 3.07 0.00 350 6.51 10.81 0.00 0.00 0.00 0.00 10.00 0.00 0. 351 0.090 27.91 2.01 1016.18 3476.44 6.52 10.80 0.00 10.80 0.00 3.06 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 352 0.080 27.91 2.02 1024.51 3502.04 6.54 10.80 0.00 10.80 0.00 3.05 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 0.070 27.91 2.02 1032.88 3527.78 6.55 10.78 0.00 10.78 0.00 3.04 0.00 0.00 0.00 10.00 0.00 0.00 353 0.00 0. 354 0.060 27.91 2.02 1041.29 3553.64 6.56 10.77 0.00 10.77 0.00 3.03 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 355 0.050 27.91 2.02 1049.74 3579.63 6.56 10.75 0.00 10.75 0.00 3.02 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0.040 27.91 2.02 1058.24 3605.75 0.00 10.74 0.00 10.00 0.00 356 6.57 10.74 0.00 3.00 0.00 0.00 0.00 0.00 0.030 27.91 2.03 1066.77 3632.00 0.00 10.72 357 6.58 10.72 0.00 2.98 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 6.59 10.69 0.00 10.69 0.00 358 0.020 27.91 2.03 1075.35 3658.38 0.00 2.97 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.010 27.91 2.03 1083.98 3684.89 6.60 10.67 0.00 10.67 0.00 359 0.00 2.94 0.00 0.00 0.00 0.00 10.00 0.00 0.

0.00

2.92 0.00 0.00 0.00 0.00 10.00

0.00

0.00

STREAM SUMMARY HEADWATER

TRAVEL TIME	=	4	19.43	DAYS	
MAXIMUM EFFLUENT	=	8	34.53	PERCENT	
FLOW DISPERSION VELOCITY DEPTH WIDTH	= = = =	0.00280 0.0338 0.00052 1.02 4.88	TO TO TO TO	0.01810 0.9694 0.00333 1.21 28.35	m³/s m²/s m/s m
BOD DECAY NH3 DECAY SOD NH3 SOURCE REAERATION BOD SETTLING NBOD DECAY NBOD SETTLING	= = = = = = = = = = = = = = = = = = = =	0.06 0.00 0.00 0.00 0.68 0.06 0.15	TO TO TO TO TO TO TO	0.10 0.00 2.88 0.00 0.90 0.06 0.33 0.06	per day per day g/m²/d g/m²/d per day per day per day per day
TEMPERATURE DISSOLVED OXYGEN	=	27.91 4.16	TO TO	27.91 7.04	deg C mg/L

....EXECUTION COMPLETED

BAYOU CANE WATERSHED MODEL SUMR,4,5 DO,OverallReduc,90%reduc rch 1,60%reduc rch 2-6,hosp5/2

Appendix D2 – Summer, 90% Overall Reduction in Reach 1, 60% Reduction in Reaches 2-6, Justifications

Bayou Cane, Summe	r, 90% (Overall Re	eduction in Reach 1, 60% Overall Reduction in
	R	Reaches 2-	6, Current Criteria
DATA	A TYPE 3	- PROGRAM	I CONSTANTS
CONSTANT NAME	VALUE	UNITS	DATA SOURCE
KL MINIMUM	0.7	m/day	The minimum KL of 2.3 ft/day converted to 0.70 m/day.
INHIBITION CONTROL VALUE	3		The water column dissolved oxygen demand is assumed to come primarily from facultative bacteria under anoxic conditions and SOD is not influenced by modeled dissolved oxygen levels in the upper water column.
K2 MAXIMUM	10	1/day at 20 deg C	Model default
HYDRAULIC CALCULATION METHOD	2		The low slopes in this waterbody cause a substantial amount of water to be present during critical flow conditions. This method allows the model to predict a more accurate depth and width during low flow conditions.
SETTLING RATE UNITS	2		Used 1/day
DISPERSION EQUATION	3		Equation used to account for all modes of transport.
ALGAE OXYGEN PROD	0.05		Calibration
TIDE HEIGHT	0.236		Calculated from level monitor data
TIDAL PERIOD	24.58		Calculated from level monitor data
PERIOD OF TIDAL RISE	11.625		Calculated from level monitor data

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, **Current Criteria DATA TYPE 8 - REACH IDENTIFICATION DATA** Downstream Element **Upstream** ID Name River River **Data Source** Reach Length, Kilometer Kilometer meters BC RKM 3.6 to 2.8 3.60 2.80 10.0000 ARC MAP Calc. 1 Same as Reach 1 BC RKM 2.8 to 1.9 10.0000 2 2.80 1.90 3 BC RKM 1.9 to 1.5 10.0000 Same as Reach 1 1.90 1.50 RKM 1.5 to 1.1 Same as Reach 1 4 BC 1.50 1.10 10.0000 5 RKM 1.1 to 0.3 0.30 10.0000 Same as Reach 1 BC 1.10 BC RKM 0.3 to 0.0 0.30 0.00 10.0000 Same as Reach 1 6

	Bayou Cane, Sum	mer, 90% Ov	erall Reduc	ction in Reach 1	<mark>, 60% Overall Red</mark> i	uction in Read	ches 2-6, Cur	rent Criteria	
			Data Ty	pe 9 - Advective Hy	draulic Coefficients				
Reach	Name	Width Coeff. "a"	Width Exp. ''b''	Width Const. "c"	Data Source	Depth Coeff. "d"	Depth Exp. "e"	Depth Const. "f"	Data Source
1	RKM 3.6 to 2.8	0	0	4.877	3665	0	0	1.113	3665
2	RKM 2.8 to 1.9	0	0	15.850	BC04 (3752)	0	0	1.085	BC04 (3752)
3	RKM 1.9 to 1.5	0	0	27.737	BC05 (3753)	0	0	1.189	BC05 (3753)
4	RKM 1.5 to 1.1	0	0	28.346	BC06 (3754)	0	0	1.021	BC06 (3754)
5	RKM 1.1 to 0.3	0	0	21.488	BC07 (3755)	0	0	1.210	BC07 (3755)
6	RKM 0.3 to 0.0	0	0	19.812	3666	0	0	1.156	3666

В	ayou Cane, S	ummer, 90% Overall Redu	ction in I	Reach 1, 6	0% Ove	rall Red	luction in Reaches 2-6, Current Criteria
		DATA TYPE 1	0 - DISPI	ERSIVE H	YDRAUI	IC COE	FFICIENTS
Reach	Tidal Range	Data Source	a	b	c	d	Data Source
1	0.95	Level monitor	60.00	0.833	0.0	1.0	"a" obtained from calibration. "b, c, and d" Tracor eqn.
2	0.95	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1
3	0.93	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1
4	0.93	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1
5	1.00	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1
6	1.00	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1

	Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria								
	DATA TYPE 11-INITIAL CONDITIONS								
Reach	Name	Temp, deg C	Sal, ppt	Data Source	DO, mg/l	Data Source	Chlorophyll <u>a</u>	Data Source	
1	RKM 3.6 to 2.8	27.91	0.10	Temp: 90th percentile for WQN 0302, Salinity: Cont Mont	5.00	DO Crtierion for Subsegment 040903	10.00	Best Professional Judgement	
2	RKM 2.8 to 1.9	27.91	0.23	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1	
3	RKM 1.9 to 1.5	27.91	1.15	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1	
4	RKM 1.5 to 1.1	27.91	1.45	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1	
5	RKM 1.1 to 0.3	27.91	1.76	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1	
6	RKM 0.3 to 0.0	27.91	1.98	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1	

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria

DATA TYPE 12 - REAERATION, SEDIMENT OXYGEN DEMAND AND BOD COEFFICIENTS

REACH	NAME	K2 OPT	Data Source	BKGRND SOD, gmO2/m2/day at 20 deg C	Data Source	Aerobic BOD1 Dec Rate (1/day)	BOD1 SETT RATE (1/day)	Data Source
1	RKM 3.6 to 2.8	11	Texas Equation	0.438	90% Reduction	0.0440	0.05	Lab, Calibration
2	RKM 2.8 to 1.9	11	Texas Equation	1.750	60% Reduction	0.0680	0.05	Same as Reach 1
3	RKM 1.9 to 1.5	11	Texas Equation	1.500	60% Reduction	0.0570	0.05	Same as Reach 1
4	RKM 1.5 to 1.1	11	Texas Equation	1.200	60% Reduction	0.0570	0.05	Same as Reach 1
5	RKM 1.1 to 0.3	1	Mattingly equation- wind influence	0.950	60% Reduction	0.0570	0.05	Same as Reach 1
6	RKM 0.3 to 0.0	1	Mattingly equation- wind influence	0.000	60% Reduction	0.0620	0.05	Same as Reach 1

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria

DATA TYPE 13 - NITROGEN AND PHOSPHORUS COEFFICIENTS

Reach	Name	NBOD decay rate, 1/day	Data Source	NBOD settling rate, 1/day	Data Source
1	RKM 3.6 to 2.8	0.20	Calibration	0.05	Calibration
2	RKM 2.8 to 1.9	0.10	Same as Reach 1	0.05	Same as Reach 1
3	RKM 1.9 to 1.5	0.10	Same as Reach 1	0.05	Same as Reach 1
4	RKM 1.5 to 1.1	0.10	Same as Reach 1	0.05	Same as Reach 1
5	RKM 1.1 to 0.3	0.10	Same as Reach 1	0.05	Same as Reach 1
6	RKM 0.3 to 0.0	0.10	Same as Reach 1	0.05	Same as Reach 1

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria

DATA TYPE 19 - NONPOINT SOURCE DATA

Reach	Reach Name	Length of Reach, km	UCBOD1, kg/day	NBOD, kg/day	Data Source
1	RKM 3.6 to 2.8	0.80	0.625	0.225	90% Reduction
2	RKM 2.8 to 1.9	0.90	12.000	2.000	60% Reduction
3	RKM 1.9 to 1.5	0.40	13.000	3.650	60% Reduction
4	RKM 1.5 to 1.1	0.40	14.000	4.000	60% Reduction
5	RKM 1.1 to 0.3	0.80	27.500	8.250	60% Reduction
6	RKM 0.3 to 0.0	0.30	23.500	14.000	60% Reduction

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria

DATA TYPE 20 - HEADWATER DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES

Headwater Name	Element No.	Headwater Flow, cms	Data Source	Salinity	Conductivity	Chlorides	Data Source
Headwater	1	0.0028	LTP Summer Default	0.1	215.38	21.50	SALINITY - CONT MONT (3665) CHLORIDE - LAB DATA (3665) CONDUCTIVITY - CONT MONT (3665)

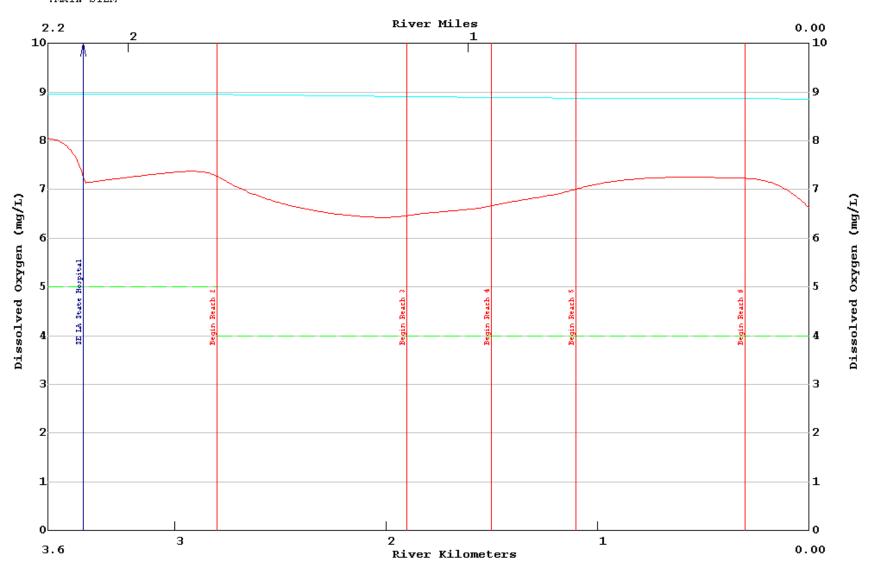
Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria

DATA TYPE 21 - HEADWATER DATA FOR DO, BOD, AND NITROGEN

Headwater	Dissolved	UCBOD1,	NBOD,	Data Source
Name	Oxygen, mg/L	mg/l	mg/l	
Headwater	7.06	1.69	0.29	DO: 90% saturation at WQN 0302 at 90th percentile seasonal temperature BOD: 90% overall reduction

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria DATA TYPE 24 - WASTELOAD DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES							
Wasteload / Withdrawal Name	eload / Withdrawal Name EL # Flow, cms Data Source		Salinity	Conductivity	Chlorides	Data Source	
Southeast Louisiana State Hospital, AI 9371	18	0.0153	Design capacity/expected flow from permit plus 20% margin of safety	0.22	458.0	22.5	Salinity from insitu during survey. Chloride and conductivity from lab data during survey.

Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria							
DATA TYPE 25 - WASTELOAD DATA FOR DO, BOD, AND NITROGEN							
Wasteload / Withdrawal Name	EL#	DO, mg/l	Data Source	UCBOD1, mg/l	UNBOD, mg/l	Data Source	
Southeast Louisiana State Hospital, AI 9371	18	5.00	Facility currently has post-aeration	11.5000	8.6000	Required limits are CBOD ₅ =5 mg/L, NH ₃ -N=2 mg/L. UCBOD=CBOD ₅ *2.3, UNBOD=NH ₃ -N*4.3	


Bayou Cane, Summer, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Current Criteria

DATA TYPE 27 - LOWER BOUNDARY CONDITIONS

Parameter	Value	Units	Data Source
TEMPERATURE	27.9100	оС	90th Percentile Temp for WQN 0302
SALINITY	2.0300	ppt	BC09 (3756) Continuous Monitor
CHLORIDES	1097.0000	mg/L	BC09 (3756) Lab
CONDUCTIVITY	3724.9400	umhos/cm	BC09 (3756) Continuous Monitor
DISSOLVED OXYGEN	6.6100	mg/L	BC09 (3756) Continuous Monitor
CBOD1	10.6260	mg/L	BC09 (3756) Lab
CHLOROPHYLL A	10.0000	ug/L	Best Professional Judgement
NBOD	2.9100	mg/L	BC09 (3756) Lab

Appendix D3 –Winter, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6--DO Graph, Input, and Output for Subsegments 040903 & 040904

LA-QUAL Version 8.11 Run at 13:33 on 04/21/2010 File \\Alpha_nt\owneng\Personal_Folders\Jay\Bayou Cane\input files\program
WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2 min= 6.43 max= 8.07
:MAIN STEM

BAYOU CANE, WINTER, 90% OVERALL REDUCTION IN REACH 1, 60% OVERALL REDUCTION IN REACHES 2-6, INPUT DATA SET

```
TITLE01
           BAYOU CANE WATERSHED MODEL
           WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2
TITLE02
CONTROL YES METRIC UNITS
ENDATA01
MODOPT01 NO TEMPERATURE
MODOPT02 NO SALINITY
MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES
                                                               mq/L
                                                                       Chloride
MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY
                                                               umhos/cm Conduct
MODOPT05 YES DISSOLVED OXYGEN
MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND
MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND
MODOPT08 YES NBOD OXYGEN DEMAND
MODOPT10 NO PHOSPHORUS
MODOPT11 NO CHLOROPHYLL A
MODOPT12 NO MACROPHYTES
MODOPT13 NO COLIFORM
ENDATA02
                                     = 3.
PROGRAM DISPERSION EQUATION
PROGRAM OCEAN EXCHANGE RATIO
                                     = 1.0
                                      = 0.236
PROGRAM TIDE HEIGHT
PROGRAM TIDAL PERIOD
                                     = 24.58
PROGRAM PERIOD OF TIDAL RISE
                                     = 11.625
PROGRAM KL MINIMUM
                                      = 0.7
PROGRAM INHIBITION CONTROL VALUE
                                      = 3.
                                      = 0.0
PROGRAM EFFECTIVE BOD DUE TO ALGAE
PROGRAM ALGAE OXYGEN PROD
                                      = 0.05
PROGRAM K2 MAXIMUM
                                      = 10.0
PROGRAM HYDRAULIC CALCULATION METHOD
PROGRAM SETTLING RATE UNITS
ENDATA03
!Temperature Correction Constants
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        ******
ENDATA04
ENDATA05
ENDATA06
```

```
ENDATA07
!Reach Identification Data
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
            __ *************************
1
        R# ID
               REACH NAME
                                              RKM
                                                            LENGTH
                                                      RKM
        1 BC RKM 3.6 to 2.8
                                              3.6
                                                      2.8
REACH ID
                                                             0.01
         2 BC RKM 2.8 to 1.9
                                              2.8
                                                      1.9
                                                             0.01
REACH ID
         3 BC RKM 1.9 to 1.5
                                              1.9
                                                      1.5
REACH ID
                                                             0.01
         4 BC RKM 1.5 to 1.1
                                             1.5
                                                      1.1
                                                             0.01
REACH ID
         5 BC RKM 1.1 to 0.3
                                             1.1
                                                      0.3
REACH ID
                                                             0.01
         6 BC RKM 0.3 to 0.0
                                              0.3
                                                      0.0
                                                             0.01
REACH ID
ENDATA08
!Advective Hydraulic Coefficients
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
                                            f
                               d
              а
                   b
                          C
                                     е
             WIDTH WIDTH
                         WIDTH DEPTH
                                    DEPTH
                                          DEPTH
         R#
            COEFF
                   EXP
                         CONST COEFF
                                     EXP
                                          CONST SLOPE MANNING
! Reach 1 - 3665
HYDR-1
        1 0.00
                  0.00
                         4.877 0.00
                                    0.00
                                          1.113
1
! Reach 2 - BC04 (3752)
HYDR-1
         2 0.00 0.00
                        15.85 0.00
                                    0.00
                                          1.085
!
! Reach 3 - BC05 (3753)
HYDR-1
         3 0.00 0.00
                        27.737 0.00
                                    0.00
                                          1.189
! Reach 4 - BC06 (3754)
HYDR-1
         4 0.00 0.00
                        28.346 0.00
                                    0.00
                                          1.021
! Reach 5 - BC07 (3755)
HYDR-1
         5 0.00 0.00
                        21.488 0.00
                                    0.00
                                          1.21
1
! Reach 6 - 3666
HYDR-1
          6 0.00
                        19.812 0.00
                                          1.156
                  0.00
                                    0.00
ENDATA09
!Dispersive Hydraulic Coefficients
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
```

!To take into consideration all modes of transport, equation 3 (E=aD^bO^cVm^d) in Laqual was used. !Using b=5/6, c=0, and d=1 will take into account all modes of transport in the manner of the Tracor and QUAL2E equations.

!The value for coefficient "a" was varied during calibration until the measured dispersion value was obtained.

```
R# RANGE
                               b
                                        С
                                                  d
1
HYDR-2
         1 0.95
                     60.0
                              0.833
                                       0.0
                                                1.0
                              0.833
HYDR-2
          2 0.95
                     60.0
                                       0.0
                                                1.0
                              0.833
         3 0.93
                                       0.0
                                                1.0
HYDR-2
                     60.0
         4 0.93
                  60.0
                             0.833
                                    0.0
                                               1.0
HYDR-2
          5 1.00
                             0.833
                                       0.0
                                                1.0
HYDR-2
                     60.0
       6 1.00
                     60.0
                             0.833
                                       0.0
                                                1.0
HYDR-2
ENDATA10
!Initial Conditions
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
1
               TEMP SALINITY DO
                                    NH3 N NIT NIT PHOS CHL A MACROPHYTES
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3665)
!DO - Criterion for subsegment 040903
!Chlorophyll A - Best professional judgement
INITIAL 1
               20.71
                       0.10
                             5.00
                                                           10.0
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3752-BC04)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
               20.71
                       0.23
                             4.00
                                                           10.0
!
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3753-BC05)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
         3
               20.71 1.15 4.00
                                                           10.0
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (BC05, BC07)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
        4
               20.71 1.45
                            4.00
                                                           10.0
```

```
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3755-BC07)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
INITIAL
       5
               20.71 1.76
                             4.00
                                                           10.0
1
!Temp - 90th percentile temp for Water Quality Monitoring Site 0302
!Salinity - Cont Mont Avg (3666)
!DO - Criterion for subsegment 040904
!Chlorophyll A - Best professional judgement
               20.71 1.98 4.00
         6
                                                           10.0
INITIAL
ENDATA11
!Reaeration, Sediment Oxygen Demand and BOD Coefficients
!23456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
              REA
                                         BOD 1 BOD 1
                                                       BOD 1
                                                                  BOD 2
                                                                          BOD 2
         R#
              ΕO
                                     SOD DECAY SETT
                                                       CONV
                                                                  DECAY
                                                                          SETT
!Texas Equation used for reaches 1-4.
!Mattingly equation was used for reaches 5 & 6 to account for wind reaeration.
!Settling rates determined through calibration. Decay rates from lab.
!CB0D1 DECAY (3665)
COEF-1 1 11.0
                                   0.438 0.0440 0.05
!CB0D1 DECAY (3752-BC04)
COEF-1
          2 11.0
                                  1.750 0.0680 0.05
!CB0D1 DECAY (3753-BC05)
COEF-1
          3 11.0
                                  1.500 0.0570 0.05
!CB0D1 DECAY - Avg (3753-BC05, 3755-BC07)
COEF-1
           4 11.0
                                   1.200 0.0570 0.05
!CB0D1 DECAY (3755-BC07)
          5 1.0 0.738
                                 0.950 0.0570 0.05
COEF-1
!CB0D1 DECAY (3666)
          6 1.0 0.773
                                0.000 0.0620 0.05
COEF-1
ENDATA12
!Nitrogen and Phosphorus Coefficients
```

```
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       *** _____******
          NBOD
                 NBOD
       R# DECAY
                 SETT
!Settling rates determined through calibration. Began with decay rates from lab but adjusted
!them during calibration.
!NBOD Decay (3665)
COEF-2
     1 0.200
                 0.05
!NBOD Decay (3752-BC04)
COEF-2
      2 0.100
                 0.05
1
!NBOD Decay (3753-BC05)
COEF-2
      3 0.100
                 0.05
!NBOD Decay - Avg (3753-BC05, 3755-BC07)
COEF-2
     4 0.100
                 0.05
!NBOD Decay (3755-BC07)
COEF-2 5 0.100
                 0.05
!NBOD Decay (3666)
COEF-2
        6 0.100
                 0.05
ENDATA13
ENDATA14
!Coliform and Nonconservative Cofficients
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____******
1
ENDATA15
!Incremental Data for Flow, Temperature, Salinity, and Conservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
           OUTFLOW
                 INFLOW TEMP
                              SALINITY CHLORIDE COND
ENDATA16
!Incremental Data for DO, BOD, and Nitrogen
·-----5-----6-----7-----8
```

```
BOD 1
                            NBOD
                                  NH3 N NIT NIT
                                                 BOD 2
ENDATA17
!Incremental Data for Phosphorus, Chlorophyll, Coliform and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** ----*******
        R#
            PHOSPH
                    CHL A COLIFORM NONCONSERVATIVE
ENDATA18
!Nonpoint Source Data
!-----5----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
          _____************
              BOD 1
                     NBOD
                         COLIFORM NONCONS
                                          DO
        R#
                                                BOD 2
             0.625
                    0.225
NONPOINT
         1
         2
            12.000
                    2.000
NONPOINT
            13,000
                    3.650
NONPOINT
            14.000
                    4.000
NONPOINT
             27.500
                   8.250
NONPOINT
             23.500 14.000
NONPOINT
ENDATA19
!Headwater Data for Flow, Temperature, Salinity, and Conservatives
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
           _____******************************
       Ε#
            NAME
                                FLOW
                                       TEMP SALIN
                                                 CHLORIDE
                                                          COND
!Flow - Winter LTP default
!Salinity - Cont Mont (3665)
!Chloride - Lab Data (3665)
!Conductivity - Cont Mont (3665)
HDWTR-1
         1 HEADWATER
                                0.028
                                            0.10
                                                   21.5
                                                         215.38
ENDATA20
!Headwater Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       **** _____***********
                     BOD 1
                            NBOD
                                  NH3-N
                                         NIT NIT BOD 2
!DO - 90% saturation at water quality monitoring site 0302 at 90 percentile
!seasonal temperature
!BOD1 and NBOD - 90% overall reduction
```

```
8.07 1.69
                            0.29
HDWTR-2
         1
ENDATA21
!Headwater Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        E# PHOSPHOR CHL A COLIFORM NONCONSERVATIVE
ENDATA22
ENDATA23
!Wasteload Data for Flow, Temperature, Salinity, and Conservatives
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
        E#
              NAME
                                      TEMP
                              FLOW
                                           SALINITY CHLORIDE COND
!Southeast Louisiana State Hospital AI# 9371
!Flow - Design capacity/expected flow (0.28 MGD) from permit plus 20% MOS
!Salinity from insitu during survey. Chloride and conductivity from lab data
!during survey
WSTLD-1
                                               0.22
                                                     22.5
                                                           458
        18 SE LA State Hospital 0.0153
ENDATA24
!Wasteload Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____*************
                                      NH3-N
                DO
                     BOD 1
                                NBOD
!Southeast Louisiana State Hospital AI# 9371. Facility has post-aeration.
!Limits of 5/2. UCBOD=CBOD5*2.3. UNBOD=NH3-N*4.3
WSTLD-2
       18
               5.00 11.500
                                8.600
ENDATA25
!Wasteload Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!234567890123456789012345678901234567890123457890123456789012345678901234567890
       **** ____*********
        E# PHOSPHOR CHL A
                           COLIFORM NONCONSERVATIVE
ENDATA26
!Lower Boundary Conditions
!90th percentile temp for water quality monitoring site 0302
LOWER BC TEMPERATURE
                                   = 20.71
1
!Site 3756-BC09 Cont Mont
```

```
= 2.03
LOWER BC SALINITY
!Site 3756-BC09 Lab
LOWER BC CONSERVATIVE MATERIAL I (CHLORIDES) = 1097
!Site 3756-BC09 Cont Mont
LOWER BC CONSERVATIVE MATERIAL II (COND)
                                        = 3724.94
!Site 3756-BC09 Cont Mont
LOWER BC DISSOLVED OXYGEN
                                        = 6.61
!Site 3756-BC09 Lab
LOWER BC BOD1 BIOCHEMICAL OXYGEN DEMAND
                                       = 10.626
!Best professional judgement
LOWER BC CHLOROPHYLL A
                                        = 10.0
1
!Site 3756-BC09 Lab
LOWER BC NBOD
                                           2.91
ENDATA27
!Dam Data
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        **** ************ ** ****** ** ****** ***
ENDATA28
SENSITIV BASEFLOW 30
                       -30
SENSITIV VELOCITY 30 -30
SENSITIV DEPTH
                       -30
SENSITIV DISPERSI
                  30
                       -30
SENSITIV REAERATI
                  30
                       -30
SENSITIV BOD DECA
                 30
                       -30
SENSITIV BOD SETT
                  30
                       -30
SENSITIV TRANGE
                  30
                       -30
SENSITIV NBOD DEC
                  30
                       -30
SENSITIV NBOD SET
                  30
                       -30
                       -30
SENSITIV BENTHAL
                       -2
SENSITIV TEMPERAT
SENSITIV SALINITY
                  30
                       -30
                       -30
SENSITIV CHLOR A
SENSITIV HDW FLOW 30
                       -30
                       -30
SENSITIV HDW DO
```

```
Bayou Cane Watershed TMDL
Subsegments 040903 and 040904
Originated: February 4, 2011
                      -30
SENSITIV HDW BOD
                 30
SENSITIV HDW NBOD
                 30
                      -30
SENSITIV WSL FLOW
                 30
                      -30
                 30
                      -30
SENSITIV WSL DO
                 30
                      -30
SENSITIV WSL BOD
                 30
                      -30
SENSITIV WSL NBOD
                 30
                      -30
SENSITIV OXR
                      -2
SENSITIV LBC TEMP
SENSITIV LBC DO
                 30
                      -30
                 30
                      -30
SENSITIV LBC BOD
SENSITIV LBC NBOD
                 30
                      -30
                      -30
SENSITIV NPS BOD
                 30
                 30
                      -30
SENSITIV NPS NBOD
ENDATA29
NUMBER OF PLOTS = 1
NUMBER OF REACHES IN PLOT 1 =
                                                   INCREMENT = 0.1
PLOT RCH 1 2 3 4 5 6
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        ENDATA30
OVERLAY 1 bayoucaneovl.txt
                                     :MAIN STEM
```

ENDATA31

BAYOU CANE, WINTER, 90% OVERALL REDUCTION IN REACH 1, 60% OVERALL REDUCTION IN REACHES 2-6, OUTPUT

CARD TYPE	MODEL OPTION	
	CONSERVATIVE MATERIAL II = CONDUC DISSOLVED OXYGEN BOD1 BIOCHEMICAL OXYGEN DEMAND BOD2 BIOCHEMICAL OXYGEN DEMAND NBOD OXYGEN DEMAND PHOSPHORUS CHLOROPHYLL A MACROPHYTES	3 .
\$\$\$ DATA TYPE	3 (PROGRAM CONSTANTS) \$\$\$	
CARD TYPE	DESCRIPTION OF CONSTANT	VALUE
PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM	DISPERSION EQUATION OCEAN EXCHANGE RATIO TIDE HEIGHT TIDAL PERIOD PERIOD OF TIDAL RISE KL MINIMUM INHIBITION CONTROL VALUE EFFECTIVE BOD DUE TO ALGAE ALGAE OXYGEN PROD K2 MAXIMUM HYDRAULIC CALCULATION METHOD SETTLING RATE UNITS 4 (TEMPERATURE CORRECTION CONSTANTS RATE CODE THETA VALUE	= 2.00000 (widths and depths) = 2.00000 (values entered as per day)
\$\$\$ CONSTANTS	TYPE 5 (TEMPERATURE DATA) \$\$\$	
CARD TYPE	DESCRIPTION OF CONSTANT	VALUE
ENDATA05		
\$\$\$ DATA TYPE	6 (ALGAE CONSTANTS) \$\$\$	
CARD TYPE	DESCRIPTION OF CONSTANT	VALUE
ENDATA06		
\$\$\$ DATA TYPE	7 (MACROPHYTE CONSTANTS) \$\$\$	
CARD TYPE	DESCRIPTION OF CONSTANT	VALUE
ENDATA07		

\$\$\$ DATA TYPE 8	(REACH IDENTI	FICATION DATA) \$\$\$		N END	ET EM	DEAGU	ELEMO	DECIN	END			
CARD TYPE REACH	I ID NAME		BEGI REAC k	H REACH	ELEM LENGTH km	REACH LENGTH km	ELEMS PER RCH	BEGIN ELEM NUM	ELEM NUM			
REACH ID 1 REACH ID 2 REACH ID 3 REACH ID 4 REACH ID 5 REACH ID 6	BC RKM 3.6 BC RKM 2.8 BC RKM 1.9 BC RKM 1.5 BC RKM 1.1 BC RKM 0.3	to 1.9 to 1.5 to 1.1 to 0.3	2.8 1.9 1.5 1.1	0 TO 1.50 0 TO 1.10	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.80 0.90 0.40 0.40 0.80 0.30	80 90 40 40 80 30	1 81 171 211 251 331	80 170 210 250 330 360			
ENDATA08 \$\$\$ DATA TYPE 9	(ADVECTIVE HY	DRAULIC COEFFICIEN	TS) \$\$\$									
CARD TYPE REACH		DTH WIDTH A" "B"	WIDTH		EPTH "E"	DEPTH "F"	SLOPE	MANNING:	3			
HYDR-1 1 HYDR-1 2 HYDR-1 3 HYDR-1 4 HYDR-1 5 HYDR-1 6 ENDATA09	BC 0. BC 0. BC 0. BC 0. BC 0.	000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000	4.877 15.850 27.737 28.346 21.488	0.000 0.000	.000 .000 .000 .000	1.113 1.085 1.189 1.021	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000 0.000 0.000				
\$\$\$ DATA TYPE 10	(DISPERSIVE	HYDRAULIC COEFFICI	ENTS) \$\$\$									
CARD TYPE REACH	I ID TIDA RANG		DISPERSION "B"	DISPERSION "C"	DISPERS "D"	ION						
HYDR 1 HYDR 2 HYDR 3 HYDR 4 HYDR 5 HYDR 5 HYDR 6 ENDATA10	BC 0.9 BC 0.9 BC 0.9 BC 0.9 BC 1.0	5 60.000 3 60.000 3 60.000 0 60.000	0.833 0.833 0.833 0.833 0.833 0.833	0.000 0.000 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00	0 0 0 0						
\$\$\$ DATA TYPE 11	. (INITIAL CON	DITIONS) \$\$\$										
CARD TYPE R	REACH ID	TEMP SALIN	DO	NH3 NO3+2	PHOS	CHL A	MACRO	ı				
INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL ENDATA11	1 BC 2 BC 3 BC 4 BC 5 BC 6 BC	20.71 0.10 20.71 0.23 20.71 1.15 20.71 1.45 20.71 1.76 20.71 1.98	4.00 0 4.00 0 4.00 0 4.00 0	.00 0.00 .00 0.00 .00 0.00 .00 0.00 .00 0.00	0.00 0.00 0.00 0.00 0.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00					
\$\$\$ DATA TYPE 12	(REAERATION,	SEDIMENT OXYGEN D	EMAND, BOD COEFF	ICIENTS) \$\$\$								
	CH K2 CD OPT	K2 "A"	K2 K "B" "C		BOD DECAY per day	BOD SETT m/d	BOD CONV TO SOD	ANAER BOD2 DECAY per day	BOD2 DECAY per day	BOD2 SETT m/d	BOD2 CONV TO SOD	ANAER BOD2 DECAY per day
	BC 11 TEXAS BC 11 TEXAS	0.000	0.000 0.000 0.000		0.044	0.050 0.050	0.000	0.000	0.000	0.000	0.000	0.000

COEF-1 3 COEF-1 4 COEF-1 5 COEF-1 6 ENDATA12	BC 1	TEXAS TEXAS K2=a K2=a		0.000 0.000 0.738 0.773	0.000	0.000 0.000 0.000 0.000	1.500 1.200 0.950 0.000	0.057 0.057 0.057 0.057	0.050 0.050 0.050 0.050	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
\$\$\$ DATA TYPE	13 (NIT	ROGEN AN	ND PHOSPHOR	RUS COEFFI	CIENTS) \$\$\$	3							
CARD TYPE	REACH	ID	NBOD DECA	NBOD SETT	ORGN CONV TO NH3 SRCE	NH3 DECA	NH3 SRCE		DENIT RATE				
COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 ENDATA13	1 2 3 4 5 6	BC BC	0.200 0.100 0.100 0.100 0.100 0.100	0.050 0.050 0.050 0.050 0.050 0.050	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000				
\$\$\$ DATA TYPE	14 (ALG	AE AND N	MACROPHYTE	COEFFICIE	NTS) \$\$\$								
CARD TYPE	REACH	ID	SECCHI DEPTH	ALGAE: CHL A	ALGAE SETT	ALG CON						NG	
ENDATA14													
\$\$\$ DATA TYPE	15 (COL	IFORM AN	ND NONCONSE	ERVATIVE C	OEFFICIENTS	3) \$\$\$							
CARD TYPE	REACH	ID (COLIFORM DIE-OFF	NCM DECAY	NCM SETT	NCM CONV TO SOD							
ENDATA15													
\$\$\$ DATA TYPE	16 (INC	REMENTAI	L DATA FOR	FLOW, TEM	PERATURE, S	SALINITY,	AND CONSER	VATIVES) \$\$	\$\$				
CARD TYPE	REACH	ID	OUTFLOW	INFL	OW TEN	MP SAL	IN CM	I-I CM-I	II IN/DI	ST OUT/D	IST		
ENDATA16													
\$\$\$ DATA TYPE	17 (INC	REMENTAI	L DATA FOR	DO, BOD,	AND NITROGE	IN) \$\$\$							
CARD TYPE	REACH	ID	DO	BOD	NBOD			BOD#2					
ENDATA17													
\$\$\$ DATA TYPE	18 (INC	REMENTAI	L DATA FOR	PHOSPHORU	S, CHLOROPH	HYLL, COLI	FORM, AND	NONCONSERVA	ATIVES) \$\$	\$			
CARD TYPE	REACH	ID	PHOS	CHL A	COLI	NCM							
ENDATA18													
\$\$\$ DATA TYPE	19 (NON	POINT SO	OURCE DATA)	\$\$\$									
CARD TYPE	REACH	ID	BOD#1	NBOD	COLI	NCM	DO	BOD#2					
NONPOINT NONPOINT NONPOINT	1 2 3 4	BC BC BC BC	0.62 12.00 13.00 14.00	0.22 2.00 3.65 4.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00					

0.000

0.000

0.000

0.000

0.000

0.000

0.000

NONPOINT NONPOINT ENDATA19	5 6	BC BC	27.50 23.50	8.25 14.00	0.00	0.00	0.00	0.00				
\$\$\$ DATA TYP	E 20 (HE.	ADWATER	FOR FLOW,	TEMPERATURE	, SALINITY	AND CONSER	VATIVES)	\$\$\$				
CARD TYPE	ELEMEN'	r name	2	UNI	T FLOW m³/s		TEMP deg C	SALIN ppt	CM-I mg/L	CM-II umhos/cm		
HDWTR-1 ENDATA20	1	HEAI	OWATER	0	0.02800	0.989	0.00	0.10	21.500	215.380	0.00	
\$\$\$ DATA TYP	E 21 (HE.	ADWATER	DATA FOR DO	O, BOD, AND	NITROGEN)	\$\$\$						
CARD TYPE	ELEMEN'	Γ NAME	Ē		DO mg/L	BOD#1 mg/L	NBOD mg/L	mg/L	mg/L	BOD#2 mg/L		
HDWTR-2 ENDATA21	1	HEAI	OWATER		8.07	1.69	0.29	0.00	0.00	0.00		
\$\$\$ DATA TYP	E 22 (HE.	ADWATER	DATA FOR P	HOSPHORUS,	CHLOROPHYL	L, COLIFORM	, AND NON	ICONSERVAT	'IVES) \$\$	\$		
CARD TYPE	ELEMEN'	Γ NAME	Ξ		PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L				
ENDATA22												
\$\$\$ DATA TYP	E 23 (JU	NCTION I	DATA) \$\$\$									
CARD TYPE	JUNCTION ELEMENT	UPSTF ELEMEN										
ENDATA23												
\$\$\$ DATA TYP	E 24 (WA	STELOAD	DATA FOR F	LOW, TEMPER	ATURE, SAL	INITY, AND	CONSERVAT	'IVES) \$\$\$				
CARD TYPE E	LEMENT	RKILO	NAME		FLOW m³/s				SALIN ppt	CM-I mg/L	CM-II umhos/cm	
WSTLD-1 ENDATA24	18	3.43	SE LA Sta	te Hospital	0.01530	0.54025	0.349	0.00	0.22	22.500	458.000	
\$\$\$ DATA TYP	E 25 (WA	STELOAD	DATA FOR DO	O, BOD, AND	NITROGEN)	\$\$\$						
CARD TYPE	ELEMEN'	г паме	3		DO mg/L	BOD mg/L	% BOD RMVL	NBOD mg/L	mg/L	% NITRIF	mg/L	BOD#2 mg/L
WSTLD-2 ENDATA25	18	SE I	LA State Ho	spital	5.00	11.50	0.00	8.60	0.00	0.00	0.00	0.00
\$\$\$ DATA TYP	E 26 (WA	STELOAD	DATA FOR P	HOSPHORUS,	CHLOROPHYL	L, COLIFORM	, AND NON	ICONSERVAT	IVES) \$\$	\$		
CARD TYPE	ELEMEN'	r name	Ē		PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L				
ENDATA26												
\$\$\$ DATA TYP	E 27 (LO	WER BOUN	NDARY CONDI	TIONS) \$\$\$								

Bayou Cane Watershed TMDL Subsegments 040903 and 040904 Originated: February 4, 2011

CARD TYPE	CONSTITUENT		CONC	ENTRATION					
LOWER BC ENDATA27	TEMPERATURE SALINITY CONSERVATIVE MAY CONSERVATIVE MAY DISSOLVED OXYGE BOD1 BIOCHEMICA CHLOROPHYLL A NBOD	ATERIAL II EN	(CHLORIDES) (COND)	= 3724.9 = 6.6	030 ppt 000 mg, 040 umb 510 mg,	/L nos/cm /L /L /L			
\$\$\$ DATA TY	PE 28 (DAM DATA)	\$\$\$							
CARD TYPE	ELEMENT NAME	Ξ	EQ	n "A'	' "B'	' "H"			
ENDATA28									
\$\$\$ DATA TY	PE 29 (SENSITIVI	TY ANALYSI:	S DATA) \$\$\$						
CARD TYPE	PARAMETER	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
SENSITIV	BASEFLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	VELOCITY	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	DEPTH	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	DISPERSI	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	REAERATI	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BOD DECA	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BOD SETT	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	TRANGE	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NBOD DEC	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NBOD SET	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	BENTHAL	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	TEMPERAT	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	SALINITY	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	CHLOR A	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	OXR	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC TEMP	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
ENDATA29									
000 Dama mir	DE 20 (DIOM CONMI	OT CARROL	000						

\$\$\$ DATA TYPE 30 (PLOT CONTROL CARDS) \$\$\$

NUMBER OF PLOTS = 1 NUMBER OF REACHES IN PLOT 1 = 6 PLOT RCH 1 2 3 4 5 6

ENDATA30

\$\$\$ DATA TYPE 31 (OVERLAY PLOT DATA) \$\$\$

OVERLAY 1 bayoucaneovl.txt :MAIN STEM

ENDATA31

21

22

3.40

....NO ERRORS DETECTED IN INPUT DATAHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 6 ITERATIONS

3.39 0.04330 35.3 0.00798

3.39 3.38 0.04330 35.3 0.00798

23 3.38 3.37 0.04330 35.3 0.00798

....CONSTITUENT CALCULATIONS COMPLETED

FINAL REPORT HEADWATER REACH NO. 1 RKM 3.6 to 2.8 BAYOU CANE WATERSHED MODEL

WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

4.88 54.28 48.77 5.43 229.62 0.001

0.01 1.11 4.88 54.28 48.77 5.43 251.49 0.001

54.28 48.77 5.43 240.55 0.001

0.523

0.523

0.523 0.008

0.008

0.008

ELEM TYPE FLOW TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 PHOS CHL A NCM COLI NO. deg C 1 HDWTR 0.02800 0.00 0.10 21.50 215.38 8.07 1.69 0.00 1.69 0.00 0.29 0.00 0.00 0.00 10.00 0.00 0.00 0.01530 0.00 0.22 22.50 458.00 5.00 11.50 0.00 11.50 0.00 8.60 0.00 0.00 0.00 0.00 18 WSTLD 0.00 0.00 FLOW PCT ADVCTV TRAVEL DEPTH WIDTH VOLUME ELEM BEGIN ENDING SURFACE X-SECT TIDAL TIDAL DISPRSN MEAN NO. DIST DIST EFF VELO TIME AREA AREA PRISM VELO VELO km km m³/s m/s days m m m 3 m² m² m³ m/s m²/s m/s 1 3.60 3.59 0.02800 0.0 0.00516 0.02 1.11 4.88 54.28 48.77 5.43 10.93 0.000 0.338 0.005 0.0 0.00516 1.11 3.59 3.58 0.02800 0.02 4.88 54.28 48.77 5.43 21.87 0.000 0.338 0.005 0.0 0.00516 1.11 3.58 3.57 0.02800 0.02 4.88 54.28 48.77 5.43 32.80 0.000 0.338 0.005 0.02 1.11 3.57 3.56 0.02800 0.0 0.00516 4.88 54.28 48.77 5.43 43.74 0.000 0.338 0.005 3.55 0.02800 0.0 0.00516 0.02 1.11 54.28 48.77 5.43 54.67 0.000 3.56 4.88 0.338 0.005 6 3.55 3.54 0.02800 0.0 0.00516 0.02 1.11 4.88 54.28 48.77 5.43 65.61 0.000 0.338 0.005

 54.28
 48.77
 5.43
 76.54
 0.000

 54.28
 48.77
 5.43
 87.47
 0.000

 3.54 3.53 0.02800 0.0 0.00516 0.02 1.11 4.88 0.338 0.005 3.53 3.52 0.02800 0.0 0.00516 0.02 1.11 4.88 0.338 0.005

 54.28
 48.77
 5.43
 98.41
 0.000

 54.28
 48.77
 5.43
 109.34
 0.000

 9 3.52 3.51 0.02800 0.0 0.00516 0.02 1.11 4.88 0.338 0.005 3.50 0.02800 0.0 0.00516 10 3.51 0.02 1.11 4.88 0.338 0.005 3.49 0.02800 0.0 0.00516 54.28 48.77 5.43 120.28 0.001 11 3.50 0.02 1.11 4.88 0.338 0.005
 54.28
 48.77
 5.43
 120.28
 0.001

 54.28
 48.77
 5.43
 131.21
 0.001

 54.28
 48.77
 5.43
 142.15
 0.001

 54.28
 48.77
 5.43
 153.08
 0.001

 54.28
 48.77
 5.43
 164.01
 0.001

 54.28
 48.77
 5.43
 174.95
 0.001

 54.28
 48.77
 5.43
 185.88
 0.001

 54.28
 48.77
 5.43
 207.75
 0.001

 54.28
 48.77
 5.43
 218.68
 0.001

 54.28
 48.77
 5.43
 218.68
 0.001

 54.28
 48.77
 5.43
 229.62
 0.001
 3.48 0.02800 0.0 0.00516 12 3.49 0.02 1.11 4.88 0.338 0.005 3.48 3.47 0.02800 0.0 0.00516 0.02 1.11 4.88 0.338 13 0.005 0.0 0.00516 0.02 1.11 4.88 0.0 0.00516 0.02 1.11 4.88 14 3.47 3.46 0.02800 0.338 0.005 3.45 0.02800 15 3.46 0.338 0.005 0.0 0.00516 1.11 1.11 1.11 1.11 4.88 16 3.45 3.44 0.02800 0.02 0.338 0.005 3.43 0.02800 0.0 0.00516 3.42 0.04330 35.3 0.00798 3.41 0.04330 35.3 0.00798 17 3.44 0.02 4.88 0.338 0.005 18 3.43 0.01 4.88 0.523 0.008 4.88 0.008 19 3.42 0.01 0.523 3.40 0.04330 35.3 0.00798 1.11 4.88 3.41 0.523 20 0.01 0.008

4.88

1.11

0.01 1.11

0.01

TOT

24	3.37	3.36	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	262.42	0.001	0.523	0.008
25	3.36	3.35	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	273.36	0.001	0.523	0.008
26	3.35	3.34	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	284.29	0.001	0.523	0.008
27	3.34	3.33	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	295.22	0.001	0.523	0.008
28	3.33	3.32	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	306.16	0.001	0.523	0.008
29	3.32	3.31	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	317.09	0.001	0.523	0.008
30	3.31	3.30	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	328.03	0.001	0.523	0.008
31	3.30	3.29	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	338.96	0.001	0.523	0.008
32	3.29	3.28	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	349.90	0.001	0.523	0.008
33	3.28	3.27	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	360.83	0.002	0.523	0.008
34	3.27	3.26	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	371.76	0.002	0.523	0.008
35	3.26	3.25	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	382.70	0.002	0.523	0.008
36	3.25	3.24	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	393.63	0.002	0.523	0.008
37	3.24	3.23	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	404.57	0.002	0.523	0.008
38	3.23	3.22	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	415.50	0.002	0.523	0.008
39	3.22	3.21	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	426.44	0.002	0.523	0.008
40	3.21	3.20	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	437.37	0.002	0.523	0.008
41	3.20	3.19	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	448.30	0.002	0.523	0.008
42	3.19	3.18	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	459.24	0.002	0.523	0.008
43	3.18	3.17	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	470.17	0.002	0.523	0.008
44	3.17	3.16	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	481.11	0.002	0.523	0.008
45	3.16	3.15	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	492.04	0.002	0.523	0.008
46	3.15	3.14	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	502.97	0.002	0.523	0.008
47	3.14	3.13	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	513.91	0.002	0.523	0.008
48	3.13	3.12	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	524.84	0.002	0.523	0.008
49	3.12	3.11	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	535.78	0.002	0.523	0.008
50	3.11	3.10	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	546.71	0.002	0.523	0.008
51	3.10	3.09	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	557.65	0.002	0.523	0.008
52	3.09	3.08	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	568.58	0.002	0.523	0.008
53	3.08	3.07	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	579.51	0.002	0.523	0.008
54	3.07	3.06	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	590.45	0.002	0.523	0.008
55	3.06	3.05	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	601.38	0.003	0.523	0.008
56	3.05	3.04	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	612.32	0.003	0.523	0.008
57	3.04	3.03	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	623.25	0.003	0.523	0.008
58	3.03	3.02	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	634.19	0.003	0.523	0.008
59	3.02	3.01	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	645.12	0.003	0.523	0.008
60	3.01	3.00	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	656.05	0.003	0.523	0.008
61	3.00	2.99	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	666.99	0.003	0.523	0.008
62	2.99	2.98	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	677.92	0.003	0.523	0.008
63	2.98			35.3	0.00798	0.01				48.77		688.86		0.523	0.008
		2.97	0.04330				1.11	4.88	54.28		5.43		0.003		
64	2.97	2.96	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	699.79	0.003	0.523	0.008
65	2.96	2.95	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	710.72	0.003	0.523	0.008
66	2.95	2.94	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	721.66	0.003	0.523	0.008
67	2.94	2.93	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	732.59	0.003	0.523	0.008
68	2.93	2.92	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	743.53	0.003	0.523	0.008
69	2.92	2.91	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	754.46	0.003	0.523	0.008
70	2.91	2.90	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	765.40	0.003	0.523	0.008
71	2.90	2.89	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	776.33	0.003	0.523	0.008
72	2.89	2.88	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	787.26	0.003	0.523	0.008
73	2.88	2.87	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	798.20	0.003	0.523	0.008
74	2.87	2.86	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	809.13	0.003	0.523	0.008
75	2.86	2.85	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	820.07	0.003	0.523	0.008
76	2.85	2.84	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	831.00	0.003	0.523	0.008
77	2.84	2.83	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	841.94	0.003	0.523	0.008
78	2.83	2.82	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	852.87	0.004	0.523	0.008
79	2.82	2.81	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	863.80	0.004	0.523	0.008
80	2.81	2.80	0.04330	35.3	0.00798	0.01	1.11	4.88	54.28	48.77	5.43	874.74	0.004	0.523	0.008

4342.48

3901.60

1.30

AVG	0.0071	1.11	4.88	5.43
CUM	1.30			

****	*****	****	*****	*****	*****	*****	BIOLOGI	CAL AN	ND PHYSI	CAL CC	EFFICI	ENTS *	*****	****	*****	*****	*****	*****	*****	*			
	ENDING	SAT	REAER			ABOD#1			ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST	D.O. mg/L	RATE 1/da	DECAY 1/da	SETT 1/da	DECAY 1/da	DECAY 1/da		DECAY 1/da	SOD *	SOD *	SOD *	DECAY 1/da	SETT 1/da	DECAY 1/da	SRCE *	RATE 1/da	SRCE *	PROD **	PROD **	DECAY 1/da	DECAY 1/da	SETT 1/da
									27 00								17 00						
1	3.590		0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.21	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
2		8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46		0.05	0.00	0.00			0.52	0.00	0.00	0.00	0.00
3 4	3.570 3.560	8.96 8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.21	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
5		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
6	3.540	8.96	0.64	0.05		0.00	0.00		0.00			0.46	0.21	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
7		8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00		0.46	0.46	0.21	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
8	3.520		0.64	0.05	0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
9	3.510		0.64		0.05	0.00	0.00		0.00			0.46	0.21	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
10	3.500	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.21	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
11	3.490	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.21	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
12	3.480		0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
13	3.470		0.64		0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
14		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.21	0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
15	3.450		0.64	0.05		0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
16 17		8.96 8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
18	3.420		0.64	0.05	0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
19		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
20		8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
21		8.96	0.64		0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
22		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
23	3.370	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
24		8.96	0.64	0.05	0.05	0.00	0.00		0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
25		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
26	3.340	8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
27	3.330		0.64		0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
28		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
29 30	3.310	8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
31	3.290	8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
32	3.280	8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
33		8.96	0.64		0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00		0.00		0.00	0.00	0.00	0.00
34	3.260	8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
35	3.250	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
36	3.240	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
37		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
38	3.220	8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
39		8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
40	3.200	8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46		0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
41 42	3.190 3.180	8.96 8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
42	3.170	8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46		0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
43	3.160	8.96	0.64	0.05	0.05	0.00	0.00		0.00		0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
45		8.96	0.64	0.05	0.05	0.00	0.00		0.00			0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
46	3.140	8.96	0.64	0.05	0.05	0.00	0.00		0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
47	3.130	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
48	3.120	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
49	3.110	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00

50	3.100	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
51	3.090	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
52	3.080	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
53	3.070	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
54	3.060	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
55	3.050	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
56	3.040	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
57	3.030	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
58	3.020	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
59	3.010	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
60	3.000	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
61	2.990	8.96	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
62	2.980	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
63	2.970	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
64	2.960	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
65	2.950	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
66	2.940	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
67	2.930	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
68	2.920	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
69	2.910	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
70	2.900	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
71	2.890	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
72	2.880	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
73	2.870	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
74	2.860	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
75	2.850	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
76	2.840	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
77	2.830	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
78	2.820	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
79	2.810	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
80	2.800	8.95	0.64	0.05	0.05	0.00	0.00	0.00	0.00	0.46	0.46	0.46	0.20	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
AVG 2	DEG C 1	RATE	0.63	0.04	0.05	0.00	0.00	0.00	0.00	0.44			0.20	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* q/m²/d ** mg/L/day

ELEM ENDING TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 TOTN PHOS CHL A MACRO COLI NCM mg/L umhos/cm DIST DEG C PPT mg/L μg/L g/m³ #/100mL 1 3.590 20.71 0.10 21.53 223.29 8.04 1.99 0.00 1.99 0.00 0.53 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 3.580 20.71 0.10 21.54 224.49 8.03 2.04 0.00 2.04 0.00 0.57 0.00 0.00 0.00 0.00 10.00 0.00 0.00 3.570 20.71 0.10 21.54 225.88 8.03 2.09 0.00 2.09 0.00 0.61 0.00 0.00 0.00 0.00 10.00 0.00 0.00 227.48 0.00 0.00 0.00 3.560 20.71 0.11 21.55 8.01 2.16 2.16 0.00 0.66 0.00 0.00 0.00 10.00 0.00 3.550 20.71 0.11 229.33 8.00 2.23 0.00 2.23 0.00 5 21.56 0.00 0.72 0.00 0.00 0.00 0.00 10.00 0.00 0. 21.57 231.46 7.98 2.31 0.00 2.31 0.00 0.78 0.00 0.00 3.540 20.71 0.11 0.00 0.00 0.00 10.00 0.00 0. 7 3.530 20.71 0.11 21.58 233.91 7.96 2.41 0.00 2.41 0.00 0.86 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 0.00 8 3.520 20.71 0.11 21.59 236.73 7.93 2.52 0.00 2.52 0.00 0.95 0.00 0.00 0.00 0.00 10.00 0.00 0. 3.510 20.71 0.11 21.60 239.99 7.89 2.65 0.00 2.65 0.00 1.05 0.00 0.00 0.00 0.00 10.00 0.00 0.00 9 0. 10 3.500 20.71 0.12 21.62 243.74 7.85 2.79 0.00 2.79 0.00 1.17 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 11 3.490 20.71 0.12 21.63 248.06 7.80 2.96 0.00 2.96 0.00 1.32 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 3.480 20.71 0.12 21.66 253.04 7.74 3.16 0.00 3.16 0.00 1.48 0.00 0.00 0.00 10.00 0.00 0.00 12 0.00 3.470 20.71 0.12 258.78 7.67 3.39 1.67 0.00 13 21.68 0.00 3.39 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0. 3.460 20.71 0.12 21.71 265.40 7.59 3.65 3.65 0.00 1.88 0.00 0.00 10.00 0.00 0.00 14 0.00 0.00 0.00 0. 3.450 20.71 0.12 273.03 7.50 3.96 0.00 2.14 0.00 10.00 0.00 21.74 0.00 3.96 0.00 0.00 0.00 0.00 15 0. 281.82 3.440 20.71 0.13 21.77 7.39 4.31 0.00 4.31 0.00 2.43 0.00 10.00 0.00 0.00 16 0.00 0.00 0.00 0. 17 3.430 20.71 0.13 21.82 291.94 7.26 4.72 0.00 4.72 0.00 2.77 0.00 0.00 0.00 0.00 10.00 0.00 0.00

18	3.420 20.71 0.	.13 21.85	301.11	7.14	5.09	0.00	5.09	0.00	3.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
19	3.410 20.71 0	.13 21.85	301.11	7.15	5.08	0.00	5.08	0.00	3.07	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
20		.13 21.85	301.11	7.15	5.08	0.00	5.08	0.00	3.06	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
21		.13 21.85	301.11	7.16	5.07	0.00	5.07	0.00	3.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
22	3.380 20.71 0.	.14 21.85	301.11	7.16	5.07	0.00	5.07	0.00	3.04	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
23	3.370 20.71 0	.14 21.85	301.11	7.17	5.06	0.00	5.06	0.00	3.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
24		.14 21.85	301.11	7.17	5.06	0.00	5.06	0.00	3.02	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
25		.14 21.85	301.11	7.18	5.05	0.00	5.05	0.00	3.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
26	3.340 20.71 0.	.14 21.85	301.11	7.18	5.05	0.00	5.05	0.00	3.00	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
27	3.330 20.71 0	.14 21.85	301.11	7.19	5.04	0.00	5.04	0.00	2.99	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
28		.15 21.85	301.11	7.20	5.04	0.00	5.04	0.00	2.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
29		.15 21.85	301.11	7.20	5.03	0.00	5.03	0.00	2.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
30		.15 21.85	301.11	7.21	5.03	0.00	5.03	0.00	2.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
31	3.290 20.71 0.	.15 21.85	301.11	7.21	5.02	0.00	5.02	0.00	2.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
32	3.280 20.71 0	.15 21.85	301.11	7.22	5.02	0.00	5.02	0.00	2.94	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
33		.15 21.85	301.11	7.22	5.01	0.00	5.01	0.00	2.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
34		.16 21.85	301.11	7.23	5.01	0.00	5.01	0.00	2.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
35	3.250 20.71 0.	.16 21.85	301.11	7.23	5.00	0.00	5.00	0.00	2.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
36	3.240 20.71 0	.16 21.85	301.11	7.24	5.00	0.00	5.00	0.00	2.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
37		.16 21.85	301.11	7.24	4.99	0.00	4.99	0.00	2.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
38		.16 21.85	301.11	7.25	4.99	0.00	4.99	0.00	2.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
39	3.210 20.71 0	.16 21.85	301.11	7.26	4.98	0.00	4.98	0.00	2.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
40	3.200 20.71 0	.17 21.85	301.11	7.26	4.98	0.00	4.98	0.00	2.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
41	3.190 20.71 0	.17 21.85	301.11	7.27	4.97	0.00	4.97	0.00	2.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
42		.17 21.85	301.11	7.27	4.97	0.00	4.97	0.00	2.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
43		.17 21.85	301.11	7.28	4.96	0.00	4.96	0.00	2.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
44	3.160 20.71 0	.17 21.85	301.11	7.28	4.96	0.00	4.96	0.00	2.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
45	3.150 20.71 0	.17 21.85	301.11	7.29	4.95	0.00	4.95	0.00	2.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
46	3.140 20.71 0	.17 21.85	301.11	7.29	4.95	0.00	4.95	0.00	2.80	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
47		.18 21.85	301.11	7.30	4.94	0.00	4.94	0.00	2.79	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
48		.18 21.85	301.11	7.30	4.94	0.00	4.94	0.00	2.78	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
49	3.110 20.71 0	.18 21.85	301.12	7.31	4.94	0.00	4.94	0.00	2.78	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
50	3.100 20.71 0.	.18 21.85	301.12	7.31	4.93	0.00	4.93	0.00	2.77	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
51	3.090 20.71 0	.18 21.85	301.12	7.32	4.93	0.00	4.93	0.00	2.76	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
52		.18 21.85	301.12	7.32	4.92	0.00	4.92	0.00	2.75	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
53		.19 21.85	301.12	7.33	4.92	0.00	4.92	0.00	2.74	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
54		.19 21.85	301.12	7.33	4.91	0.00	4.91	0.00	2.73	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
55	3.050 20.71 0.	.19 21.85	301.12	7.34	4.91	0.00	4.91	0.00	2.72	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
56	3.040 20.71 0	.19 21.85	301.12	7.34	4.90	0.00	4.90	0.00	2.71	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
57		.19 21.85	301.12	7.34	4.90	0.00	4.90	0.00	2.70	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
		.19 21.85	301.12		4.90	0.00	4.90	0.00		0.00	0.00	0.00		10.00			0.00
58				7.35					2.69				0.00		0.00	0.	
59		.20 21.85	301.12	7.35	4.89	0.00	4.89	0.00	2.68	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
60	3.000 20.71 0.	.20 21.85	301.12	7.36	4.89	0.00	4.89	0.00	2.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
61	2.990 20.71 0	.20 21.85	301.12	7.36	4.88	0.00	4.88	0.00	2.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
62		.20 21.85	301.12	7.36	4.88	0.00	4.88	0.00	2.66	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
63		.20 21.85	301.12	7.37	4.88	0.00	4.88	0.00	2.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
64		.20 21.85	301.12	7.37	4.87	0.00	4.87	0.00	2.64	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
65	2.950 20.71 0	.21 21.85	301.12	7.37	4.87	0.00	4.87	0.00	2.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
66	2.940 20.71 0	.21 21.85	301.12	7.37	4.87	0.00	4.87	0.00	2.62	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
67		.21 21.85	301.12	7.37	4.86	0.00	4.86	0.00	2.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
68		.21 21.85	301.12	7.37	4.86	0.00	4.86	0.00	2.60	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
69	2.910 20.71 0	.21 21.85	301.12	7.37	4.86	0.00	4.86	0.00	2.59	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
70	2.900 20.71 0	.21 21.85	301.12	7.37	4.86	0.00	4.86	0.00	2.58	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
71		.22 21.85	301.12	7.37	4.85	0.00	4.85	0.00	2.58	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
72		.22 21.85	301.12	7.37	4.85	0.00	4.85	0.00	2.57	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
73		.22 21.85	301.12	7.36	4.85	0.00	4.85	0.00	2.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
74		.22 21.85	301.12	7.36	4.85	0.00	4.85	0.00	2.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
75	2.850 20.71 0	.22 21.85	301.12	7.35	4.85	0.00	4.85	0.00	2.54	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
76	2.840 20.71 0	.22 21.85	301.12	7.34	4.86	0.00	4.86	0.00	2.53	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
-																	

77	2.830 20.71	0.23	21.85	301.12	7.33	4.86	0.00	4.86	0.00	2.52	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
78	2.820 20.71	0.23	21.85	301.12	7.31	4.86	0.00	4.86	0.00	2.51	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
79	2.810 20.71	0.23	21.85	301.12	7.30	4.87	0.00	4.87	0.00	2.50	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
80	2.800 20.71	0.23	21.85	301.12	7.28	4.87	0.00	4.87	0.00	2.49	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 2 RKM 2.8 to 1.9

BAYOU CANE WATERSHED MODEL
WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

ELEM TYPE FLOW TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 PHOS CHL A COLI NCM NO. deg C mg/L umhos/cm mg/L mg/L mg/L mg/Lmg/L mg/L mg/L mg/L µg/L #/100mL 81 UPR RCH 0.04330 20.71 0.23 21.85 301.12 7.28 4.87 0.00 4.87 0.00 2.49 0.00 0.00 0.00 10.00 0.00

						""" HIDKA	JLIC PARA	AMEIER VA	TOES						
ELEM	BEGIN	ENDING	FLOW	PCT	ADVCTV	TRAVEL	DEPTH	WIDTH	VOLUME	SURFACE	X-SECT	TIDAL	TIDAL	DISPRSN	MEAN
NO.	DIST	DIST		EFF	VELO	TIME				AREA	AREA	PRISM	VELO		VELO
	km	km	m^3/s		m/s	days	m	m	m³	m²	m²	m³	m/s	m²/s	m/s
81	2.80	2.79	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	910.27	0.001	0.162	0.003
82	2.79	2.78	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	945.81	0.001	0.162	0.003
83	2.78	2.77	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	981.34	0.001	0.162	0.003
84	2.77	2.76	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1016.88	0.001	0.162	0.003
85	2.76	2.75	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1052.42	0.001	0.162	0.003
86	2.75	2.74	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1087.95	0.001	0.162	0.003
87	2.74	2.73	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1123.49	0.001	0.162	0.003
88	2.73	2.72	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1159.02	0.002	0.162	0.003
89	2.72	2.71	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1194.56	0.002	0.162	0.003
90	2.71	2.70	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1230.09	0.002	0.163	0.003
91	2.70	2.69	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1265.63	0.002	0.164	0.003
92	2.69	2.68	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1301.17	0.002	0.166	0.003
93	2.68	2.67	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1336.70	0.002	0.167	0.003
94	2.67	2.66	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1372.24	0.002	0.169	0.003
95	2.66	2.65	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1407.77	0.002	0.170	0.003
96	2.65	2.64	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1443.31	0.002	0.172	0.003
97	2.64	2.63	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1478.84	0.002	0.174	0.003
98	2.63	2.62	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1514.38	0.002	0.176	0.003
99	2.62	2.61	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1549.92	0.002	0.178	0.003
100	2.61	2.60	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1585.45	0.002	0.180	0.003
101	2.60	2.59	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1620.99	0.002	0.182	0.003
102	2.59	2.58	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1656.52	0.002	0.184	0.003
103	2.58	2.57	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1692.06	0.002	0.186	0.003
104	2.57	2.56	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1727.59	0.002	0.188	0.003
105	2.56	2.55	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1763.13	0.002	0.191	0.003
106	2.55	2.54	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1798.66	0.002	0.193	0.003
107	2.54	2.53	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1834.20	0.002	0.195	0.003
108	2.53	2.52	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1869.74	0.002	0.198	0.003
109	2.52	2.51	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1905.27	0.003	0.200	0.003
110	2.51	2.50	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1940.81	0.003	0.202	0.003
111	2.50	2.49	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	1976.34	0.003	0.205	0.003
112	2.49	2.48	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	2011.88	0.003	0.207	0.003
113	2.48	2.47	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	2047.41	0.003	0.210	0.003
114	2.47	2.46	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	2082.95	0.003	0.212	0.003
115	2.46	2.45	0.04330	35.3	0.00252	0.05	1.09	15.85	171.97	158.50	17.20	2118.49	0.003	0.215	0.003

116 117 118 119	2.45 2.44 2.43 2.42	2.44 2.43 2.42 2.41	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20	2154.02 2189.56 2225.09 2260.63	0.003 0.003 0.003 0.003	0.217 0.220 0.222 0.225	0.003 0.003 0.003 0.004
120 121 122 123 124	2.41 2.40 2.39 2.38 2.37	2.40 2.39 2.38 2.37 2.36	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	2296.16 2331.70 2367.24 2402.77 2438.31	0.003 0.003 0.003 0.003 0.003	0.228 0.230 0.233 0.235 0.238	0.004 0.004 0.004 0.004 0.004
125 126 127 128	2.36 2.35 2.34 2.33	2.35 2.34 2.33 2.32	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20	2473.84 2509.38 2544.91 2580.45	0.003 0.003 0.003 0.003	0.241 0.243 0.246 0.249	0.004 0.004 0.004 0.004
129 130 131 132 133	2.32 2.31 2.30 2.29 2.28	2.31 2.30 2.29 2.28 2.27	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	2615.98 2651.52 2687.06 2722.59 2758.13	0.003 0.003 0.004 0.004 0.004	0.251 0.254 0.257 0.260 0.262	0.004 0.004 0.004 0.004 0.004
134 135 136 137 138	2.27 2.26 2.25 2.24 2.23	2.26 2.25 2.24 2.23	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	2793.66 2829.20 2864.73 2900.27 2935.81	0.004 0.004 0.004 0.004 0.004	0.265 0.268 0.270 0.273 0.276	0.004 0.004 0.004 0.004 0.004
138 139 140 141 142	2.23 2.22 2.21 2.20 2.19	2.22 2.21 2.20 2.19 2.18	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	2935.81 2971.34 3006.88 3042.41 3077.95	0.004 0.004 0.004 0.004	0.279 0.281 0.284 0.287	0.004 0.004 0.004 0.004
143 144 145 146 147	2.18 2.17 2.16 2.15 2.14	2.17 2.16 2.15 2.14 2.13	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	3113.48 3149.02 3184.55 3220.09 3255.63	0.004 0.004 0.004 0.004 0.004	0.290 0.293 0.295 0.298 0.301	0.005 0.005 0.005 0.005 0.005
148 149 150 151	2.13 2.12 2.11 2.10	2.12 2.11 2.10 2.09	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20	3291.16 3326.70 3362.23 3397.77	0.004 0.004 0.004 0.004	0.304 0.307 0.309 0.312	0.005 0.005 0.005 0.005
152 153 154 155 156	2.09 2.08 2.07 2.06 2.05	2.08 2.07 2.06 2.05 2.04	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	3433.30 3468.84 3504.38 3539.91 3575.45	0.005 0.005 0.005 0.005 0.005	0.315 0.318 0.321 0.324 0.326	0.005 0.005 0.005 0.005 0.005
157 158 159 160	2.04 2.03 2.02 2.01	2.03 2.02 2.01 2.00	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20	3610.98 3646.52 3682.05 3717.59	0.005 0.005 0.005 0.005	0.329 0.332 0.335 0.338	0.005 0.005 0.005 0.005
161 162 163 164 165	2.00 1.99 1.98 1.97 1.96	1.99 1.98 1.97 1.96 1.95	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	3753.13 3788.66 3824.20 3859.73 3895.27	0.005 0.005 0.005 0.005 0.005	0.341 0.343 0.346 0.349 0.352	0.005 0.005 0.005 0.005 0.005
166 167 168 169 170	1.95 1.94 1.93 1.92 1.91	1.94 1.93 1.92 1.91 1.90	0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3 0.04330 35.3	0.00252 0.00252 0.00252 0.00252 0.00252	0.05 0.05 0.05 0.05 0.05	1.09 1.09 1.09 1.09	15.85 15.85 15.85 15.85 15.85	171.97 171.97 171.97 171.97 171.97	158.50 158.50 158.50 158.50 158.50	17.20 17.20 17.20 17.20 17.20	3930.80 3966.34 4001.87 4037.41 4072.95	0.005 0.005 0.005 0.005 0.005	0.355 0.358 0.361 0.364 0.366	0.006 0.006 0.006 0.006 0.006
TOT AVG CUM				0.0025	4.14	1.08	15.85	15477.53	14265.00	17.20				

****	*****	*****	*****	*****	*****	*****	BIOLOG	ICAL AN	ND PHYSI	CAL CO	EFFICI	ENTS *	*****	****	*****	****	*****	****	*****	*			
ELEM NO.	ENDING DIST		REAER RATE 1/da	DECAY		ABOD#1 DECAY 1/da	DECAY			BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	SETT	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
81	2.790	0 05	0.65	0 07	0.05	0.00	0.00	0.00	0 00	1 03	1.83	1 03	0.10	0.05	0.00	0.00	0.00	0 00	0.52	0.00	0.00	0.00	0.00
82	2.780		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
83	2.770		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
84	2.760		0.65		0.05	0.00	0.00				1.83		0.10		0.00			0.00		0.00	0.00	0.00	0.00
85	2.750		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
86	2.740		0.65		0.05	0.00	0.00				1.83		0.10		0.00			0.00		0.00	0.00	0.00	0.00
87	2.730	8.95	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
88	2.720	8.95	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
89	2.710	8.95	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
90	2.700	8.95	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
91	2.690		0.65		0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10		0.00		0.00	0.00		0.00	0.00	0.00	0.00
92	2.680	8.95	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
93	2.670		0.65		0.05	0.00	0.00	0.00			1.83			0.05	0.00	0.00	0.00			0.00	0.00	0.00	0.00
94	2.660		0.65		0.05	0.00	0.00				1.83		0.10		0.00			0.00		0.00	0.00	0.00	0.00
95	2.650		0.65		0.05	0.00	0.00				1.83		0.10			0.00	0.00			0.00	0.00	0.00	0.00
96	2.640		0.65		0.05	0.00	0.00				1.83		0.10			0.00		0.00		0.00	0.00	0.00	0.00
97	2.630		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
98	2.620		0.65		0.05	0.00	0.00	0.00			1.83			0.05	0.00	0.00	0.00			0.00	0.00	0.00	0.00
99 100	2.610		0.65 0.65		0.05	0.00	0.00	0.00			1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
101	2.590		0.65		0.05	0.00	0.00				1.83		0.10			0.00	0.00	0.00		0.00	0.00	0.00	0.00
101	2.580		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
103	2.570		0.65		0.05	0.00	0.00	0.00			1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
104	2.560		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
105	2.550		0.65		0.05	0.00	0.00	0.00			1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
106	2.540		0.65		0.05	0.00	0.00				1.83		0.10			0.00			0.52		0.00	0.00	0.00
107	2.530		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
108	2.520	8.94	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
109	2.510	8.94	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
110	2.500		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
111	2.490		0.65		0.05	0.00	0.00				1.83		0.10		0.00					0.00	0.00	0.00	0.00
112	2.480		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
113	2.470		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
114	2.460		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
115	2.450		0.65		0.05	0.00	0.00	0.00			1.83			0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
116	2.440		0.65		0.05	0.00	0.00				1.83		0.10			0.00		0.00		0.00	0.00	0.00	0.00
117 118	2.430		0.65 0.65		0.05	0.00	0.00	0.00			1.83		0.10		0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
119	2.420		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
120	2.410		0.65		0.05	0.00	0.00	0.00			1.83		0.10		0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
121	2.390		0.65		0.05	0.00	0.00				1.83		0.10			0.00		0.00		0.00	0.00	0.00	0.00
122	2.380		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
123	2.370		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
124	2.360		0.65		0.05	0.00	0.00				1.83		0.10		0.00	0.00	0.00			0.00	0.00	0.00	0.00
125	2.350		0.65		0.05	0.00	0.00	0.00			1.83		0.10		0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
126	2.340		0.65		0.05	0.00	0.00				1.83		0.10		0.00			0.00		0.00	0.00	0.00	0.00
127	2.330	8.93	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
128	2.320	8.93	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
129	2.310		0.65		0.05	0.00	0.00		0.00	1.83	1.83	1.83	0.10		0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
130	2.300		0.65		0.05	0.00	0.00				1.83		0.10			0.00				0.00	0.00	0.00	0.00
131	2.290	8.93	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00

132	2.280	8.93	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
133	2.270	8.93	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
134	2.260	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
135	2.250	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
136	2.240	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
137	2.230	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
138	2.220	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
139	2.210	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
140	2.200	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
141	2.190	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
142	2.180	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
143	2.170	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
144	2.160	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
145	2.150	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
146	2.140	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
147	2.130	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
148	2.120	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
149	2.110	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
150	2.100	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
151	2.090	8.92	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
152	2.080	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
153	2.070	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
154	2.060	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
155	2.050	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
156	2.040	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
157	2.030	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
158	2.020	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
159	2.010	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
160	2.000	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
161	1.990	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
162	1.980	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
163	1.970	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
164	1.960	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
165	1.950	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
166	1.940	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
167	1.930	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
168	1.920	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
169	1.910	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
170	1.900	8.91	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.83	1.83	1.83	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
AVG 2	O DEG C	RATE	0.65	0.07	0.05	0.00	0.00	0.00	0.00	1.75			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM NO.	ENDING DIST	TEMP DEG C			Conduct umhos/cm					EBOD#2 mg/L			NO3+2 mg/L	TOTN mg/L		CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
81	2.790	20.71	0.24	21.85	301.12	7.25	4.88	0.00	4.88	0.00	2.48	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
82	2.780	20.71	0.25	21.85	301.12	7.23	4.89	0.00	4.89	0.00	2.47	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
83	2.770	20.71	0.26	21.85	301.12	7.20	4.90	0.00	4.90	0.00	2.45	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
84	2.760	20.71	0.27	21.85	301.12	7.18	4.91	0.00	4.91	0.00	2.44	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
85	2.750	20.71	0.28	21.85	301.12	7.15	4.91	0.00	4.91	0.00	2.43	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
86	2.740	20.71	0.29	21.85	301.12	7.13	4.92	0.00	4.92	0.00	2.42	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
87	2.730	20.71	0.30	21.85	301.12	7.11	4.93	0.00	4.93	0.00	2.41	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
88	2.720	20.71	0.31	21.85	301.12	7.09	4.94	0.00	4.94	0.00	2.40	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
89	2.710	20.71	0.32	21.85	301.12	7.06	4.95	0.00	4.95	0.00	2.39	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

90	2.700 20.71 0.33	21.85	301.12	7.04	4.96	0.00	4.96	0.00	2.38	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
91	2.690 20.71 0.34	21.85	301.12	7.02	4.96	0.00	4.96	0.00	2.37	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
92	2.680 20.71 0.35	21.86	301.12	7.00	4.97	0.00	4.97	0.00	2.36	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
93	2.670 20.71 0.36	21.86	301.12	6.98	4.98	0.00	4.98	0.00	2.35	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
94	2.660 20.71 0.37	21.86	301.12	6.96	4.99	0.00	4.99	0.00	2.34	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
95	2.650 20.71 0.38	21.86	301.12	6.95	5.00	0.00	5.00	0.00	2.32	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
96	2.640 20.71 0.39	21.86	301.12	6.93	5.01	0.00	5.01	0.00	2.31	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
97	2.630 20.71 0.40	21.86	301.12	6.91	5.01	0.00	5.01	0.00	2.30	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
98	2.620 20.71 0.41	21.86	301.13	6.89	5.02	0.00	5.02	0.00	2.29	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
99	2.610 20.71 0.42	21.86	301.13	6.88	5.03	0.00	5.03	0.00	2.28	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
100	2.600 20.71 0.43	21.86	301.13	6.86	5.04	0.00	5.04	0.00	2.27	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
101	2.590 20.71 0.44	21.86	301.13	6.84	5.05	0.00	5.05	0.00	2.26	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
102	2.580 20.71 0.45	21.86	301.13	6.83	5.05	0.00	5.05	0.00	2.25	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
103	2.570 20.71 0.47	21.86	301.13	6.81	5.06	0.00	5.06	0.00	2.24	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
104	2.560 20.71 0.48	21.86	301.14	6.80	5.07	0.00	5.07	0.00	2.23	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
105	2.550 20.71 0.49	21.86	301.14	6.79	5.08	0.00	5.08	0.00	2.22	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
106	2.540 20.71 0.50	21.86	301.14	6.77	5.08	0.00	5.08	0.00	2.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
107	2.530 20.71 0.51	21.86	301.14	6.76	5.09	0.00	5.09	0.00	2.20	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
108	2.520 20.71 0.52	21.86	301.15	6.75	5.10	0.00	5.10	0.00	2.19	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
109	2.510 20.71 0.53	21.86	301.15	6.73	5.11	0.00	5.11	0.00	2.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
110	2.500 20.71 0.54	21.87	301.16	6.72	5.12	0.00	5.12	0.00	2.17	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
111	2.490 20.71 0.55	21.87	301.16	6.71	5.12	0.00	5.12	0.00	2.17	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
112	2.480 20.71 0.56				5.13	0.00			2.16	0.00	0.00	0.00	0.00	10.00		0.	0.00
		21.87	301.17	6.70			5.13	0.00							0.00		
113	2.470 20.71 0.57	21.87	301.17	6.69	5.14	0.00	5.14	0.00	2.15	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
114	2.460 20.71 0.58	21.87	301.18	6.68	5.15	0.00	5.15	0.00	2.14	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
115	2.450 20.71 0.59	21.88	301.19	6.67	5.15	0.00	5.15	0.00	2.13	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
116	2.440 20.71 0.60	21.88	301.20	6.66	5.16	0.00	5.16	0.00	2.12	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
117	2.430 20.71 0.61	21.88	301.20	6.65	5.17	0.00	5.17	0.00	2.11	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
118	2.420 20.71 0.62	21.88	301.21	6.64	5.18	0.00	5.18	0.00	2.10	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
119	2.410 20.71 0.63	21.89	301.23	6.63	5.18	0.00	5.18	0.00	2.09	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
120	2.400 20.71 0.64	21.89	301.24	6.62	5.19	0.00	5.19	0.00	2.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
121	2.390 20.71 0.65	21.90	301.25	6.61	5.20	0.00	5.20	0.00	2.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
122	2.380 20.71 0.66	21.90	301.27	6.60	5.21	0.00	5.21	0.00	2.07	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
123	2.370 20.71 0.67	21.91	301.28	6.59	5.22	0.00	5.22	0.00	2.06	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
124	2.360 20.71 0.68	21.91	301.30	6.58	5.22	0.00	5.22	0.00	2.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
125	2.350 20.71 0.69	21.92	301.32	6.58	5.23	0.00	5.23	0.00	2.04	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
126	2.340 20.71 0.70	21.92	301.34	6.57	5.24	0.00	5.24	0.00	2.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
127	2.330 20.71 0.71	21.93	301.36	6.56	5.25	0.00	5.25	0.00	2.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
128	2.320 20.71 0.72	21.94	301.39	6.55	5.25	0.00	5.25	0.00	2.02	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
129	2.310 20.71 0.73	21.95	301.41	6.55	5.26	0.00	5.26	0.00	2.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
130	2.300 20.71 0.74	21.96	301.44	6.54	5.27	0.00	5.27	0.00	2.00	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
131	2.290 20.71 0.75	21.97	301.47	6.53	5.28	0.00	5.28	0.00	1.99	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
132	2.280 20.71 0.76	21.98	301.51	6.53	5.29	0.00	5.29	0.00	1.99	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
133	2.270 20.71 0.77	21.99	301.55	6.52	5.29	0.00	5.29	0.00	1.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
134			301.59			0.00	5.30			0.00	0.00	0.00		10.00			
	2.260 20.71 0.78	22.00		6.51	5.30			0.00	1.97				0.00		0.00	0.	0.00
135	2.250 20.71 0.79	22.02	301.63	6.51	5.31	0.00	5.31	0.00	1.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
136	2.240 20.71 0.80	22.03	301.68	6.50	5.32	0.00	5.32	0.00	1.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
137	2.230 20.71 0.81	22.05	301.73	6.50	5.33	0.00	5.33	0.00	1.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
138	2.220 20.71 0.82	22.06	301.79	6.49	5.34	0.00	5.34	0.00	1.94	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
139			301.75		5.35	0.00	5.35			0.00		0.00		10.00			0.00
		22.08		6.49				0.00	1.94		0.00		0.00		0.00	0.	
140	2.200 20.71 0.84	22.10	301.91	6.48	5.36	0.00	5.36	0.00	1.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
141	2.190 20.71 0.85	22.13	301.98	6.48	5.37	0.00	5.37	0.00	1.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
142	2.180 20.71 0.86	22.15	302.06	6.47	5.38	0.00	5.38	0.00	1.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
143	2.170 20.71 0.87	22.18	302.14	6.47	5.39	0.00	5.39	0.00	1.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
144	2.160 20.71 0.88	22.20	302.23	6.46	5.40	0.00	5.40	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
145	2.150 20.71 0.89	22.23	302.33	6.46	5.41	0.00	5.41	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
146	2.140 20.71 0.90	22.27	302.43	6.45	5.42	0.00	5.42	0.00	1.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
147	2.130 20.71 0.91	22.30	302.54	6.45	5.43	0.00	5.43	0.00	1.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
148	2.120 20.71 0.93	22.34	302.66	6.45	5.44	0.00	5.44	0.00	1.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

149	2.110	20.71	0.94	22.38	302.79	6.44	5.46	0.00	5.46	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
150	2.100	20.71	0.95	22.42	302.92	6.44	5.47	0.00	5.47	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
151	2.090	20.71	0.96	22.47	303.07	6.44	5.48	0.00	5.48	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
152	2.080	20.71	0.97	22.52	303.23	6.44	5.50	0.00	5.50	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
153	2.070	20.71	0.98	22.57	303.39	6.43	5.51	0.00	5.51	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
154	2.060	20.71	0.99	22.63	303.57	6.43	5.52	0.00	5.52	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
155	2.050	20.71	1.00	22.69	303.77	6.43	5.54	0.00	5.54	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
156	2.040	20.71	1.01	22.75	303.97	6.43	5.56	0.00	5.56	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
157	2.030	20.71	1.02	22.82	304.19	6.43	5.57	0.00	5.57	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
158	2.020	20.71	1.03	22.89	304.42	6.43	5.59	0.00	5.59	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
159	2.010	20.71	1.04	22.97	304.67	6.43	5.61	0.00	5.61	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
160	2.000	20.71	1.05	23.06	304.94	6.43	5.63	0.00	5.63	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
161	1.990	20.71	1.06	23.15	305.22	6.43	5.65	0.00	5.65	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
162	1.980	20.71	1.07	23.24	305.53	6.43	5.67	0.00	5.67	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
163	1.970	20.71	1.08	23.34	305.85	6.43	5.70	0.00	5.70	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
164	1.960	20.71	1.09	23.45	306.19	6.43	5.72	0.00	5.72	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
165	1.950	20.71	1.10	23.56	306.56	6.44	5.75	0.00	5.75	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
166	1.940	20.71	1.11	23.69	306.95	6.44	5.77	0.00	5.77	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
167	1.930	20.71	1.12	23.82	307.36	6.44	5.80	0.00	5.80	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
168	1.920	20.71	1.13	23.95	307.80	6.45	5.83	0.00	5.83	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
169	1.910	20.71	1.14	24.10	308.26	6.45	5.86	0.00	5.86	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
170	1.900	20.71	1.15	24.25	308.75	6.46	5.89	0.00	5.89	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 3 RKM 1.9 to 1.5

BAYOU CANE WATERSHED MODEL WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

****	*****	*****	*****	*****	*****	*****	REACH I	NPUTS *	*****	*****	*****	*****	*****	*****	*****	*****	**	
ELEM NO.	TYPE	FLOW	TEMP deg C	SAL pp	N Chloride t mg/L	Conduct umhos/cm		BOD#1 mg/L	BOD#2 mg/L	EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	PHOS mg/L		COLI #/100mL	NCM
171	UPR RCH	0.04330	20.71	1.1	5 24.25	308.75	6.46	5.89	0.00	5.89	0.00	1.81	0.00	0.00	0.00	10.00	0.00	0.00
****	*****	*****	*****	*****	******	** HYDRAU	LIC PARA	METER V	ALUES 7	*****	******	*****	*****	*****	*****	*****	* *	
ELEM	BEGIN	ENDING	FLOW	PCT	ADVCTV	TRAVEL	DEPTH	WIDTH	VOLU	JME	SURFACE	X-SECT	TI	DAL 7	ridal	DISPRSN	MEAN	
NO.	DIST	DIST		EFF	VELO	TIME					AREA	AREA	PR	ISM	VELO		VELO	
	km	km	m^3/s		m/s	days	m	m		m³	m²	m²		m³	m/s	m^2/s	m/s	
171	1.90	1.89	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4133	.82 (0.003	0.209	0.003	
172	1.89	1.88	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	79	277.37	32.98	4194	.70	0.003	0.212	0.003	
173	1.88	1.87	0.04330	35.3	0.00131	0.09	1.19	27.74	329.		277.37	32.98	4255	.58	0.003	0.215	0.003	
174	1.87	1.86	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4316	.45 (0.003	0.217	0.003	
175	1.86	1.85	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4377	.33 (0.003	0.220	0.003	
176	1.85	1.84	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4438	.21 (0.003	0.223	0.003	
177	1.84	1.83	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4499	.08	0.003	0.226	0.003	
178	1.83	1.82	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4559	.96 (0.003	0.229	0.003	
179	1.82	1.81	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4620	.84 (0.003	0.231	0.003	
180	1.81	1.80	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4681	.72 (0.003	0.234	0.003	
181	1.80	1.79	0.04330	35.3	0.00131	0.09	1.19	27.74	329.		277.37	32.98	4742		0.003	0.237	0.003	
182	1.79	1.78	0.04330	35.3	0.00131	0.09	1.19	27.74	329.		277.37	32.98	4803		0.003	0.240	0.003	
183	1.78	1.77	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	4864	.35	0.003	0.243	0.003	
184	1.77	1.76	0.04330	35.3	0.00131	0.09	1.19	27.74	329.		277.37	32.98	4925		0.003	0.245	0.004	
185	1.76	1.75	0.04330	35.3	0.00131	0.09	1.19	27.74	329.		277.37	32.98	4986		0.003	0.248	0.004	
186	1.75	1.74	0.04330	35.3	0.00131	0.09	1.19	27.74	329.		277.37	32.98	5046		0.003	0.251	0.004	
187	1.74	1.73	0.04330	35.3	0.00131	0.09	1.19	27.74	329.	.79	277.37	32.98	5107	.85 (0.004	0.254	0.004	

1.73	1.72	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5168.73	0.004	0.257	0.004
1.72	1.71	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5229.61	0.004	0.259	0.004
1.71	1.70	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5290.49	0.004	0.262	0.004
1.70	1.69	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5351.36	0.004	0.265	0.004
1.69	1.68	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5412.24	0.004	0.268	0.004
1.68	1.67	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5473.12	0.004	0.271	0.004
1.67	1.66	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5533.99	0.004	0.274	0.004
1.66	1.65	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5594.87	0.004	0.276	0.004
1.65	1.64	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5655.75	0.004	0.279	0.004
1.64	1.63	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5716.62	0.004	0.282	0.004
1.63	1.62	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5777.50	0.004	0.285	0.004
1.62	1.61	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5838.38	0.004	0.288	0.004
1.61	1.60	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5899.25	0.004	0.291	0.004
1.60	1.59	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	5960.13	0.004	0.293	0.004
1.59	1.58	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6021.01	0.004	0.296	0.004
1.58	1.57	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6081.89	0.004	0.299	0.004
1.57	1.56	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6142.76	0.004	0.302	0.004
1.56	1.55	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6203.64	0.004	0.305	0.004
1.55	1.54	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6264.52	0.004	0.308	0.004
1.54	1.53	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6325.39	0.004	0.310	0.004
1.53	1.52	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6386.27	0.004	0.313	0.005
1.52	1.51	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6447.15	0.004	0.316	0.005
1.51	1.50	0.04330	35.3	0.00131	0.09	1.19	27.74	329.79	277.37	32.98	6508.02	0.004	0.319	0.005
					3.53			13191.72	11094.80					
				0.0013		1.19	27.74			32.98				
					8.96									
	1.72 1.71 1.70 1.69 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.59 1.57 1.56 1.55 1.55 1.54 1.53 1.52	1.72 1.71 1.71 1.70 1.70 1.69 1.69 1.68 1.68 1.67 1.67 1.66 1.65 1.64 1.63 1.62 1.62 1.61 1.61 1.60 1.60 1.59 1.59 1.58 1.58 1.57 1.56 1.55 1.55 1.54 1.55 1.54 1.53 1.52 1.52 1.51	1.72 1.71 0.04330 1.71 1.70 0.04330 1.70 1.69 0.04330 1.69 1.68 0.04330 1.68 1.67 0.04330 1.67 1.66 0.04330 1.65 1.64 0.04330 1.63 1.62 0.04330 1.63 1.62 0.04330 1.61 1.60 0.04330 1.61 1.59 0.04330 1.59 1.58 0.04330 1.58 1.57 0.04330 1.57 1.56 0.04330 1.55 1.54 0.04330 1.55 1.54 0.04330 1.53 0.04330 1.53 1.53 0.04330 1.53 1.53 0.04330	1.72 1.71 0.04330 35.3 1.71 1.70 0.04330 35.3 1.70 1.69 0.04330 35.3 1.69 1.68 0.04330 35.3 1.69 1.68 0.04330 35.3 1.67 1.66 0.04330 35.3 1.66 1.65 0.04330 35.3 1.65 1.64 0.04330 35.3 1.63 1.62 0.04330 35.3 1.62 1.61 0.04330 35.3 1.61 1.60 0.04330 35.3 1.59 1.58 0.04330 35.3 1.59 1.58 0.04330 35.3 1.57 1.56 0.04330 35.3 1.56 1.55 0.04330 35.3 1.55 1.54 0.04330 35.3 1.55 1.54 0.04330 35.3 1.55 1.54 0.04330 35.3 1.54 1.53 <td< td=""><td>1.72 1.71 0.04330 35.3 0.00131 1.71 1.70 0.04330 35.3 0.00131 1.70 1.69 0.04330 35.3 0.00131 1.69 1.68 0.04330 35.3 0.00131 1.68 1.67 0.04330 35.3 0.00131 1.67 1.66 0.04330 35.3 0.00131 1.66 1.65 0.04330 35.3 0.00131 1.65 1.64 0.04330 35.3 0.00131 1.63 1.62 0.04330 35.3 0.00131 1.63 1.62 0.04330 35.3 0.00131 1.62 1.61 0.04330 35.3 0.00131 1.61 1.60 0.04330 35.3 0.00131 1.59 1.59 0.04330 35.3 0.00131 1.59 1.58 0.04330 35.3 0.00131 1.59 1.58 0.04330 35.3 0.00131 1.57 1.56 0.04330 35.3 0.00131 1.55</td><td>1.72</td><td>1.72</td><td>1.72</td><td>1.72</td><td>1.72</td><td>1.72</td><td>1.72</td><td>1.72</td><td>1.72</td></td<>	1.72 1.71 0.04330 35.3 0.00131 1.71 1.70 0.04330 35.3 0.00131 1.70 1.69 0.04330 35.3 0.00131 1.69 1.68 0.04330 35.3 0.00131 1.68 1.67 0.04330 35.3 0.00131 1.67 1.66 0.04330 35.3 0.00131 1.66 1.65 0.04330 35.3 0.00131 1.65 1.64 0.04330 35.3 0.00131 1.63 1.62 0.04330 35.3 0.00131 1.63 1.62 0.04330 35.3 0.00131 1.62 1.61 0.04330 35.3 0.00131 1.61 1.60 0.04330 35.3 0.00131 1.59 1.59 0.04330 35.3 0.00131 1.59 1.58 0.04330 35.3 0.00131 1.59 1.58 0.04330 35.3 0.00131 1.57 1.56 0.04330 35.3 0.00131 1.55	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72

ELEM	ENDING	SAT	REAER		- "	ABOD#1			ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST	D.O.	RATE	DECAY	SETT	DECAY	DECAY	SETT	DECAY	SOD	SOD	SOD	DECAY	SETT	DECAY	SRCE	RATE	SRCE	PROD	PROD	DECAY	DECAY	SETT
		mg/L	1/da	1/da	1/da	1/da	1/da	1/da	1/da	*	*	*	1/da	1/da	1/da	*	1/da	*	**	**	1/da	1/da	1/da
171	1.890	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
172	1.880	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57		1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
173	1.870	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
174	1.860	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
175	1.850	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
176	1.840	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
177	1.830	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
178	1.820	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
179	1.810	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
180	1.800	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
181	1.790	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
182	1.780	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
183	1.770	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
184	1.760	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
185	1.750	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
186	1.740	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
187	1.730	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
188	1.720	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
189	1.710	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
190	1.700	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
191	1.690	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
192	1.680	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57		1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
193	1.670		0.60	0.06	0.05	0.00	0.00	0.00	0.00		1.57		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
194	1.660	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00		1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00

195	1.650	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
196	1.640	8.90	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
197	1.630	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
198	1.620	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
199	1.610	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
200	1.600	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
201	1.590	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
202	1.580	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
203	1.570	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
204	1.560	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
205	1.550	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
206	1.540	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
207	1.530	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
208	1.520	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
209	1.510	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
210	1.500	8.89	0.60	0.06	0.05	0.00	0.00	0.00	0.00	1.57	1.57	1.57	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
AVG 2	DEG C	RATE	0.59	0.06	0.05	0.00	0.00	0.00	0.00	1.50			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

ELEM NO.	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 mg/L	EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
171	1.890	20.71		24.41	309.25	6.47	5.93	0.00	5.93	0.00	1.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
172	1.880	20.71	1.16	24.57	309.76	6.47	5.96	0.00	5.96	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
173	1.870	20.71	1.17	24.74	310.30	6.48	5.99	0.00	5.99	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
174	1.860		1.18	24.91	310.85	6.49	6.02	0.00	6.02	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
175	1.850	20.71		25.10	311.44	6.49	6.06	0.00	6.06	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
176	1.840	20.71		25.29	312.05	6.50	6.09	0.00	6.09	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
177	1.830		1.20	25.49	312.69	6.50	6.12	0.00	6.12	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
178	1.820	20.71	1.21	25.70	313.36	6.51	6.15	0.00	6.15	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
179	1.810	20.71	1.22	25.92	314.06	6.51	6.18	0.00	6.18	0.00	1.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
180	1.800	20.71	1.23	26.15	314.79	6.52	6.21	0.00	6.21	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
181	1.790	20.71	1.23	26.39	315.55	6.52	6.24	0.00	6.24	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
182	1.780	20.71	1.24	26.64	316.35	6.53	6.27	0.00	6.27	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
183	1.770	20.71	1.25	26.90	317.18	6.53	6.30	0.00	6.30	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
184	1.760	20.71	1.25	27.17	318.04	6.53	6.33	0.00	6.33	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
185	1.750	20.71	1.26	27.45	318.95	6.54	6.36	0.00	6.36	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
186	1.740	20.71	1.27	27.75	319.88	6.54	6.39	0.00	6.39	0.00	1.83	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
187	1.730	20.71	1.28	28.06	320.86	6.54	6.42	0.00	6.42	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
188	1.720	20.71	1.28	28.38	321.88	6.55	6.45	0.00	6.45	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
189	1.710	20.71	1.29	28.71	322.93	6.55	6.48	0.00	6.48	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
190	1.700	20.71	1.30	29.05	324.03	6.56	6.50	0.00	6.50	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
191	1.690	20.71	1.31	29.41	325.18	6.56	6.53	0.00	6.53	0.00	1.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
192	1.680	20.71	1.32	29.78	326.36	6.56	6.56	0.00	6.56	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
193	1.670	20.71	1.32	30.17	327.59	6.57	6.59	0.00	6.59	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
194	1.660	20.71	1.33	30.57	328.87	6.57	6.62	0.00	6.62	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
195	1.650	20.71	1.34	30.99	330.20	6.57	6.65	0.00	6.65	0.00	1.85	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
196	1.640	20.71	1.35	31.42	331.57	6.58	6.68	0.00	6.68	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
197	1.630	20.71	1.35	31.87	333.00	6.58	6.71	0.00	6.71	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
198	1.620	20.71	1.36	32.33	334.47	6.59	6.74	0.00	6.74	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
199	1.610	20.71	1.37	32.81	336.00	6.59	6.77	0.00	6.77	0.00	1.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
200	1.600	20.71	1.38	33.31	337.59	6.60	6.80	0.00	6.80	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
201	1.590	20.71	1.38	33.82	339.23	6.60	6.83	0.00	6.83	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
202	1.580	20.71	1.39	34.36	340.93	6.61	6.85	0.00	6.85	0.00	1.87	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
		–											. ,						

203	1.570	20.71	1.40	34.91	342.69	6.61	6.88	0.00	6.88	0.00	1.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
204	1.560	20.71	1.41	35.48	344.50	6.62	6.91	0.00	6.91	0.00	1.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
205	1.550	20.71	1.41	36.07	346.38	6.63	6.94	0.00	6.94	0.00	1.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
206	1.540	20.71	1.42	36.68	348.32	6.63	6.97	0.00	6.97	0.00	1.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
207	1.530	20.71	1.43	37.31	350.33	6.64	7.00	0.00	7.00	0.00	1.89	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
208	1.520	20.71	1.44	37.96	352.40	6.65	7.03	0.00	7.03	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
209	1.510	20.71	1.44	38.63	354.54	6.65	7.06	0.00	7.06	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
210	1.500	20.71	1.45	39.32	356.75	6.66	7.10	0.00	7.10	0.00	1.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER RKM 1.5 to 1.1 REACH NO. 4

228

229

230

231

232

233

234

235

236

237

238

239

240

241

BAYOU CANE WATERSHED MODEL WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

ELEM	TYPE	FLOW	TEMP	SALN C	Chloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	PHOS	CHL A	COLI	NCM
NO.			deg C	ppt	mg/L	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	#/100mL	
211	UPR RCH	0.04330	20.71	1.45	39.32	356.75	6.66	7.10	0.00	7.10	0.00	1.90	0.00	0.00	0.00	10.00	0.00	0.00

211 UPR RCH 0.04330 20.71 1.45 39.32 356.75 6.66 7.10 0.00 7.10 0.00 1.90 0.00 0.00 0.00 10.00 0.00 ELEM BEGIN ENDING FLOW PCT ADVCTV TRAVEL DEPTH WIDTH VOLUME SURFACE X-SECT TIDAL TIDAL MEAN NO. DIST DIST EFF VELO TIME AREA PRISM VELO VELO km km m^3/s days m² m/s m/s 211 0.08 1.02 6570.24 0.005 0.005 1.50 1.49 0.04330 35.3 0.00150 28.35 289.41 283.46 28.94 0.323 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 6632.45 0.005 212 1.49 1.48 0.326 0.005 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 6694.67 0.005 213 1.48 1.47 0.329 0.005 214 1.47 1.46 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 6756.88 0.005 0.332 0.005 1.02 28.35 283.46 215 1.46 1.45 0.04330 35.3 0.00150 0.08 289.41 28.94 6819.09 0.005 0.335 0.005 0.04330 35.3 0.00150 28.94 6881.31 216 1.45 1.44 0.08 1.02 28.35 289.41 283.46 0.005 0.338 0.006 217 1.44 1.43 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 6943.52 0.005 0.341 0.006 218 1.43 1.42 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 7005.74 0.005 0.344 0.006 0.04330 35.3 0.00150 283.46 28.94 7067.95 219 1.42 1.41 0.08 1.02 28.35 289.41 0.006 0.346 0.006 28.94 220 1.41 1.40 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 7130.16 0.006 0.349 0.006 221 1.40 1.39 0.04330 35.3 0.00150 1.02 28.35 289.41 283.46 28.94 7192.38 0.006 0.352 0.006 0.08 222 1.39 1.38 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 7254.59 0.006 0.355 0.006 283.46 28.94 7316.80 223 1.38 1.37 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 0.006 0.358 0.006 224 1.37 1.36 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 7379.02 0.006 0.361 0.006 225 1.36 1.35 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 7441.23 0.006 0.364 0.006 226 1.35 1.34 0.04330 35.3 0.00150 0.08 1.02 28.35 289.41 283.46 28.94 7503.45 0.006 0.367 0.006 227 1.34

242	1.19	1.18	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8498.87	0.007	0.414	0.007
243	1.18	1.17	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8561.08	0.007	0.417	0.007
244	1.17	1.16	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8623.30	0.007	0.420	0.007
245	1.16	1.15	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8685.51	0.007	0.423	0.007
246	1.15	1.14	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8747.72	0.007	0.426	0.007
247	1.14	1.13	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8809.94	0.007	0.429	0.007
248	1.13	1.12	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8872.15	0.007	0.432	0.007
249	1.12	1.11	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8934.37	0.007	0.435	0.007
250	1.11	1.10	0.04330	35.3	0.00150	0.08	1.02	28.35	289.41	283.46	28.94	8996.58	0.007	0.437	0.007
TOT						3.09			11576.51	11338.40					
						3.09			11370.31	11330.40					
AVG					0.0015		1.02	28.35			28.94				
CUM						12.05									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
211	1.490	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
212	1.480	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
213	1.470	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
214	1.460	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
215	1.450	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
216	1.440	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
217	1.430	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
218	1.420	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
219	1.410	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
220	1.400	8.89	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
221	1.390		0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
222	1.380	8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
223	1.370	8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
224	1.360		0.70	0.06	0.05	0.00	0.00	0.00	0.00			1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
225	1.350		0.70	0.06	0.05	0.00	0.00	0.00		1.25			0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
226	1.340		0.70	0.06	0.05	0.00	0.00	0.00		1.25		1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
227	1.330		0.70	0.06	0.05	0.00		0.00	0.00	1.25		1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
228	1.320		0.70		0.05	0.00	0.00	0.00	0.00		1.25			0.05	0.00	0.00	0.00		0.52	0.00	0.00	0.00	0.00
229	1.310		0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25			0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
230	1.300	8.88	0.70	0.06	0.05	0.00	0.00	0.00		1.25			0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
231	1.290		0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
232	1.280		0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
233	1.270		0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
234		8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
235	1.250		0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25		1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
236	1.240		0.70		0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
237		8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
238	1.220	8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25		1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
239	1.210		0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25		1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
240		8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
241	1.190		0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
242		8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25		1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
243	1.170		0.70	0.06	0.05	0.00	0.00	0.00	0.00			1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
244	1.160	8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
245	1.150	8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25		0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
246	1.140	8.88	0.70	0.06	0.05	0.00	0.00	0.00	0.00		1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
247		8.87	0.70	0.06	0.05	0.00	0.00	0.00	0.00			1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
248	1.120	8.87	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00

249	1.110 8.87	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
250	1.100 8.87	0.70	0.06	0.05	0.00	0.00	0.00	0.00	1.25	1.25	1.25	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
AVG 2	DEG C RATE	0.69	0.06	0.05	0.00	0.00	0.00	0.00	1.20			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

						***2.	IIII QUI		511011101	1111 VIIIO									
ELEM NO.	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 mg/L	EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
211	1.490	20.71	1.46	40.09	359.18	6.67	7.13	0.00	7.13	0.00	1.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
212	1.480	20.71		40.93	361.85	6.68	7.16	0.00	7.16	0.00	1.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
213	1.470	20.71		41.80	364.63	6.69	7.20	0.00	7.20	0.00	1.92	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
214	1.460		1.48	42.70	367.51	6.70	7.23	0.00	7.23	0.00	1.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
215	1.450	20.71		43.64	370.49	6.71	7.27	0.00	7.27	0.00	1.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
216	1.440	20.71		44.61	373.57	6.72	7.30	0.00	7.30	0.00	1.94	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
217	1.430	20.71		45.61	376.77	6.73	7.33	0.00	7.33	0.00	1.94	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
218	1.420		1.51	46.65	380.08	6.74	7.37	0.00	7.37	0.00	1.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
219	1.410	20.71		47.72	383.51	6.74	7.40	0.00	7.40	0.00	1.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
220	1.400	20.71		48.84	387.05	6.75	7.43	0.00	7.43	0.00	1.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
221	1.390	20.71	1.54	49.99	390.71	6.76	7.47	0.00	7.47	0.00	1.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
222	1.380	20.71	1.54	51.18	394.50	6.77	7.50	0.00	7.50	0.00	1.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
223	1.370	20.71		52.41	398.42	6.77	7.53	0.00	7.53	0.00	1.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
224	1.360	20.71	1.56	53.68	402.47	6.78	7.57	0.00	7.57	0.00	1.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
225	1.350	20.71	1.57	54.99	406.65	6.79	7.60	0.00	7.60	0.00	1.98	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
226	1.340	20.71	1.57	56.35	410.97	6.80	7.63	0.00	7.63	0.00	1.99	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
227	1.330	20.71	1.58	57.75	415.43	6.80	7.66	0.00	7.66	0.00	2.00	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
228	1.320	20.71	1.59	59.20	420.04	6.81	7.70	0.00	7.70	0.00	2.00	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
229	1.310	20.71	1.60	60.69	424.79	6.82	7.73	0.00	7.73	0.00	2.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
230	1.300	20.71	1.61	62.23	429.70	6.82	7.76	0.00	7.76	0.00	2.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
231	1.290	20.71	1.61	63.82	434.76	6.83	7.79	0.00	7.79	0.00	2.02	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
232	1.280	20.71	1.62	65.46	439.98	6.84	7.83	0.00	7.83	0.00	2.02	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
233	1.270	20.71	1.63	67.15	445.36	6.85	7.86	0.00	7.86	0.00	2.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
234	1.260	20.71	1.64	68.89	450.91	6.85	7.89	0.00	7.89	0.00	2.04	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
235	1.250	20.71	1.64	70.68	456.63	6.86	7.92	0.00	7.92	0.00	2.04	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
236	1.240	20.71	1.65	72.53	462.52	6.87	7.95	0.00	7.95	0.00	2.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
237	1.230	20.71		74.44	468.59	6.88	7.98	0.00	7.98	0.00	2.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
238	1.220	20.71		76.40	474.85	6.88	8.02	0.00	8.02	0.00	2.06	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
239	1.210	20.71		78.43	481.28	6.89	8.05	0.00	8.05	0.00	2.07	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
240	1.200	20.71		80.51	487.91	6.90	8.08	0.00	8.08	0.00	2.07	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
241	1.190	20.71	1.69	82.65	494.74	6.91	8.11	0.00	8.11	0.00	2.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
242	1.180	20.71		84.86	501.76	6.92	8.14	0.00	8.14	0.00	2.09	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
243	1.170		1.71	87.12	508.99	6.93	8.18	0.00	8.18	0.00	2.09	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
244	1.160	20.71	1.71	89.46	516.42	6.94	8.21	0.00	8.21	0.00	2.10	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
245	1.150	20.71		91.86	524.07	6.95	8.24	0.00	8.24	0.00	2.11	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
246	1.140		1.73	94.33	531.93	6.96	8.27	0.00	8.27	0.00	2.11	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
247	1.130		1.74	96.87	540.01	6.97	8.30	0.00	8.30	0.00	2.12	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
248	1.120		1.74	99.48	548.32	6.98	8.34	0.00	8.34	0.00	2.13	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
249	1.110	20.71	1.75	102.16	556.87	7.00	8.37	0.00	8.37	0.00	2.14	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
250	1.100	20.71	1.76	104.91	565.64	7.01	8.40	0.00	8.40	0.00	2.14	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 5 RKM 1.1 to 0.3

BAYOU CANE WATERSHED MODEL WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

****	*****	****	******	*****	*****	*****	REACH I	NPUTS *	*****	****	*****	*****	*****	****	*****	******	**	
ELEM NO.	TYPE	FLOW	TEMP deg C	SAI PF		Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 I	EBOD#1	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/I			COLI #/100mL	NCM
251	UPR RCH	0.04330	20.71	1.7	76 104.91	565.64	7.01	8.40	0.00	8.40	0.00	2.14	0.00	0.00	0.00	10.00	0.00	0.00
****	*****	*****	*****	*****	******	** HYDRAU	LIC PARA	METER V	ALUES *	*****	*****	*****	*****	****	*****	*****	* *	
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLU	4E	SURFACE AREA	X-SECT AREA		DAL ISM	TIDAL VELO	DISPRSN	MEAN VELO	
	km	km	m^3/s		m/s	days	m	m	I	n ³	m²	m²		m³	m/s	m²/s	m/s	
251	1.10	1.09	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	00	214.88	26.00	9047	.29	0.008	0.564	0.008	
252	1.09	1.08	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	9098	.00	0.008	0.567	0.008	
253	1.08	1.07	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9148		0.008	0.570		
254	1.07	1.06	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9199		0.008	0.573		
255	1.06	1.05	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9250		0.008	0.576		
256	1.05 1.04	1.04	0.04330	35.3 35.3	0.00167 0.00167	0.07	1.21	21.49	260.0 260.0		214.88	26.00 26.00	9300		0.008	0.579 0.582		
257 258	1.04	1.03	0.04330	35.3	0.00167	0.07	1.21 1.21	21.49	260.0		214.88	26.00	9351 9402		0.008	0.582		
259	1.02	1.01	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9452		0.008	0.589		
260	1.01	1.00	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9503		0.008	0.592		
261	1.00	0.99	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9554		0.008	0.595		
262	0.99	0.98	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	9605	.12	0.008	0.598	0.009	
263	0.98	0.97	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	9655	.83	0.008	0.601	0.009	
264	0.97	0.96	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9706		0.008	0.604		
265	0.96	0.95	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9757		0.008	0.607		
266	0.95	0.94	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9807		0.009	0.610		
267 268	0.94 0.93	0.93 0.92	0.04330	35.3 35.3	0.00167 0.00167	0.07 0.07	1.21	21.49	260.0 260.0		214.88	26.00 26.00	9858 9909		0.009	0.613 0.616		
269	0.93	0.92	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	9960		0.009	0.619		
270	0.91	0.90	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10010		0.009	0.622		
271	0.90	0.89	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10061		0.009	0.626		
272	0.89	0.88	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10112		0.009	0.629		
273	0.88	0.87	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	10162	.95	0.009	0.632	0.009	
274	0.87	0.86	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88		10213		0.009	0.635		
275	0.86	0.85	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10264		0.009	0.638		
276	0.85	0.84	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10315		0.009	0.641		
277 278	0.84	0.83	0.04330	35.3 35.3	0.00167	0.07 0.07	1.21 1.21	21.49	260.0		214.88 214.88	26.00	10365 10416		0.009	0.644		
279	0.82	0.82	0.04330	35.3	0.00167 0.00167	0.07	1.21	21.49	260.0 260.0		214.88	26.00	10416		0.009	0.650		
280	0.81	0.80	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10517		0.009	0.653		
281	0.80	0.79	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10568		0.009	0.656		
282	0.79	0.78	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88		10619		0.009	0.659		
283	0.78	0.77	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	10670	.07	0.009	0.663	0.009	
284	0.77	0.76	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	10720	.78	0.009	0.666	0.009	
285	0.76	0.75	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88		10771		0.009	0.669		
286	0.75	0.74	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88		10822		0.009	0.672		
287	0.74	0.73	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	10872		0.009	0.675		
288 289	0.73 0.72	0.72 0.71	0.04330	35.3 35.3	0.00167 0.00167	0.07	1.21	21.49	260.0 260.0		214.88 214.88	26.00 26.00	10923 10974		0.009	0.678 0.681	0.010 0.010	
289	0.72	0.71	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88				0.010	0.684		
291	0.71	0.69	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88				0.010	0.687		
292	0.69	0.68	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	11126		0.010	0.690		
293	0.68	0.67	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	11177		0.010	0.693		
294	0.67	0.66	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0		214.88	26.00	11227		0.010	0.696		
295	0.66	0.65	0.04330	35.3	0.00167	0.07	1.21	21.49	260.0	0.0	214.88	26.00	11278	.62	0.010	0.700	0.010	

296	0.65	0.64	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11329.33	0.010	0.703	0.010
297	0.64	0.63	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11380.04	0.010	0.706	0.010
298	0.63	0.62	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11430.75	0.010	0.709	0.010
299	0.62	0.61	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11481.46	0.010	0.712	0.010
300	0.61	0.60	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11532.17	0.010	0.715	0.010
301	0.60	0.59	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11582.89	0.010	0.718	0.010
302	0.59	0.58	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11633.60	0.010	0.721	0.010
303	0.58	0.57	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11684.31	0.010	0.724	0.010
304	0.57	0.56	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11735.02	0.010	0.727	0.010
305	0.56	0.55	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11785.73	0.010	0.730	0.010
306	0.55	0.54	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11836.45	0.010	0.733	0.010
307	0.54	0.53	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11887.16	0.010	0.737	0.010
308	0.53	0.52	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11937.87	0.010	0.740	0.011
309	0.52	0.51	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	11988.58	0.010	0.743	0.011
310	0.51	0.50	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12039.29	0.010	0.746	0.011
311	0.50	0.49	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12090.01	0.011	0.749	0.011
312	0.49	0.48	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12140.72	0.011	0.752	0.011
313	0.48	0.47	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12191.43	0.011	0.755	0.011
314	0.47	0.46	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12242.14	0.011	0.758	0.011
315	0.46	0.45	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12292.85	0.011	0.761	0.011
316	0.45	0.44	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12343.57	0.011	0.764	0.011
317	0.44	0.43	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12394.28	0.011	0.767	0.011
318	0.43	0.42	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12444.99	0.011	0.771	0.011
319	0.42	0.41	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12495.70	0.011	0.774	0.011
320	0.41	0.40	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12546.41	0.011	0.777	0.011
321	0.40	0.39	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12597.12	0.011	0.780	0.011
322	0.39	0.38	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12647.84	0.011	0.783	0.011
323	0.38	0.37	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12698.55	0.011	0.786	0.011
324	0.37	0.36	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12749.26	0.011	0.789	0.011
325	0.36	0.35	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12799.97	0.011	0.792	0.011
326	0.35	0.34	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12850.68	0.011	0.795	0.011
327	0.34	0.33	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12901.40	0.011	0.798	0.011
328	0.33	0.32	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	12952.11	0.011	0.801	0.011
329	0.32	0.31	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	13002.82	0.011	0.804	0.011
330	0.31	0.30	0.04330	35.3	0.00167	0.07	1.21	21.49	260.00	214.88	26.00	13053.53	0.011	0.808	0.011
330	0.51	0.50	0.01330	55.5	0.00107	0.07	1.21	21.17	200.00	211.00	20.00	10000.00	0.011	0.000	0.011
TOT						5.56			20800.37	17190.40					
AVG					0.0017	3.30	1.21	21.49	20000.07	1/1/0.10	26.00				
CUM					0.001/	17.61	1.21	21.17			20.00				
C01·1						± / • U±									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
251	1.090	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
252	1.080	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
253	1.070	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
254	1.060	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
255	1.050	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
256	1.040	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
257	1.030	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
258	1.020	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
259	1.010	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
260	1.000	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
261	0.990	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
262	0.980	8.87	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00

263	0.970 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
264	0.960 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
265	0.950 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
266	0.940 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
267	0.930 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
268	0.920 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
269	0.910 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0 99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
270	0.900 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
271	0.890 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
272	0.880 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
273	0.870 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
274	0.860 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
275	0.850 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
276	0.840 8.87	0.75	0.06 0.05	0.00	0.00			0.99		0.99		0.05		0.00			0.52	0.00	0.00	0.00	0.00
277	0.830 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99				0.00		0.00	0.52	0.00	0.00	0.00	0.00
278	0.820 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
279	0.810 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
280	0.800 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
281	0.790 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
282	0.780 8.87	0.75	0.06 0.05	0.00	0.00		0.00		0.99	0.99		0.05		0.00		0.00	0.52	0.00	0.00	0.00	0.00
283	0.770 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
284	0.760 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
285	0.750 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
286	0.740 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
287	0.730 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
288	0.720 8.87	0.75	0.06 0.05	0.00		0.00	0.00			0.99			0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
289	0.710 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
290	0.700 8.87	0.75	0.06 0.05	0.00		0.00		0.99		0.99		0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
291	0.690 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
292	0.680 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
293	0.670 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
294	0.660 8.87	0.75	0.06 0.05	0.00	0.00			0.99		0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
295	0.650 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
296	0.640 8.87	0.75	0.06 0.05	0.00		0.00		0.99		0.99			0.00	0.00			0.52	0.00	0.00	0.00	0.00
297	0.630 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
298	0.620 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
299	0.610 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
300	0.600 8.87	0.75	0.06 0.05	0.00	0.00	0 00	0.00	0.99	0 99	0.99	0.10	0.05	0.00	0.00			0.52	0.00	0.00	0.00	0.00
301	0.590 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00			0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
302	0.580 8.87	0.75	0.06 0.05	0.00		0.00		0.99		0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
303	0.570 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
304	0.560 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
305	0.550 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
306	0.540 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
307	0.530 8.87	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
308	0.520 8.87	0.75	0.06 0.05	0.00	0.00	0.00		0.99		0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
309	0.510 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
310	0.500 8.86	0.75	0.06 0.05	0.00	0.00			0.99		0.99	0.10	0.05		0.00		0.00	0.52	0.00	0.00	0.00	0.00
311	0.490 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
312	0.480 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
313	0.470 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
314	0.460 8.86	0.75	0.06 0.05	0.00		0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
315	0.450 8.86	0.75	0.06 0.05	0.00		0.00	0.00	0.99		0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
316	0.440 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
317	0.430 8.86	0.75	0.06 0.05	0.00		0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
318	0.420 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00		0.99	0.99	0.10	0.05	0.00	0.00		0.00	0.52	0.00	0.00	0.00	0.00
319	0.410 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
320	0.400 8.86	0.75	0.06 0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
321	0.390 8.86	0.75	0.06 0.05	0.00		0.00	0.00	0.99	0.99	0.99		0.05		0.00		0.00		0.00	0.00	0.00	0.00
	0.00		0.00	- • • • •																	

289

0.710 20.71 1.87

322	0.380 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
323	0.370 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
324	0.360 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
325	0.350 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
326	0.340 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
327	0.330 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
328	0.320 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
329	0.310 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
330	0.300 8	.86	0.75	0.06	0.05	0.00	0.00	0.00	0.00	0.99	0.99	0.99	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
AVG 2	0 DEG C RAT	TE	0.74	0.06	0.05	0.00	0.00	0.00	0.00	0.95			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

ELEM ENDING TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 TOTN PHOS CHL A MACRO COLI NCM NO. DIST DEG C PPT mg/L umhos/cm mg/L μg/L g/m³ #/100mL 0.00 251 1.090 20.71 1.76 107.55 574.02 7.02 8.43 0.00 8.43 0.00 2.15 0.00 0.00 0.00 0.00 10.00 0.00 0. 7.03 252 1.080 20.71 1.77 110.07 582.06 8.46 0.00 8.46 0.00 2.16 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 253 1.070 20.71 1.77 112.65 590.29 7.04 0.00 8.49 0.00 2.16 0.00 8.49 0.00 0.00 0.00 0.00 10.00 0.00 0. 254 1.060 20.71 1.77 115.30 598.71 7.06 8.52 0.00 8.52 0.00 2.17 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 1.050 20.71 1.77 118.01 607.33 7.07 8.55 0.00 8.55 0.00 2.18 0.00 0.00 10.00 0.00 0.00 0.00 0.00 0. 1.040 20.71 1.78 120.78 616.16 7.08 8.57 0.00 8.57 0.00 2.18 0.00 0.00 0.00 0.00 10.00 0.00 0.00 257 1.030 20.71 1.78 123.61 625.19 7.09 8.60 0.00 8.60 0.00 2.19 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 1.020 20.71 1.78 126.51 634.43 7.09 8.63 0.00 8.63 0.00 2.20 0.00 0.00 0.00 0.00 10.00 0.00 0.00 258 0. 1.010 20.71 1.78 129.48 643.88 7.10 8.66 0.00 8.66 0.00 2.21 0.00 0.00 0.00 0.00 10.00 0.00 0.00 259 0. 1.000 20.71 1.79 132.52 653.55 7.11 8.68 0.00 8.68 0.00 2.21 0.00 0.00 0.00 0.00 10.00 0.00 260 0.00 0. 0.990 20.71 1.79 135.63 663.45 7.12 8.71 0.00 8.71 0.00 2.22 0.00 0.00 0.00 0.00 10.00 0.00 261 0.00 0. 262 0.980 20.71 1.79 138.80 673.57 7.13 8.74 0.00 8.74 0.00 2.23 0.00 0.00 0.00 0.00 10.00 0.00 0.00 Ω 0.00 10.00 263 0.970 20.71 1.80 142.05 683.91 7.14 8.77 0.00 8.77 0.00 2.23 0.00 0.00 0.00 0.00 0. 0.00 0.960 20.71 1.80 145.37 694.49 7.14 8.79 0.00 8.79 0.00 2.24 0.00 0.00 0.00 10.00 0.00 264 0.00 0.00 0. 265 0.950 20.71 1.80 148.77 705.31 7.15 8.82 0.00 8.82 0.00 2.25 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 266 0.940 20.71 1.80 152.24 716.37 7.16 8.85 0.00 8.85 0.00 2.26 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 0.930 20.71 1.81 727.67 7.16 8.87 0.00 8.87 0.00 2.26 0.00 10.00 0.00 267 155.79 0.00 0.00 0.00 0.00 0. 7.17 268 0.920 20.71 1.81 159.42 739.23 8.90 0.00 8.90 0.00 2.27 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 0.910 20.71 1.81 163.13 751.03 7.17 8.93 0.00 8.93 0.00 2.28 0.00 0.00 0.00 0.00 10.00 0.00 0.00 269 0. 270 0.900 20.71 1.82 166.92 763.10 7.18 8.95 0.00 8.95 0.00 2.29 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 170.79 7.18 0.00 271 0.890 20.71 1.82 775.43 8.98 0.00 8.98 0.00 2.29 0.00 0.00 0.00 0.00 10.00 0.00 0. 272 0.880 20.71 1.82 174.74 788.02 7.19 9.01 0.00 9.01 0.00 2.30 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0. 273 0.870 20.71 1.82 178.78 800.89 7.19 9.03 0.00 9.03 0.00 2.31 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 274 0.860 20.71 1.83 182.91 814.03 7.20 9.06 0.00 9.06 0.00 2.32 0.00 0.00 0.00 0.00 10.00 0.00 0.00 275 0.850 20.71 1.83 187.12 827.45 7.20 9.09 0.00 9.09 0.00 2.33 0.00 0.00 0.00 0.00 10.00 0.00 0.00 191.43 276 0.840 20.71 1.83 841.16 7.21 9.11 0.00 9.11 0.00 2.33 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 277 0.830 20.71 1.83 195.82 855.15 7.21 9.14 0.00 9.14 0.00 2.34 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 2.35 278 0.820 20.71 1.84 200.31 869.44 7.21 9.17 0.00 9.17 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 0.810 20.71 1.84 204.89 884.03 7.22 9.19 0.00 9.19 0.00 2.36 0.00 0.00 0.00 0.00 10.00 0.00 279 0.00 Ω 280 0.800 20.71 1.84 209.57 898.92 7.22 9.22 0.00 9.22 0.00 2.37 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 0.790 20.71 1.85 214.34 914.12 0.00 9.25 0.00 2.38 0.00 0.00 0.00 10.00 0.00 281 7.22 9.25 0.00 0.00 0. 282 0.780 20.71 1.85 219.21 929.64 7.23 9.27 0.00 9.27 0.00 2.39 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 283 0.770 20.71 1.85 224.19 945.47 7.23 9.30 0.00 9.30 0.00 2.39 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 1.85 7.23 2.40 0.00 284 0.760 20.71 229.26 961.63 9.33 0.00 9.33 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.750 20.71 1.86 978.11 285 234.44 7.23 9.35 0.00 9.35 0.00 2.41 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.00 0.740 20.71 1.86 0.00 286 239.72 994.93 7.24 9.38 0.00 9.38 0.00 2.42 0.00 0.00 0.00 0.00 10.00 0.00 0. 0.730 20.71 1.86 245.11 1012.09 7.24 9.40 9.40 0.00 2.43 0.00 10.00 0.00 287 0.00 0.00 0.00 0.00 0.00 0. 0.00 288 0.720 20.71 1.86 250.60 1029.59 7.24 9.43 0.00 9.43 2.44 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0.

2.45

0.00

0.00

0.00

0.00 10.00

0.00

0.

0.00

7.24

256.21 1047.45

9.46

0.00

9.46

290	0.700	20.71	1.87	261.93	1065.65	7.24	9.48	0.00	9.48	0.00	2.46	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
291	0.690	20.71	1.87	267.76	1084.22	7.25	9.51	0.00	9.51	0.00	2.47	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
292	0.680	20.71	1.88	273.70	1103.15	7.25	9.54	0.00	9.54	0.00	2.48	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
293	0.670	20.71	1.88	279.76	1122.46	7.25	9.56	0.00	9.56	0.00	2.49	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
294	0.660	20.71	1.88	285.94	1142.14	7.25	9.59	0.00	9.59	0.00	2.50	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
295	0.650	20.71	1.88	292.24	1162.20	7.25	9.62	0.00	9.62	0.00	2.51	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
296	0.640	20.71	1.89	298.67	1182.65	7.25	9.65	0.00	9.65	0.00	2.52	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
297	0.630	20.71	1.89	305.21	1203.50	7.25	9.67	0.00	9.67	0.00	2.54	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
298	0.620	20.71	1.89	311.88	1224.74	7.25	9.70	0.00	9.70	0.00	2.55	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
299	0.610	20.71	1.89	318.68	1246.39	7.25	9.73	0.00	9.73	0.00	2.56	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
300	0.600	20.71	1.90	325.61	1268.46	7.25	9.76	0.00	9.76	0.00	2.57	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
301	0.590	20.71	1.90	332.67	1290.94	7.25	9.78	0.00	9.78	0.00	2.58	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
302	0.580	20.71	1.90	339.86	1313.84	7.25	9.81	0.00	9.81	0.00	2.59	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
303	0.570	20.71	1.91	347.19	1337.18	7.25	9.84	0.00	9.84	0.00	2.61	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
304	0.560	20.71	1.91	354.66	1360.95	7.25	9.87	0.00	9.87	0.00	2.62	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
305	0.550	20.71	1.91	362.26	1385.16	7.25	9.89	0.00	9.89	0.00	2.63	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
306	0.540	20.71	1.91	370.00	1409.82	7.25	9.92	0.00	9.92	0.00	2.65	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
307	0.530	20.71	1.92	377.89	1434.94	7.25	9.95	0.00	9.95	0.00	2.66	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
308	0.520	20.71	1.92	385.92	1460.52	7.25	9.98	0.00	9.98	0.00	2.67	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
309	0.510	20.71	1.92	394.10	1486.57	7.25	10.01	0.00	10.01	0.00	2.69	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
310	0.500	20.71	1.93	402.43	1513.09	7.25	10.04	0.00	10.04	0.00	2.70	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
311	0.490	20.71	1.93	410.91	1540.09	7.25	10.07	0.00	10.07	0.00	2.72	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
312	0.480	20.71	1.93	419.54	1567.58	7.25	10.10	0.00	10.10	0.00	2.73	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
313	0.470	20.71	1.93	428.33	1595.57	7.25	10.13	0.00	10.13	0.00	2.74	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
314	0.460	20.71	1.94	437.28	1624.06	7.25	10.15	0.00	10.15	0.00	2.76	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
315	0.450	20.71	1.94	446.38	1653.05	7.25	10.18	0.00	10.18	0.00	2.78	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
316	0.440	20.71	1.94	455.65	1682.57	7.25	10.21	0.00	10.21	0.00	2.79	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
317	0.430	20.71	1.94	465.08	1712.60	7.25	10.25	0.00	10.25	0.00	2.81	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
318	0.420	20.71	1.95	474.68	1743.17	7.24	10.28	0.00	10.28	0.00	2.82	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
319	0.410	20.71	1.95	484.45	1774.27	7.24	10.31	0.00	10.31	0.00	2.84	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
320	0.400	20.71	1.95	494.39	1805.92	7.24	10.34	0.00	10.34	0.00	2.86	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
321	0.390	20.71	1.96	504.50	1838.12	7.24	10.37	0.00	10.37	0.00	2.88	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
322	0.380	20.71	1.96	514.79	1870.87	7.24	10.40	0.00	10.40	0.00	2.90	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
323	0.370	20.71	1.96	525.25	1904.20	7.24	10.43	0.00	10.43	0.00	2.91	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
324	0.360	20.71	1.96	535.90	1938.10	7.24	10.46	0.00	10.46	0.00	2.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
325	0.350	20.71	1.97	546.72	1972.58	7.24	10.50	0.00	10.50	0.00	2.95	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
326	0.340	20.71	1.97	557.74	2007.65	7.24	10.53	0.00	10.53	0.00	2.97	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
327	0.330	20.71	1.97	568.94	2043.32	7.23	10.56	0.00	10.56	0.00	2.99	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
328	0.320	20.71	1.97	580.33	2079.59	7.23	10.60	0.00	10.60	0.00	3.01	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
329	0.310	20.71	1.98	591.91	2116.48	7.23	10.63	0.00	10.63	0.00	3.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
330	0.300	20.71	1.98	603.69	2153.99	7.23	10.66	0.00	10.66	0.00	3.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 6 RKM 0.3 to 0.0

BAYOU CANE WATERSHED MODEL WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

****	*****	*****	******	*****	*****	******	REACH I	INPUTS *	*****	*****	*****	*****	*****	*****	*****	*****	**	
ELEM NO.	TYPE	FLOW	TEMP deg C	SALN ppt	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	- "		EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	PHOS mg/L	CHL A µg/L	COLI #/100mL	NCM
331	UPR RCH	0.04330	20.71	1.98	603.69	2153.99	7.23	10.66	0.00	10.66	0.00	3.05	0.00	0.00	0.00	10.00	0.00	0.00
****	*****	*****	******	*****	******	** HYDRAUI	LIC PARA	AMETER V	ALUES *	*****	*****	*****	*****	*****	*****	*****	**	
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLU	ME S	SURFACE AREA	X-SECT AREA		DAL I	TIDAL VELO	DISPRSN	MEAN VELO	

	km	km	m^3/s		m/s	days	m	m	m³	m²	m²	m³	m/s	m^2/s	m/s
331	0.30	0.29	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13100.29	0.013	0.886	0.013
332	0.29	0.28	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13147.04	0.013	0.889	0.013
333	0.28	0.27	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13193.80	0.013	0.892	0.013
334	0.27	0.26	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13240.56	0.013	0.895	0.013
335	0.26	0.25	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13287.31	0.013	0.898	0.013
336	0.25	0.24	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13334.07	0.013	0.901	0.013
337	0.24	0.23	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13380.82	0.013	0.904	0.013
338	0.23	0.22	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13427.58	0.013	0.907	0.013
339	0.22	0.21	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13474.33	0.013	0.911	0.013
340	0.21	0.20	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13521.09	0.013	0.914	0.013
341	0.20	0.19	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13567.85	0.013	0.917	0.014
342	0.19	0.18	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13614.60	0.013	0.920	0.014
343	0.18	0.17	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13661.36	0.013	0.923	0.014
344	0.17	0.16	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13708.11	0.014	0.926	0.014
345	0.16	0.15	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13754.87	0.014	0.929	0.014
346	0.15	0.14	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13801.63	0.014	0.932	0.014
347	0.14	0.13	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13848.38	0.014	0.935	0.014
348	0.13	0.12	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13895.14	0.014	0.939	0.014
349	0.12	0.11	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13941.89	0.014	0.942	0.014
350	0.11	0.10	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	13988.65	0.014	0.945	0.014
351	0.10	0.09	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14035.41	0.014	0.948	0.014
352	0.09	0.08	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14082.16	0.014	0.951	0.014
353	0.08	0.07	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14128.92	0.014	0.954	0.014
354	0.07	0.06	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14175.67	0.014	0.957	0.014
355	0.06	0.05	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14222.43	0.014	0.960	0.014
356	0.05	0.04	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14269.18	0.014	0.964	0.014
357	0.04	0.03	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14315.94	0.014	0.967	0.014
358	0.03	0.02	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14362.70	0.014	0.970	0.014
359	0.02	0.01	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14409.45	0.014	0.973	0.014
360	0.01	0.00	0.04330	35.3	0.00189	0.06	1.16	19.81	229.03	198.12	22.90	14456.21	0.014	0.976	0.014
TOT						1.84			6870.80	5943.60					
AVG CUM					0.0019	19.45	1.16	19.81			22.90				

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	DECAY	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
331	0.290	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
332	0.280	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
333	0.270	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
334	0.260	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
335	0.250	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
336	0.240	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
337	0.230	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
338	0.220	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
339	0.210	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
340	0.200	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
341	0.190	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
342	0.180	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
343	0.170	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
344	0.160	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
345	0.150	8.86	0.78	0.06	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00

346	0.140 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
347	0.130 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
348	0.120 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
349	0.110 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
350	0.100 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
351	0.090 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
352	0.080 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
353	0.070 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
354	0.060 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
355	0.050 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
356	0.040 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
357	0.030 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
358	0.020 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
359	0.010 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
360	0.000 8.	86 0.	78 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.05	0.00	0.00	0.00	0.00	0.52	0.00	0.00	0.00	0.00
AVG 2	0 DEG C RAT	E 0.	77 0.0	6 0.05	0.00	0.00	0.00	0.00	0.00			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

***********	WATER	QUALITY	CONSTITUENT	VALUES	**********

ELEM	ENDING	TEMP	SALN	Chloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	TOTN	PHOS	CHL A	MACRO	COLI	NCM
NO.	DIST	DEG C	PPT	mg/L	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	g/m³	#/100mL	
331	0.290	20.71	1.98	615.90	2192.86	7.23	10.70	0.00	10.70	0.00	3.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
332	0.280	20.71	1.98	628.55	2233.17	7.23	10.73	0.00	10.73	0.00	3.10	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
333	0.270	20.71	1.99	641.44	2274.19	7.22	10.76	0.00	10.76	0.00	3.12	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
334	0.260	20.71	1.99	654.55	2315.94	7.22	10.79	0.00	10.79	0.00	3.14	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
335	0.250	20.71	1.99	667.89	2358.43	7.21	10.82	0.00	10.82	0.00	3.15	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
336	0.240	20.71	1.99	681.47	2401.66	7.21	10.85	0.00	10.85	0.00	3.17	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
337	0.230	20.71	1.99	695.28	2445.65	7.20	10.87	0.00	10.87	0.00	3.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
338	0.220	20.71	1.99	709.34	2490.41	7.19	10.89	0.00	10.89	0.00	3.19	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
339	0.210	20.71	2.00	723.63	2535.95	7.18	10.90	0.00	10.90	0.00	3.20	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
340	0.200	20.71	2.00	738.18	2582.27	7.17	10.92	0.00	10.92	0.00	3.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
341	0.190	20.71	2.00	752.98	2629.40	7.16	10.93	0.00	10.93	0.00	3.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
342	0.180	20.71	2.00	768.03	2677.33	7.14	10.94	0.00	10.94	0.00	3.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
343	0.170	20.71	2.00	783.34	2726.09	7.13	10.95	0.00	10.95	0.00	3.22	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
344	0.160	20.71	2.00	798.92	2775.68	7.11	10.95	0.00	10.95	0.00	3.22	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
345	0.150	20.71	2.01	814.75	2826.12	7.09	10.96	0.00	10.96	0.00	3.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
346	0.140	20.71	2.01	830.86	2877.41	7.07	10.96	0.00	10.96	0.00	3.21	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
347	0.130	20.71		847.24	2929.56	7.05	10.95	0.00	10.95	0.00	3.20	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
348	0.120	20.71	2.01	863.89	2982.60	7.03	10.95	0.00	10.95	0.00	3.19	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
349	0.110		2.01	880.83	3036.53	7.01	10.94	0.00	10.94	0.00	3.18	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
350	0.100	20.71		898.05	3091.36	6.98	10.93	0.00	10.93	0.00	3.17	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
351	0.090	20.71		915.55	3147.11	6.95	10.91	0.00	10.91	0.00	3.16	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
352	0.080	20.71	2.02	933.35	3203.79	6.93	10.89	0.00	10.89	0.00	3.14	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
353	0.070		2.02	951.44	3261.40	6.90	10.87	0.00	10.87	0.00	3.12	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
354	0.060	20.71		969.83	3319.97	6.86	10.85	0.00	10.85	0.00	3.10	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
355	0.050	20.71	2.02	988.53	3379.50	6.83	10.83	0.00	10.83	0.00	3.08	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
356	0.040	20.71	2.02	1007.53	3440.01	6.80	10.80	0.00	10.80	0.00	3.05	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
357	0.030	20.71	2.03	1026.84	3501.52	6.76	10.76	0.00	10.76	0.00	3.03	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
358	0.020	20.71		1046.47	3564.02	6.72	10.73	0.00	10.73	0.00	3.00	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
359	0.010	20.71		1066.41	3627.54	6.68	10.69	0.00	10.69	0.00	2.96	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00
360	0.000	20.71	2.03	1086.68	3692.09	6.63	10.65	0.00	10.65	0.00	2.93	0.00	0.00	0.00	0.00	10.00	0.00	0.	0.00

HEADWATER

WINTER, 4,5 DO, 90% reduc rch 1, 60% rch 2-6, hosp 5/2

TRAVEL TIME	=		19.45	DAYS	
MAXIMUM EFFLUENT	=		35.33	PERCENT	
FLOW DISPERSION VELOCITY DEPTH WIDTH	= = = =		TO TO	0.04330 0.9760 0.00798 1.21 28.35	m³/s m²/s m/s m
SOD	= = = = = = = = = = = = = = = = = = = =	0.05 0.00 0.00 0.00 0.60 0.05 0.10 0.05	TO TO TO TO TO TO TO	0.07 0.00 1.83 0.00 0.78 0.05 0.21 0.05	per day per day g/m²/d g/m²/d per day per day per day per day
TEMPERATURE DISSOLVED OXYGEN	= =	20.71 6.43	TO TO	20.71	deg C mg/L

....EXECUTION COMPLETED

Appendix D4 – Winter, 90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6, Justifications

Bayou Cane, Winter, 9	Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria										
DAT	A TYPE 3	- PROGRAM	I CONSTANTS								
CONSTANT NAME	VALUE	UNITS	DATA SOURCE								
KL MINIMUM	0.7	m/day	The minimum KL of 2.3 ft/day converted to 0.70 m/day.								
INHIBITION CONTROL VALUE	3		The water column dissolved oxygen demand is assumed to come primarily from facultative bacteria under anoxic conditions and SOD is not influenced by modeled dissolved oxygen levels in the upper water column.								
K2 MAXIMUM	10	1/day at 20 deg C	Model default								
HYDRAULIC CALCULATION METHOD	2		The low slopes in this waterbody cause a substantial amount of water to be present during critical flow conditions. This method allows the model to predict a more accurate depth and width during low flow conditions.								
SETTLING RATE UNITS	2		Used 1/day								
DISPERSION EQUATION	3		Equation used to account for all modes of transport.								
ALGAE OXYGEN PROD	0.05		Calibration								
TIDE HEIGHT	0.236		Calculated from level monitor data								
TIDAL PERIOD	24.58		Calculated from level monitor data								
PERIOD OF TIDAL RISE	11.625		Calculated from level monitor data								

	Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria DATA TYPE 8 - REACH IDENTIFICATION DATA												
		DATA TYPE 8 - RE											
Reach	ID	Name	Upstream River Kilometer	Downstream River Kilometer	Element Length, meters	Data Source							
1	ВС	RKM 3.6 to 2.8	3.60	2.80	10.0000	ARC MAP Calc.							
2	ВС	RKM 2.8 to 1.9	2.80	1.90	10.0000	Same as Reach 1							
3	ВС	RKM 1.9 to 1.5	1.90	1.50	10.0000	Same as Reach 1							
4	ВС	RKM 1.5 to 1.1	1.50	1.10	10.0000	Same as Reach 1							
5	ВС	RKM 1.1 to 0.3	1.10	0.30	10.0000	Same as Reach 1							
6	ВС	RKM 0.3 to 0.0	0.30	0.00	10.0000	Same as Reach 1							

	Bay	you Cane, Win	ter, 90% R	Reduction in Rea	i <mark>ch 1, 60% in Reac</mark> l	hes 2-6, Curre	ent Criteria		
			Data Ty	pe 9 - Advective Hy	draulic Coefficients				
Reach	Name	Width Coeff. "a"	Width Exp. ''b''	Width Const. "c"	Data Source	Depth Coeff. "d"	Depth Exp. "e"	Depth Const. "f"	Data Source
1	RKM 3.6 to 2.8	0	0	4.877	3665	0	0	1.113	3665
2	RKM 2.8 to 1.9	0	0	15.850	BC04 (3752)	0	0	1.085	BC04 (3752)
3	RKM 1.9 to 1.5	0	0	27.737	BC05 (3753)	0	0	1.189	BC05 (3753)
4	RKM 1.5 to 1.1	0	0	28.346	BC06 (3754)	0	0	1.021	BC06 (3754)
5	RKM 1.1 to 0.3	0	0	21.488	BC07 (3755)	0	0	1.210	BC07 (3755)
6	RKM 0.3 to 0.0	0	0	19.812	3666	0	0	1.156	3666

	Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria												
		DATA TYPE 1	0 - DISPI	ERSIVE H	YDRAUL	IC COE	FFICIENTS						
Reach	Tidal Range	Data Source	a	b	c	d	Data Source						
1	0.95	Level monitor	60.00	0.833	0.0	1.0	"a" obtained from calibration. "b, c, and d" Tracor eqn.						
2	0.95	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1						
3	0.93	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1						
4	0.93	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1						
5	1.00	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1						
6	1.00	Same as Reach 1	60.00	0.833	0.0	1.0	Same as Reach 1						

	Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria											
				DATA TYPE 11	-INITI	AL CONDITIONS						
Reach	Name	Temp, deg C	Sal, ppt	Data Source	DO, mg/l	Data Source	Chlorophyll <u>a</u>	Data Source				
1	RKM 3.6 to 2.8	20.71	0.10	Temp: 90th percentile for WQN 0302, Salinity: Cont Mont	5.00	DO Crtierion for Subsegment 040903	10.00	Best Professional Judgement				
2	RKM 2.8 to 1.9	20.71	0.23	Same as Reach 1	4.00		10.00	Same as Reach 1				
3	RKM 1.9 to 1.5	20.71	1.15	Same as Reach 1		DO Criterion for Subsegment 040904	10.00	Same as Reach 1				
4	RKM 1.5 to 1.1	20.71	1.45	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1				
5	RKM 1.1 to 0.3	20.71	1.76	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1				
6	RKM 0.3 to 0.0	20.71	1.98	Same as Reach 1	4.00	DO Criterion for Subsegment 040904	10.00	Same as Reach 1				

Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria

DATA TYPE 12 - REAERATION, SEDIMENT OXYGEN DEMAND AND BOD COEFFICIENTS

REACH	NAME	K2 OPT	Data Source	BKGRND SOD, gmO2/m2/day at 20 deg C	Data Source	Aerobic BOD1 Dec Rate (1/day)	BOD1 SETT RATE (1/day)	Data Source
1	RKM 3.6 to 2.8	11	Texas Equation	0.438	90% Reduction	0.0440	0.05	Lab, Calibration
2	RKM 2.8 to 1.9	11	Texas Equation	1.750	60% Reduction	0.0680	0.05	Same as Reach 1
3	RKM 1.9 to 1.5	11	Texas Equation	1.500	60% Reduction	0.0570	0.05	Same as Reach 1
4	RKM 1.5 to 1.1	11	Texas Equation	1.200	60% Reduction	0.0570	0.05	Same as Reach 1
5	RKM 1.1 to 0.3	1	Mattingly equation- wind influence	0.950	60% Reduction	0.0570	0.05	Same as Reach 1
6	RKM 0.3 to 0.0	1	Mattingly equation- wind influence	0.000	60% Reduction	0.0620	0.05	Same as Reach 1

Bay	Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria DATA TYPE 13 - NITROGEN AND PHOSPHORUS COEFFICIENTS												
Reach	Name	NBOD decay rate, 1/day	Data Source	NBOD settling rate, 1/day	Data Source								
1	RKM 3.6 to 2.8	0.20	Calibration	0.05	Calibration								
2	RKM 2.8 to 1.9	0.10	Same as Reach 1	0.05	Same as Reach 1								
3	RKM 1.9 to 1.5	0.10	Same as Reach 1	0.05	Same as Reach 1								
4	RKM 1.5 to 1.1	0.10	Same as Reach 1	0.05	Same as Reach 1								
5	RKM 1.1 to 0.3	0.10	Same as Reach 1	0.05	Same as Reach 1								
6	RKM 0.3 to 0.0	0.10	Same as Reach 1	0.05	Same as Reach 1								

Bayou Cane, Winter, 90% Reduction in Reach 1, 60% in Reaches 2-6, Current Criteria					
DATA TYPE 19 - NONPOINT SOURCE DATA					
Reach	Reach Name	Length of Reach, km	UCBOD1, kg/day	NBOD, kg/day	Data Source
1	RKM 3.6 to 2.8	0.80	0.625	0.225	90% Reduction
2	RKM 2.8 to 1.9	0.90	12.000	2.000	60% Reduction
3	RKM 1.9 to 1.5	0.40	13.000	3.650	60% Reduction
4	RKM 1.5 to 1.1	0.40	14.000	4.000	60% Reduction
5	RKM 1.1 to 0.3	0.80	27.500	8.250	60% Reduction
6	RKM 0.3 to 0.0	0.30	23.500	14.000	60% Reduction

							ches 2-6, Current Criteria NITY, AND CONSERVATIVES
Headwater Name	Element No.	Headwater Flow, cms	Data Source	Salinity	Conductivity	Chlorides	Data Source
Headwater	1	0.0280	LTP Winter Default	0.1	215.38	21.50	SALINITY - CONT MONT (3665) CHLORIDE - LAB DATA (3665) CONDUCTIVITY - CONT MONT (3665)

Bayou Cane	, Winter, 90%	Reduction	in Reach	1,60% in Reaches 2-6, Current Criteria
	DATA TYPE 21	- HEADWAT	ER DATA I	FOR DO, BOD, AND NITROGEN
Headwater Name	Dissolved Oxygen, mg/L	UCBOD1, mg/l	NBOD, mg/l	Data Source
Headwater	8.07	1.69	0.29	DO: 90% Saturation for WQN 0302 at 90th percentile seasonal temp. UCBOD and NBOD: 90% Overall Reduction

	Bayo	u Ca		90% Reduction in Reach 1, 60% PE 24 - WASTELOAD DATA FOR FLOW				VATIVES
V	Vasteload / Withdrawal Name	EL#	Flow, cms	Data Source	Salinity	Conductivity	Chlorides	Data Source
So	outheast Louisiana State Hospital, AI 9371	18	0.0153	Design capacity/expected flow from permit plus 20% margin of safety	0.22	458.0	22.5	Salinity from insitu during survey. Chloride and conductivity from lab data during survey.

Bayou Cane	, Wiı	nter, 90%	Reduction in Reach 1, 60%	6 in Reach	es 2-6, C u	rrent Criteria
	DA	TA TYPE 2	5 - WASTELOAD DATA FOR DO,	BOD, AND N	ITROGEN	
Wasteload / Withdrawal Name	EL#	DO, mg/l	Data Source	UCBOD1, mg/l	UNBOD, mg/l	Data Source
Southeast Louisiana State Hospital, AI 9371	18	5.00	Facility currently has post-aeration	11.5000	8.6000	Required limits are CBOD ₅ =5 mg/L, NH ₃ -N=2 mg/L. UCBOD=CBOD ₅ *2.3, UNBOD=NH ₃ -N*4.3

Bayou Cane, Winter, 90	% Reduct	ion in Reach	1, 60% in Reaches 2-6, Current Criteria												
DATA	TYPE 27 - L	OWER BOUND	ARY CONDITIONS												
Parameter	Value	Units	Data Source												
TEMPERATURE															
CHLORIDES	1097.0000	mg/L	BC09 (3756) Lab Data												
CONDUCTIVITY	3724.9400	umhos/cm	BC09 (3756) Continuous Monitor												
DISSOLVED OXYGEN	6.6100	mg/L	BC09 (3756) Continuous Monitor												
CBOD1	10.6260	mg/L	BC09 (3756) Lab Data												
CHLOROPHYLL A	10.0000	ug/L	Best Professional Judgement												
NBOD	2.9100	mg/L	BC09 (3756) Lab Data												

Appendix E - Projection Model Development

Appendix E1 – Summer Loading—90% Overall Reduction in Reach 1, 60% Overall Reduction in Reaches 2-6

Summer Projection	, Non-l	Point E	Benthi	c Loa	d Inpu	ıt and	TMDL	Calcula	ations:																				
Modeled stream or water boo	ly:		В	BAYOU (CANE (S	UBSEC	MENT 04	0903)																					
Shaded cells are input value	s for calc	ulations.	GIN OF S	SAFETY (I	MOS) (%)	= [MO0	6 + MOU] =	20%																					
Values to be used in the pro	jection m	odels.																											
		0.1	Las Cara Ma	1.11/-1																		Desi							
		Call	bration ivid	odel Values	s	T											Re	educed Mar	n-Made Loa	i i		Proje	ected Model Lo	oads		1	1	1	
Reach Number and Description	Non-Point UCBOD1	Total Non- Point UCBOD	Total Non- Point UNBOD	SOD @ 20°C	Total Calb. Benthic Load (TCBL)	Peach	Proj. Model Avg. Reach Width	Proj. Temp.	Background Benthic Load	Effective Background Benthic Load	Man-Made Benthic Load	Background percentage reduction	Percentage Reduction of man-made sources		Made Benthic	Reduced TCBL adjusted for MOS	Reduced UCBOD1 Load	Reduced Total UCBOD Load	Reduced UNBOD Load	Reduced SOD Load at Projection Temp.	SOD @ 20°C		Total Non- Point UCBOD INPUTS		Total MOS at Projection Temp.		Non-Point UCBOD LA	Non-Point UNBOD LA	SOD LA at Projection Temp.
	g O ₂ / [(m ²)(day)]	$gO_2/\\[(m^2)(day)]$	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)]	Kilo- meters	Meters	(deg Celsius)	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	%	%	$gO_2/\\ [(m^2)(day)]$	g O ₂ / [(m ²)(day)]	$g O_2 /$ $[(m^2)(day)]$	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	g O ₂ / [(m ²)(day)]	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day
Reach 1 - Site 3665 to 3752-BC04	1.282	1.282	0.461	3.50	5.243	0.80	4.877	27.91	0.00	0.00	5.24	0%	90%	0.00	0.52	0.66	0.50	0.50	0.18	2.25	0.438	0.625	0.625	0.225	0.73	0.50	0.50	0.18	2.25
	1																1												
Sub-Total										0.00	5.24			0.00	0.52	0.66	0.50	0.50	0.18	2.25		0.63	0.63	0.23	0.73	0.50	0.50	0.18	2.25

Summer TMDL Calculati	ions for Point Source	e loads:																		
		BAYOU CANE	(SUBSEGME	NT 04090	3)	!				Ī										
																	Input data	into the shad	ed cells.	
]	Point Sou	rce Loadii	ng Calcul	ations										
							Propo	sed Permit I	Limits		UCBO	D			U	NBOD		Sub-Total	of Point Source	BOD Loads
Pt. Source / Facility Description	Receiving Stream	Included in the Projection Model (Yes/No)	Anticipated/design flow (gpd)	Anticipated/ design flow (cms)	Flow with MOS (cms)	Flow with MOS (gpd)	CBOD ₅ (mg/l)	NH ₃ N (mg/l)	MOS (%)	Ultimate Conc. (mg/l) (2)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Ultimate Conc. (mg/l) (2)	Loads (kg/day) (1)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS (kg/day)
				A	A1 = A/(1-E)		В	С	E	F = 2.3 x B	G = (86.4)(A1)(F)	H = (1-E) x G	I = (E)(G)	J = 4.3 x C	K = (86.4)(A1)(J)	L = (1-E) x K	M = (D)(K)	G + K + N	H+L+O	I+M+P
Southeast Louisiana State Hospital	Bayou Cane	Yes	280,000	0.01226736	0.01533420	350,000	5	2	20%	11.5	15	12	3	8.6	11	9	2	27	21	5
Lakeshore High School	LA Hwy. 1088 Ditch	No	26,000	0.00113911	0.00142389	32,500	10		20%	23.0	2.8296	2.2636	0.5659	0.0	0.0000	0.0000	0.0000	2.8296	2.2636	0.5659
SUB-TOTAL Loads											18.07	14.45	3.61		11.39	9.12	2.28	29.46	23.57	5.89

Summer TMDL calculation	s and Pro	jection r	model	calcul	ations	for Hea	dwater /	Tributa:	ry loads:															
BAYOU CANE (SI	UBSEGMEN'	T 040903)																						
Shaded cells are input values for calculation						OS) (%) =	20%																	
Values to be used in the projection models	S.		If modeling	ng the nitro	gen series	s, be sure th	at columns "																	
	Headwater / Tributary Load Determinations FROM CALIBRATION BACKGROUND VALUES Reduced Background Loads Reduced Man-Made Loads PROJECTION VALUES Reduced Background Loads Reduced Man-Made Loads PROJECTION VALUES																							
		ON			BAC	KGROUND V	ALUES			Reduced	l Backgroun	d Loads	Reduce	ed Man-Mad	le Loads	PRO	DJECTION VA	LUES						
Headwater / Tributary Description and Reach #	Seasonal Critical flow (cms)	UCBOD1 (mg O ₂ /L)	Total UCBOD (mg O ₂ /L)	UNBOD (mg O ₂ /L)	Total UNBOD (mg O ₂ /L)	Background UCBOD1 conc. (mg O ₂ /L)	Background UCBOD conc. (mg O ₂ /L)	Background UNBOD conc. (mg O ₂ /L)		Background % Reduction	Percent reduction of Man-Made loads	UCBOD1 load	UCBOD load	Reduced Background UNBOD load (kg O ₂ /day)	load	Reduced UCBOD load (kg O ₂ /day)	Reduced UNBOD load (kg O ₂ /day)	Projection UCBOD1 input conc. (mg O ₂ /L)	Projection UCBOD input conc. (mg O ₂ /L)	Projection UNBOD input conc. (mg O ₂ /L)	Total MOS (kg O ₂ /day)	Total CBOD1 LA (kg O ₂ /day)	Total CBOD LA (kg O ₂ /day)	LA
Headwater	0.0028	13.5280	13.53	2.3150	2.32	0.0000	0.00	0.0000	0.00	0%	90%	0.00	0.00	0.00	0.33	0.33	0.06	1.69	1.69	0.29	0.10	0.33	0.33	0.06
SUB-TOTAL TMDL LOADING												0.00	0.00	0.00	0	0.33	0.06				0.10	0.33	0.33	0.06

Summer Projection	, Non-l	Point E	Benthi	c Loa	d Inpu	ıt and	d TMDL	Calcul	ations:																				
Modeled stream or water bod	ly:		В	AYOU (CANE (S	UBSEC	MENT 04	0904)																					
Shaded cells are input value	s for calc	ulations.	GIN OF S	SAFETY (N	MOS) (%)	= [MO0	3 + MOU] =	20%																					
alues to be used in the proj	ection m	odels.																											
		Cal	ibration Mo	del Values	3												R	educed Mar	-Made Loa	ds		Proje	ected Model L	oads					
Reach Number and Description	Non-Point UCBOD1	Total Non- Point UCBOD	Total Non- Point UNBOD	SOD @ 20°C	Total Calb Benthic Load (TCBL)	Reach Length	Proj. Model Avg. Reach Width	Proj. Temp.	Background Benthic Load	Effective Background Benthic Load	Man-Made Benthic Load	Background percentage reduction	Percentage Reduction of man-made sources	Reduced Background Benthic Load	Reduced Man- Made Benthic Load	Reduced TCBL adjusted for MOS	Reduced UCBOD1 Load	Reduced Total UCBOD Load	Reduced UNBOD Load	Reduced SOD Load at Projection Temp.	SOD @ 20°C	Non-Point UCBOD1 INPUTS	Total Non- Point UCBOD INPUTS		Total MOS at Projection Temp.	Non-Point UCBOD1 LA		Non-Point UNBOD LA	SOD LA : Projectio Temp.
	g O ₂ / [(m ²)(day)]	$\frac{gO_2/}{[(m^2)(day)]}$	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)	Kilo- meters	Meters	(deg Celsius)	$g O_2 / \\ [(m^2)(day)]$	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	%	%	$gO_2/\\[(m^2)(day)]$	g O ₂ / [(m ²)(day)]	$g O_2 /$ $[(m^2)(day)]$	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	g O ₂ / [(m ²)(day)]	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day
Reach 2 - Site 3752-BC04 to 3753-BC05	1.682	1.682	0.280	3.50	5.463	0.90	15.850	27.91	0.00	0.00	5.46	0%	60%	0.00	2.19	2.73	9.60	9.60	1.60	32.87	1.750	12.000	12.000	2.000	11.02	9.60	9.60	1.60	32.87
Reach 3 - Site 3753-BC05 to 3754-BC06	2.343	2.343	0.658	3.00	6.001	0.40	27.737	27.91	0.00	0.00	6.00	0%	60%	0.00	2.40	3.00	10.40	10.40	2.92	21.91	1.500	13.000	13.000	3.650	8.81	10.40	10.40	2.92	21.91
Reach 4 - Site 3754-BC06 to 3755-BC07	2.469	2.469	0.706	2.40	5.575	0.40	28.346	27.91	0.00	0.00	5.58	0%	60%	0.00	2.23	2.79	11.20	11.20	3.20	17.91	1.200	14.000	14.000	4.000	8.08	11.20	11.20	3.20	17.91
Reach 5 - Site 3755-BC07 to 3666	3.199	3.199	0.960	1.90	6.059	0.80	21.488	27.91	0.00	0.00	6.06	0%	60%	0.00	2.42	3.03	22.00	22.00	6.60	21.50	0.950	27.500	27.500	8.250	12.52	22.00	22.00	6.60	21.50
Reach 6 - Site 3666 to Lake Pontchartrain	7.908	7.908	4.711	0.00	12.619	0.30	19.812	27.91	0.00	0.00	12.62	0%	60%	0.00	5.05	6.31	18.80	18.80	11.20	0.00	0.000	23.500	23.500	14.000	7.50	18.80	18.80	11.20	0.00
						1											-												<u> </u>
Sub-Total						1				0.00	35.72			0.00	14.29	17.86	72 00	72.00	25.52	94.19		90.00	90.00	31.90	47.93	72.00	72.00	25.52	94.19

Summer TMDL Calculate	ions for Point Source	loads:																		
	l	BAYOU CANE	(SUBSEGME	NT 040904	4)															
																	Input data	into the shade	ed cells.	
							Point Sou	rce Loadi	ng Calcula	ations										
							Propo	osed Permit l	Limits		UCBO	D			U	NBOD		Sub-Total o	of Point Source	BOD Loads
Pt. Source / Facility Description	Receiving Stream	Included in the Projection Model (Yes/No)	Anticipated/design flow (gpd)	Anticipated/ design flow (cms)	Flow with MOS (cms)	Flow with MOS (gpd)	CBOD ₅ (mg/l)	NH ₃ N (mg/l)	MOS (%)	Ultimate Conc. (mg/l) (2)	Loads (kg/day) (1)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Ultimate Conc. (mg/l) (2)	Loads (kg/day) (1)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS (kg/day)
				A	A1 = A/(1-E)		В	С	E	F = 2.3 x B	$\mathbf{G} = (86.4)(\mathbf{A1})(\mathbf{F})$	$\mathbf{H} = (1-\mathbf{E}) \times \mathbf{G}$	I = (E)(G)	J = 4.3 x C	K = (86.4)(A1)(J)	L = (1-E) x K	M = (D)(K)	G + K + N	H+L+O	I + M + P
St. Tammany Fire Protection District #4 Station #44	Bayou Cane	No	120	0.000005	0.000007	150	45		20%	103.5	0.0588	0.0470	0.0118	0.0	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Bayou Moon Antiques	Bayou Cane	No	20	0.000001	0.000001	25	45		20%	103.5	0.0098	0.0078	0.0020	0.0	0.0000	0.0000	0.0000	0.0098	0.0078	0.0020
Demmonlicious Catering LLC	Bayou Cane	No	60	0.000003	0.000003	75	30		20%	69.0	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Bayou Snowballs	Big Branch Marsh	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Big Branch Mobile Home Community LLC - Big Branch Mobile Home Community	Big Branch Marsh	No	7,800	0.000342	0.000427	9,750	30		20%	69.0	2.5466	2.0373	0.5093	0.0	0.0000	0.0000	0.0000	2.5466	2.0373	0.5093
Union Service & Maintenance Co Inc	Big Branch Marsh	No	120	0.000005	0.000007	150	45		20%	103.5	0.0588	0.0470	0.0118	0.0	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Ace Auto Source LLC - WWTP	Lake Pontchartrain	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
H2O Systems Inc - Autumn Haven STP	Big Branch	No	36,400	0.001595	0.001993	45,500	10		20%	23.0	3.9614	3.1691	0.7923	0.0	0.0000	0.0000	0.0000	3.9614	3.1691	0.7923
Northshore Duplicate Bridge Club	Big Branch	No	1,500	0.000066	0.000082	1,875	45		20%	103.5	0.7346	0.5877	0.1469	0.0	0.0000	0.0000	0.0000	0.7346	0.5877	0.1469
LADCRT - Fountainbleau State Park	Little Bayou Castine	No	120	0.000005	0.000007	150	45		20%	103.5	0.0588	0.0470	0.0118	0.0	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
St Tammany Parish Rec District #1	Bayou Castine	No	2,499	0.000109	0.000137	3,124	45		20%	103.5	1.2238	0.9791	0.2448	0.0	0.0000	0.0000	0.0000	1.2238	0.9791	0.2448
Transitions Law & Professional Center	Bayou Castine	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
St Tammany Parish - Municipal Separate Storm Sewer System	Various waterbodies	No		0.000000	0.000000	0			20%	0.0	0.0000	0.0000	0.0000	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
St Tammany Marine	Bayou Castine	No	4,999	0.000219	0.000274	6,249	45		20%	103.5	2.4482	1.9585	0.4896	0.0	0.0000	0.0000	0.0000	2.4482	1.9585	0.4896
Iqbal Properties LLC - Chahta Mobile Home Park	Bayou Castine	No	22,000	0.000964	0.001205	27,500	10		20%	23.0	2.3942	1.9154	0.4788	0.0	0.0000	0.0000	0.0000	2.3942	1.9154	0.4788
West Wind Sails LLC - West Wind Sails	Little Bayou Castine	No	120	0.000005	0.000007	150	30		20%	69.0	0.0392	0.0313	0.0078	0.0	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Parent Teacher Child Services Inc	Bayou Castine	No	800	0.000035	0.000044	1,000	45		20%	103.5	0.3918	0.3134	0.0784	0.0	0.0000	0.0000	0.0000	0.3918	0.3134	0.0784
Bert Cortes - Rented Building	Little Bayou Castine	No	60	0.000003	0.000003	75	45		20%	103.5	0.0294	0.0235	0.0059	0.0	0.0000	0.0000	0.0000	0.0294	0.0235	0.0059
Daiquiri's & Cream of Mandeville LLC/Daiquiri's & Cream-Mandeville	Little Bayou Castine	No	500	0.000022	0.000027	625	45		20%	103.5	0.2449	0.1959	0.0490	0.0	0.0000	0.0000	0.0000	0.2449	0.1959	0.0490
H2O Systems Inc - Monterey Timbers Marigny Trace Subdivisions	Little Bayou Castine	No	182,400	0.007991	0.009989	228,000	10	5	20%	23.0	19.8504	15.8803	3.9701	21.5	18.5558	14.8447	3.7112	38.4062	30.7250	7.6812
Delta Fence Inc	Little Bayou Castine	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098

01 1 71	till b		2.255	0.000400	0.000425	2011	20		204/			0.5040	0.4404			0.0000	0.0000	0.5120	0.5042	0.1406
Ola's Place Harry Mayeaux - CARQUEST Auto	Little Bayou Castine	No	2,275	0.000100	0.000125	2,844	30		20%	69.0	0.7428	0.5942	0.1486	0.0	0.0000	0.0000	0.0000	0.7428	0.5942	0.1486
Parts	Little Bayou Castine	No	60	0.000003	0.000003	75	45		20%	103.5	0.0294	0.0235	0.0059	0.0	0.0000	0.0000	0.0000	0.0294	0.0235	0.0059
St Tammany Parish Government - Red Oak Subdivision	Little Bayou Castine	No	5,600	0.000245	0.000307	7,000	30		20%	69.0	1.8283	1.4627	0.3657	0.0	0.0000	0.0000	0.0000	1.8283	1.4627	0.3657
Country Kitchen Restaurant	Little Bayou Castine	No	1,960	0.000086	0.000107	2,450	30		20%	69.0	0.6399	0.5119	0.1280	0.0	0.0000	0.0000	0.0000	0.6399	0.5119	0.1280
Deliverance Tabernacle United	Bayou Castine	No	630	0.000028	0.000035	788	45		20%	103.5	0.3085	0.2468	0.0617	0.0	0.0000	0.0000	0.0000	0.3085	0.2468	0.0617
Pentecost	Day ou caseme																			
Automotive Air Services	Bayou Castine	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
The Bounce House	Little Bayou Castine	No	200	0.000009	0.000011	250	45		20%	103.5	0.0979	0.0784	0.0196	0.0	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Thomas & Nancy Heidingsfelder - Property	Bayou Castine	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Patrick Brackley & William Brackley Trust Dollar General & Retail Spaces	Little Bayou Castine	No	320	0.000014	0.000018	400	45		20%	103.5	0.1567	0.1254	0.0313	0.0	0.0000	0.0000	0.0000	0.1567	0.1254	0.0313
Paul Gement - 915-975 Carroll Street	Little Bayou Castine	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Marquez's Auto Service Center	Bayou Castine	No	4,999	0.000219	0.000274	6,249	45		20%	103.5	2.4482	1.9585	0.4896	0.0	0.0000	0.0000	0.0000	2.4482	1.9585	0.4896
Northshore Animal Hospital Inc	Little Bayou Castine	No	80	0.000004	0.000004	100	45		20%	103.5	0.0392	0.0313	0.0078	0.0	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Paul Gement - Orleans Building	Little Bayou Castine	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Mamacita's Gerard Street LLC	Little Bayou Castine	No	2,120	0.000093	0.000116	2,650	30		20%	69.0	0.6922	0.5537	0.1384	0.0	0.0000	0.0000	0.0000	0.6922	0.5537	0.1384
St Tammany Parish Government - Castine Regional Sewage Treatment Plant	Bayou Castine	No	1,000,000	0.043812	0.054765	1,250,000	10	4	20%	23.0	108.8290	87.0632	21.7658	17.2	81.3852	65.1081	16.2770	190.2142	152.1713	38.0428
Square 188 Rural Mandeville POA Inc	Bayou Castine	No	4,000	0.000175	0.000219	5,000	30		20%	69.0	1.3059	1.0448	0.2612	0.0	0.0000	0.0000	0.0000	1.3059	1.0448	0.2612
Kinder Haus Mandeville Inc - Kinder Haus Montessori	Lake Pontchartrain	No	1,345	0.000059	0.000074	1,681	30		20%	69.0	0.4391	0.3513	0.0878	0.0	0.0000	0.0000	0.0000	0.4391	0.3513	0.0878
Mandeville City of - Municipal Separate Storm Sewer System	Various waterbodies	No		0.000000	0.000000	0			20%	0.0	0.0000	0.0000	0.0000	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mandeville Karate Training Center	Lake Pontchartrain	No	1,240	0.000054	0.000068	1,550	45		20%	103.5	0.6073	0.4858	0.1215	0.0	0.0000	0.0000	0.0000	0.6073	0.4858	0.1215
Service Master Absolute Cleaning Services LLC	Bayou Chinchuba	No	540	0.000024	0.000030	675	45		20%	103.5	0.2645	0.2116	0.0529	0.0	0.0000	0.0000	0.0000	0.2645	0.2116	0.0529
Knight's Wrecker Service	Bayou Chinchuba	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
KT Automotive Inc	Little Bayou Castine	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Lazaro's Heating & Air Conditioning Inc	Bayou Chinchuba	No	120	0.000005	0.000007	150	45		20%	103.5	0.0588	0.0470	0.0118	0.0	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Crossroads Shopping Center	Lake Pontchartrain	No	4,400	0.000193	0.000241	5,500	45		20%	103.5	2.1548	1.7239	0.4310	0.0	0.0000	0.0000	0.0000	2.1548	1.7239	0.4310
Richard J Vanek Properties LLC - HMIH	Lake Pontchartrain	No	80	0.000004	0.000004	100	45		20%	103.5	0.0392	0.0313	0.0078	0.0	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Dave's Collision Shop	Lake Pontchartrain	No	200	0.000009	0.000011	250	45		20%	103.5	0.0979	0.0784	0.0196	0.0	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Governor Control Systems Inc	Lake Pontchartrain	No	300	0.000013	0.000016	375	45		20%	103.5	0.1469	0.1175	0.0294	0.0	0.0000	0.0000	0.0000	0.1469	0.1175	0.0294
JRM Bel LLC - Southern Pipe & Supply Inc	Bayou Chinchuba	No	150	0.000007	0.000008	188	45		20%	103.5	0.0735	0.0588	0.0147	0.0	0.0000	0.0000	0.0000	0.0735	0.0588	0.0147
WREDCO - Weyerhauser Real Estate & Development Co	Bayou Castine	No	300,000	0.013144	0.016430	375,000	10	5	20%	23.0	32.6487	26.1190	6.5297	21.5	30.5194	24.4156	6.1039	63.1681	50.5345	12.6336
Greenleaves Utility Co - Greenleaves Subdivision	Bayou Chinchuba	No	950,000	0.041621	0.052027	1,187,500	10	4	20%	23.0	103.3876	82.7100	20.6775	17.2	77.3159	61.8527	15.4632	180.7035	144.5628	36.1407
Brookside Office Complex - Northshore I Commercial Condo Association Inc	Bayou Chinchuba	No	2,100	0.000092	0.000115	2,625	45		20%	103.5	1.0284	0.8227	0.2057	0.0	0.0000	0.0000	0.0000	1.0284	0.8227	0.2057
Lanier Music	Bayou Chinchuba	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Mandeville Christian Fellowship Church	Little Bayou Castine	No	1,000	0.000044	0.000055	1,250	30		20%	69.0	0.3265	0.2612	0.0653	0.0	0.0000	0.0000	0.0000	0.3265	0.2612	0.0653
Marbar LLC	Bayou Chinchuba	No	160	0.000007	0.000009	200	45		20%	103.5	0.0784	0.0627	0.0157	0.0	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Hosanna Lutheran Church Inc	Bayou Chinchuba	No	3,500	0.000153	0.000192	4,375	30		20%	69.0	1.1427	0.9142	0.2285	0.0	0.0000	0.0000	0.0000	1.1427	0.9142	0.2285
	•							22.4		ı						1				

										1								i		
Chilly's Famous Sno-Balls	Little Bayou Castine	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Latter & Blum Inc	Bayou Chinchuba	No	560	0.000025	0.000031	700	45		20%	103.5	0.2742	0.2194	0.0548	0.0	0.0000	0.0000	0.0000	0.2742	0.2194	0.0548
OPS Turnkey LLC	Bayou Chinchuba	No	200	0.000009	0.000011	250	45		20%	103.5	0.0979	0.0784	0.0196	0.0	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
St Tammany Parish Government - Forest Park Apts STP	Bayou Chinchuba	No	5,400	0.000237	0.000296	6,750	30		20%	69.0	1.7630	1.4104	0.3526	0.0	0.0000	0.0000	0.0000	1.7630	1.4104	0.3526
St Tammany Parish of - Wadsworth Subdivision WWTP	Bayou Castine	No	180,000	0.007886	0.009858	225,000	10	5	20%	23.0	19.5892	15.6714	3.9178	21.5	18.3117	14.6493	3.6623	37.9009	30.3207	7.5802
The Soil & Garden Depot	Bayou Chinchuba	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
All Creatures Country Club - Shari K Karanas - WWTP	Bayou Castine	No	800	0.000035	0.000044	1,000	45		20%	103.5	0.3918	0.3134	0.0784	0.0	0.0000	0.0000	0.0000	0.3918	0.3134	0.0784
S&G Investments LLC	Bayou Chinchuba	No	160	0.000007	0.000009	200	45		20%	103.5	0.0784	0.0627	0.0157	0.0	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Dejaunay Hair Design	Bayou Chinchuba	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Gayle Betz - Century 21 Gaylaxey Office Building	Bayou Chinchuba	No	380	0.000017	0.000021	475	45		20%	103.5	0.1861	0.1489	0.0372	0.0	0.0000	0.0000	0.0000	0.1861	0.1489	0.0372
Liberty Self Storage #11	Bayou Chinchuba	No	320	0.000014	0.000018	400	45		20%	103.5	0.1567	0.1254	0.0313	0.0	0.0000	0.0000	0.0000	0.1567	0.1254	0.0313
B&N Investments	Bayou Chinchuba	No	2,480	0.000109	0.000136	3,100	45		20%	103.5	1.2145	0.9716	0.2429	0.0	0.0000	0.0000	0.0000	1.2145	0.9716	0.2429
H2O Systems Inc - Woodland Apartments STF	Bayou Chinchuba	No	45,000	0.001972	0.002464	56,250	10		20%	23.0	4.8973	3.9178	0.9795	0.0	0.0000	0.0000	0.0000	4.8973	3.9178	0.9795
Liberty Self Storage LLC #3	Bayou Chinchuba	No	320	0.000014	0.000018	400	45		20%	103.5	0.1567	0.1254	0.0313	0.0	0.0000	0.0000	0.0000	0.1567	0.1254	0.0313
C&C Drugs	Bayou Chinchuba	No	160	0.000007	0.000009	200	45		20%	103.5	0.0784	0.0627	0.0157	0.0	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
St Tammany Parish Government - Woodcrest Subdivision	Little Bayou Castine	No	5,600	0.000245	0.000307	7,000	30		20%	69.0	1.8283	1.4627	0.3657	0.0	0.0000	0.0000	0.0000	1.8283	1.4627	0.3657
St Tammany Parish Government - Twin Oaks	Bayou Chinchuba	No	8,000	0.000350	0.000438	10,000	10		20%	23.0	0.8706	0.6965	0.1741	0.0	0.0000	0.0000	0.0000	0.8706	0.6965	0.1741
Southern Fastening Systems	Bayou Chinchuba	No	100	0.000004	0.000005	125	45		20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Mandeville Christian Church	Bayou Chinchuba	No	150	0.000007	0.000008	188	45		20%	103.5	0.0735	0.0588	0.0147	0.0	0.0000	0.0000	0.0000	0.0735	0.0588	0.0147
Northlake Automotive	Bayou Chinchuba	No	200	0.000009	0.000011	250	45		20%	103.5	0.0979	0.0784	0.0196	0.0	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
B&N Investments - Southern Country Designs	Bayou Chinchuba	No	200	0.000009	0.000011	250	45		20%	103.5	0.0979	0.0784	0.0196	0.0	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Dr Robert Hurst - SWWT	Bayou Chinchuba	No	40	0.000002	0.000002	50	45		20%	103.5	0.0196	0.0157	0.0039	0.0	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Richard St Pe Co Inc	Bayou Chinchuba	No	60	0.000003	0.000003	75	45		20%	103.5	0.0294	0.0235	0.0059	0.0	0.0000	0.0000	0.0000	0.0294	0.0235	0.0059
Yeoh & Williams LLC - Little Tokyo	Bayou Chinchuba	No	1,620	0.000071	0.000089	2,025	30		20%	69.0	0.5289	0.4231	0.1058	0.0	0.0000	0.0000	0.0000	0.5289	0.4231	0.1058
B&N Investments - Onesource Professional Search	Bayou Chinchuba	No	120	0.000005	0.000007	150	45		20%	103.5	0.0588	0.0470	0.0118	0.0	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Tire Kingdom #180	Bayou Chinchuba	No	4,999	0.000219	0.000274	6,249	45		20%	103.5	2.4482	1.9585	0.4896	0.0	0.0000	0.0000	0.0000	2.4482	1.9585	0.4896
B&N Investments - Basic Elements Day Spa	Bayou Chinchuba	No	160	0.000007	0.000009	200	45		20%	103.5	0.0784	0.0627	0.0157	0.0	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Patrick Shannon Allison DDS	Bayou Chinchuba	No	220	0.000010	0.000012	275	45		20%	103.5	0.1077	0.0862	0.0215	0.0	0.0000	0.0000	0.0000	0.1077	0.0862	0.0215
Redi Med Clinic	Bayou Chinchuba	No	200	0.000009	0.000011	250	45		20%	103.5	0.0979	0.0784	0.0196	0.0	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Tiffany Lanes	Bayou Chinchuba	No	8,480	0.000372	0.000464	10,600	30		20%	69.0	2.7686	2.2149	0.5537	0.0	0.0000	0.0000	0.0000	2.7686	2.2149	0.5537
Quad Investments LLC	Bayou Chinchuba	No	500	0.000022	0.000027	625	45		20%	103.5	0.2449	0.1959	0.0490	0.0	0.0000	0.0000	0.0000	0.2449	0.1959	0.0490
Darby Holdings LLC - Asbury Square	Bayou Chinchuba	No	300	0.000013	0.000016	375	45		20%	103.5	0.1469	0.1175	0.0294	0.0	0.0000	0.0000	0.0000	0.1469	0.1175	0.0294
2156 3rd Street LLC - Creations Galore	Bayou Chinchuba	No	240	0.000011	0.000013	300	45		20%	103.5	0.1175	0.0940	0.0235	0.0	0.0000	0.0000	0.0000	0.1175	0.0940	0.0235
La Petite Maison Childcare LLC	Bayou Chinchuba	No	400	0.000018	0.000022	500	45		20%	103.5	0.1959	0.1567	0.0392	0.0	0.0000	0.0000	0.0000	0.1959	0.1567	0.0392
Asbury Drive Office Building	Bayou Chinchuba	No	240	0.000011	0.000013	300	45		20%	103.5	0.1175	0.0940	0.0235	0.0	0.0000	0.0000	0.0000	0.1175	0.0940	0.0235

Sun Cleaners LLC	Bayou Chinchuba	No	480	0.000021	0.000026	600	45	20%	103.5	0.2351	0.1881	0.0470	0.0	0.0000	0.0000	0.0000	0.2351	0.1881	0.0470
Thomas Danos - STP	Bayou Chinchuba	No	280	0.000012	0.000015	350	30	20%	69.0	0.0914	0.0731	0.0183	0.0	0.0000	0.0000	0.0000	0.0914	0.0731	0.0183
Safeway Industries	Bayou Chinchuba	No	120	0.000005	0.000007	150	45	20%	103.5	0.0588	0.0470	0.0118	0.0	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
St Tammany Parish Hospital - Hospice	Bayou Chinchuba	No	400	0.000018	0.000022	500	45	20%	103.5	0.1959	0.1567	0.0392	0.0	0.0000	0.0000	0.0000	0.1959	0.1567	0.0392
Marret LLC - 2180 3rd St Bldg	Bayou Chinchuba	No	80	0.000004	0.000004	100	45	20%	103.5	0.0392	0.0313	0.0078	0.0	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Riverside Veterinary Hospital	Bayou Chinchuba	No	500	0.000022	0.000027	625	30	20%	69.0	0.1632	0.1306	0.0326	0.0	0.0000	0.0000	0.0000	0.1632	0.1306	0.0326
NU-Lite Electrical Supply	Bayou Chinchuba	No	100	0.000004	0.000005	125	45	20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
DECS Investments LLC	Bayou Chinchuba	No	800	0.000035	0.000044	1,000	45	20%	103.5	0.3918	0.3134	0.0784	0.0	0.0000	0.0000	0.0000	0.3918	0.3134	0.0784
Tammany Oaks Church of Christ	Bayou Chinchuba	No	2,250	0.000099	0.000123	2,813	45	20%	103.5	1.1019	0.8815	0.2204	0.0	0.0000	0.0000	0.0000	1.1019	0.8815	0.2204
HJH Land Development	Bayou Chinchuba	No	260	0.000011	0.000014	325	45	20%	103.5	0.1273	0.1019	0.0255	0.0	0.0000	0.0000	0.0000	0.1273	0.1019	0.0255
WSA LLC - 3933 Hwy 59 Building	Bayou Chinchuba	No	300	0.000013	0.000016	375	45	20%	103.5	0.1469	0.1175	0.0294	0.0	0.0000	0.0000	0.0000	0.1469	0.1175	0.0294
Total Environmental Solutions Inc - Beau Pre Subdivision	Bayou Chinchuba	No	30,000	0.001314	0.001643	37,500	10	20%	23.0	3.2649	2.6119	0.6530	0.0	0.0000	0.0000	0.0000	3.2649	2.6119	0.6530
DeVun Veterinary Medical Hospital	Bayou Chinchuba	No	120	0.000005	0.000007	150	30	20%	69.0	0.0392	0.0313	0.0078	0.0	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Fountainbleau Junior & Fountainbleau High Schools	Bayou Chinchuba	No	66,900	0.002931	0.003664	83,625	10	20%	23.0	7.2807	5.8245	1.4561	0.0	0.0000	0.0000	0.0000	7.2807	5.8245	1.4561
Campbell Cabinet Co Inc	Bayou Chinchuba	No	280	0.000012	0.000015	350	45	20%	103.5	0.1371	0.1097	0.0274	0.0	0.0000	0.0000	0.0000	0.1371	0.1097	0.0274
Hwy 59 Project - Construction	Bayou Chinchuba	No	140	0.000006	0.000008	175	45	20%	103.5	0.0686	0.0548	0.0137	0.0	0.0000	0.0000	0.0000	0.0686	0.0548	0.0137
Campbell Shelving	Bayou Chinchuba	No	160	0.000007	0.000009	200	45	20%	103.5	0.0784	0.0627	0.0157	0.0	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Campbell Ventures No 3 LLC	Bayou Chinchuba	No	280	0.000012	0.000015	350	45	20%	103.5	0.1371	0.1097	0.0274	0.0	0.0000	0.0000	0.0000	0.1371	0.1097	0.0274
Campbell Shelving Co Inc - Campbell Building	Bayou Chinchuba	No	100	0.000004	0.000005	125	45	20%	103.5	0.0490	0.0392	0.0098	0.0	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
OJALA Ltd - 5 Minute Oil Change	Bayou Chinchuba	No	80	0.000004	0.000004	100	45	20%	103.5	0.0392	0.0313	0.0078	0.0	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
BMC Investments LLC - Strip Mall	Bayou Chinchuba	No	400	0.000018	0.000022	500	45	20%	103.5	0.1959	0.1567	0.0392	0.0	0.0000	0.0000	0.0000	0.1959	0.1567	0.0392
SUB-TOTAL Loads										346.94	277.56	69.39		226.09	180.87	45.22	573.03	458.43	114.61
(1) - Load(kg/day) = 86.4 x Ultimate	Conc.(mg/l) x Modeled Flow(cms)																		
(2) - [UCBOD conc. = CBOD5(mg/l)	x 2.3] and [UNBOD conc. = NH3N(mg/l) x 4.3]																	

Appendix E2 – Winter Loading—90% Reduction in Reach 1, 60% Reduction in Reaches 2-6

Winter Projection, I	Non-Po	int Be	nthic	Load I	Input	and 1	MDL C	alculati	ons:		ı	l																	
Modeled stream or water boo	ly:		В	AYOU (CANE (S	UBSEG	MENT 04	0903)																					
Shaded cells are input value	s for calc	ulations.	GIN OF S	SAFETY (N	MOS) (%)	= [MOC	6 + MOU] =	20%																					
Values to be used in the pro	jection m	odels.																											
		Cali	ibration Mo	del Values													Re	duced Mar	-Made Loa	ds		Proj	ected Model Lo	oads					
Reach Number and Description	Non-Point UCBOD1	Total Non- Point UCBOD	Total Non- Point UNBOD	SOD @ 20°C	Total Calb Benthic Load (TCBL)	Reach Length	Proj. Model Avg. Reach Width	Proj. Temp.	Background Benthic Load	Effective Background Benthic Load	Man-Made Benthic Load		Percentage Reduction of man-made sources		Made Benthic	Reduced TCBL adjusted for MOS	Reduced UCBOD1 Load	Reduced Total UCBOD Load	Reduced UNBOD Load	Reduced SOD Load at Projection Temp.	SOD @ 20°C		Total Non- Point UCBOD INPUTS	Non-Point UNBOD INPUTS	Total MOS at Projection Temp.	Non-Point UCBOD1 LA	Non-Point UCBOD LA	Non-Point UNBO D LA	SOD LA at Projection Temp.
	$g O_2 /$ $[(m^2)(day)]$	$g O_2 / [(m^2)(day)]$	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)]	Kilo- meters	Meters	(deg Celsius)	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	%	%	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	g O ₂ / [(m ²)(day)]	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day
Reach 1 - Site 3665 to 3752-BC04	1.282	1.282	0.461	3.50	5.243	0.80	4.877	20.71	0.00	0.00	5.24	0%	90%	0.00	0.52	0.66	0.50	0.50	0.18	1.43	0.438	0.625	0.625	0.225	0.53	0.50	0.50	0.18	1.43
Sub-Total										0.00	5.24			0.00	0.52	0.66	0.50	0.50	0.18	1.43		0.63	0.63	0.23	0.53	0.50	0.50	0.18	1.43

	BAYOU CANE (S	UBSEGMENT 0	40903)		Po	int Source	e Loading	Calculation	AC.									
					Po	int Source	Loading	Calculation	ng.									
					Po	int Source	Loading	Calculation	29									
					Po	int Source	Loading	Calculation	ng.						Input data	into the shade	d cells.	
									15									
					Prope	osed Permit l	Limits		UCBO) D			UN	NBOD		Sub-Total o	f Point Source 1	3OD Loads
Pt. Source / Facility Description Receiving	ing Stream Included in Projection M (Yes/No	odel Anticipated/design	Anticipated/ design flow (cms)	Flow with MOS	CBOD ₅ (mg/l)	NH ₃ N (mg/l)	MOS (%)	Ultimate Conc. (mg/l) (2)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Ultimate Conc. (mg/l) (2)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS (kg/day)
			A	A1 = A/(1-E)	В	С	E	F = 2.3 x B	G = (86.4)(A1)(F)	H = (1-E) x G	I = (E)(G)	J = 4.3 x C	K = (86.4)(A1)(J)	$\mathbf{L} = (1 - \mathbf{E}) \times \mathbf{K}$	$\mathbf{M} = (\mathbf{D})(\mathbf{K})$	G + K + N	H+L+O	I+M+P
Southeast Louisiana State Hospital Bayo	ou Cane Yes	280,000	0.01226736	0.01533420	5	2	20%	11.5	15.2361	12.1888	3.0472	8.6	11.3939	9.1151	2.2788	26.6300	21.3040	5.3260
Lakeshore High School LA Hwy.	. 1088 Ditch No	26,000	0.00113911	0.00142389	10		20%	23.0	2.8296	2.2636	0.5659	0.0	0.0000	0.0000	0.0000	2.8296	2.2636	0.5659
SUB-TOTAL Loads									18.07	14.45	3.61		11.39	9.12	2.28	29.46	23.57	5.89

Winter TMDL calculations	and Pro	jection	mode	l calcu	lations	for Hea	adwater	/ Tributa	ry loads	<u>.</u>														
BAYOU CANE (SU	BSEGMEN	NT 04090	3)																					
Shaded cells are input values for calculation Values to be used in the projection model						OS) (%) =																		
										Headwater	/ Tributary 1	Load Deterr	ninations											
	Headwater / Tributary Load Determinations FROM CALIBRATION BACKGROUND VALUES Reduced Background Loads Reduced Man-Made Loads PROJECTION VALUES																							
Headwater / Tributary Description and Reach #	Seasonal Critical flow (cms)	UCBOD1 (mg O ₂ /L)	Total UCBOD (mg O ₂ /L)	UNBOD (mg O ₂ /L)	Total UNBOD (mg O ₂ /L)	Background UCBOD1 conc. (mg O ₂ /L)	Background UCBOD conc. (mg O ₂ /L)	Background UNBOD conc. (mg O ₂ /L)	Background UNBOD conc. (mg O ₂ /L)	Background % Reduction	Percent reduction of Man-Made loads	Reduced Background UCBOD1 load (kg O ₂ /day)	UCBOD load	Background UNBOD load	Reduced UCBOD1 load (kg O ₂ /day)	Reduced UCBOD load (kg O ₂ /day)	Reduced UNBOD load (kg O ₂ /day)	Projection UCBOD1 input conc. (mg O ₂ /L)	Projection UCBOD input conc. (mg O ₂ /L)	Projection UNBOD input conc. (mg O ₂ /L)	Total MOS (kg O ₂ /day)	Total CBOD1 LA (kg O ₂ /day)	Total CBOD LA (kg O ₂ /day)	LA
Headwater	0.02800	13.528	13.528	2.315	2.32	0.0000	0.00	0.0000	0.00	0%	90%	0.00	0.00	0.00	3.27	3.27	0.56	1.69	1.69	0.29	0.96	3.27	3.27	0.56
SUB-TOTAL TMDL LOADING												0.00	0.00	0.00	3	3.27	0.56				0.96	3.27	3.27	0.56

Winter Projection, I	Non-Po	int Be	nthic	Load	Input a	and 1	MDL C	alculati	ions:																				
Modeled stream or water boo	ły:		В	AYOU (CANE (S	UBSEC	MENT 04	0904)																					
Shaded cells are input value	s for calc	ulations.	GIN OF S	SAFETY (I	MOS) (%)	= [MO0	6 + MOU] =	20%																					
Values to be used in the pro	jection m	odels.																											-
		Cal	ibration Mo	del Values	5												R	educed Mai	n-Made Loa	ds		Proj	ected Model L	oads					
Reach Number and Description	Non-Point UCBOD1	Total Non- Point UCBOD	Total Non- Point UNBOD	SOD @ 20°C	Total Calb. Benthic Load (TCBL)	Reach Length	Proj. Model Avg. Reach Width	Proj. Temp.	Background Benthic Load	Effective Background Benthic Load	Man-Made Benthic Load	Background percentage reduction	Percentage Reduction of man-made sources	Reduced Background Benthic Load	Reduced Man- Made Benthic Load	Reduced TCBL adjusted for MOS	Reduced UCBOD1 Load	Reduced Total UCBOD Load	Reduced UNBOD Load	Reduced SOD Load at Projection Temp.	SOD @ 20°C	Non-Point UCBOD1 INPUTS	Total Non- Point UCBOD INPUTS	Non-Point UNBOD INPUTS	Total MOS at Projection Temp.	Non-Point UCBOD1 LA		Non-Point UNBO D LA	SOD LA at Projection Temp.
	$g O_2 /$ $[(m^2)(day)]$	$gO_2/\\ [(m^2)(day)]$	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)	g O ₂ / [(m ²)(day)]	Kilo- meters	Meters	(deg Celsius)	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	g O ₂ / [(m ²)(day)]	%	%	$gO_2/\\[(m^2)(day)]$	$gO_2/\\[(m^2)(day)]$	$g O_2 / \\ [(m^2)(day)]$	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	g O ₂ / [(m ²)(day)]	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day	kg O ₂ /day
Reach 2 - Site 3752-BC04 to 3753-BC05	1.682	1.682	0.280	3.50	5.463	0.90	15.850	20.71	0.00	0.00	5.46	0%	60%	0.00	2.19	2.73	9.60	9.60	1.60	20.88	1.750	12.000	12.000	2.000	8.02	9.60	9.60	1.60	20.88
Reach 3 - Site 3753-BC05 to 3754-BC06	2.343	2.343	0.658	3.00	6.001	0.40	27.737	20.71	0.00	0.00	6.00	0%	60%	0.00	2.40	3.00	10.40	10.40	2.92	13.92	1.500	13.000	13.000	3.650	6.81	10.40	10.40	2.92	13.92
Reach 4 - Site 3754-BC06 to 3755-BC07	2.469	2.469	0.706	2.40	5.575	0.40	28.346	20.71	0.00	0.00	5.58	0%	60%	0.00	2.23	2.79	11.20	11.20	3.20	11.38	1.200	14.000	14.000	4.000	6.45	11.20	11.20	3.20	11.38
Reach 5 - Site 3755-BC07 to 3666	3.199	3.199	0.960	1.90	6.059	0.80	21.488	20.71	0.00	0.00	6.06	0%	60%	0.00	2.42	3.03	22.00	22.00	6.60	13.66	0.950	27.500	27.500	8.250	10.57	22.00	22.00	6.60	13.66
Reach 6 - Site 3666 to Lake Pontchartrain	7.908	7.908	4.711	0.00	12.619	0.30	19.812	20.71	0.00	0.00	12.62	0%	60%	0.00	5.05	6.31	18.80	18.80	11.20	0.00	0.000	23.500	23.500	14.000	7.50	18.80	18.80	11.20	0.00
	1		1		1	 											1									-		1	-
Sub-Total										0.00	35.72			0.00	14.29	17.86	72.00	72.00	25.52	59.85		90.00	90.00	31.90	39.34	72.00	72.00	25.52	59.85

Winter TMDL Calculation	s for Point Source lo	ads:																	
	2.170								1										
	BAYO	U CANE (SUB	SEGMENT 04	10904)	1			l											
																Input data	into the shade	d cells.	
						Po	int Source	Loading	Calculation	ıs									
							sed Permit I			UCBO) D			U	NBOD		Sub-Total o	of Point Source	BOD Loads
Pt. Source / Facility Description	Receiving Stream	Included in the Projection Model (Yes/No)	Anticipated/design flow (gpd)	Anticipated/ design flow (cms)	Flow with MOS (cms)	CBOD ₅ (mg/l)	NH ₃ N (mg/l)	MOS (%)	Ultimate Conc. (mg/l) (2)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Ultimate Conc. (mg/l) (2)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS Load (kg/day)	Loads (kg/day)	WLA (kg/day)	Reserve/ MOS (kg/day)
				A	A1 = A/(1-E)	В	С	E	$F = 2.3 \times B$	G = (86.4)(A1)(F)	H = (1-E) x G	I = (E)(G)	J = 4.3 x C	K = (86.4)(A1)(J)	L = (1-E) x K	M = (D)(K)	G + K + N	H+L+O	I+M+P
St. Tammany Fire Protection District #4 Station #44	Bayou Cane	No	120	0.000005	0.000007	45		20%	103.5	0.0588	0.0470	0.0118	0.0000	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Bayou Moon Antiques	Bayou Cane	No	20	0.000001	0.000001	45		20%	103.5	0.0098	0.0078	0.0020	0.0000	0.0000	0.0000	0.0000	0.0098	0.0078	0.0020
Demmonlicious Catering LLC	Bayou Cane	No	60	0.000003	0.000003	30		20%	69.0	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Bayou Snowballs Big Branch Mobile Home Community LLC - Big Branch Mobile Home Community	Big Branch Marsh Big Branch Marsh	No No	7,800	0.000002	0.000002	30		20%	69.0	0.0196 2.5466	0.0157 2.0373	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196 2.5466	2.0373	0.0039
Union Service & Maintenance Co Inc	Big Branch Marsh	No	120	0.000005	0.000007	45		20%	103.5	0.0588	0.0470	0.0118	0.0000	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Ace Auto Source LLC - WWTP	Lake Pontchartrain	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
H2O Systems Inc - Autumn Haven STP	Big Branch	No	36,400	0.001595	0.001993	10		20%	23.0	3.9614	3.1691	0.7923	0.0000	0.0000	0.0000	0.0000	3.9614	3.1691	0.7923
Northshore Duplicate Bridge Club	Big Branch	No	1,500	0.000066	0.000082	45		20%	103.5	0.7346	0.5877	0.1469	0.0000	0.0000	0.0000	0.0000	0.7346	0.5877	0.1469
LADCRT - Fountainbleau State Park	Little Bayou Castine	No	120	0.000005	0.000007	45		20%	103.5	0.0588	0.0470	0.0118	0.0000	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
St Tammany Parish Rec District #1	Bayou Castine	No	2,499	0.000109	0.000137	45		20%	103.5	1.2238	0.9791	0.2448	0.0000	0.0000	0.0000	0.0000	1.2238	0.9791	0.2448
Transitions Law & Professional Center	Bayou Castine	No	40	0.000002	0.000002	45		20%	103.5	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
St Tammany Parish - Municipal Separate Storm Sewer System	Various waterbodies	No	0	0.000000	0.000000			20%	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
St Tammany Marine	Bayou Castine	No	4,999	0.000219	0.000274	45		20%	103.5	2.4482	1.9585	0.4896	0.0000	0.0000	0.0000	0.0000	2.4482	1.9585	0.4896
Iqbal Properties LLC - Chahta Mobile Home Park	Bayou Castine	No	22,000	0.000964	0.001205	10		20%	23.0	2.3942	1.9154	0.4788	0.0000	0.0000	0.0000	0.0000	2.3942	1.9154	0.4788
West Wind Sails LLC - West Wind Sails	Little Bayou Castine	No	120	0.000005	0.000007	30		20%	69.0	0.0392	0.0313	0.0078	0.0000	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Parent Teacher Child Services Inc Bert Cortes - Rented Building	Bayou Castine Little Bayou Castine	No No	800 60	0.000035	0.000044	45 45		20%	103.5 103.5	0.3918 0.0294	0.3134 0.0235	0.0784	0.0000	0.0000	0.0000	0.0000	0.3918	0.3134	0.0784
Daiquiri's & Cream of Mandeville	Little Bayou Castine	No No	500	0.000003	0.000003	45		20%	103.5	0.0294	0.0235	0.0039	0.0000	0.0000	0.0000	0.0000	0.0294	0.0235	0.0059
LLC/Daiquiri's & Cream-Mandeville H2O Systems Inc - Monterey Timbers Marigny Trace Subdivisions	Little Bayou Castine	No	182,400	0.007991	0.009989	10	5	20%	23.0	19.8504	15.8803	3.9701	21.5000	18.5558	14.8447	3.7112	38.4062	30.7250	7.6812
Delta Fence Inc	Little Bayou Castine	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Ola's Place	Little Bayou Castine	No	2,275	0.000100	0.000125	30		20%	69.0	0.7428	0.5942	0.1486	0.0000	0.0000	0.0000	0.0000	0.7428	0.5942	0.1486
Harry Mayeaux - CARQUEST Auto Parts	Little Bayou Castine	No	60	0.000003	0.000003	45		20%	103.5	0.0294	0.0235	0.0059	0.0000	0.0000	0.0000	0.0000	0.0294	0.0235	0.0059
St Tammany Parish Government - Red Oak Subdivision	Little Bayou Castine	No	5,600	0.000245	0.000307	30		20%	69.0	1.8283	1.4627	0.3657	0.0000	0.0000	0.0000	0.0000	1.8283	1.4627	0.3657
Country Kitchen Restaurant	Little Bayou Castine	No	1,960	0.000086	0.000107	30		20%	69.0	0.6399	0.5119	0.1280	0.0000	0.0000	0.0000	0.0000	0.6399	0.5119	0.1280
Deliverance Tabernacle United Pentecost	Bayou Castine	No	630	0.000028	0.000035	45		20%	103.5	0.3085	0.2468	0.0617	0.0000	0.0000	0.0000	0.0000	0.3085	0.2468	0.0617

Automotive Air Services	Bayou Castine	No	40	0.000002	0.000002	45		20%	103.5	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
The Bounce House	Little Bayou Castine	No	200	0.000002	0.000011	45		20%	103.5	0.0979	0.0784	0.0196	0.0000	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Thomas & Nancy Heidingsfelder -																			
Property	Bayou Castine	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Patrick Brackley & William Brackley Trust Dollar General & Retail Spaces	Little Bayou Castine	No	320	0.000014	0.000018	45		20%	103.5	0.1567	0.1254	0.0313	0.0000	0.0000	0.0000	0.0000	0.1567	0.1254	0.0313
Paul Gement - 915-975 Carroll Street	Little Bayou Castine	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Marquez's Auto Service Center	Bayou Castine	No	4,999	0.000219	0.000274	45		20%	103.5	2.4482	1.9585	0.4896	0.0000	0.0000	0.0000	0.0000	2.4482	1.9585	0.4896
Northshore Animal Hospital Inc	Little Bayou Castine	No	80	0.000004	0.000004	45		20%	103.5	0.0392	0.0313	0.0078	0.0000	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Paul Gement - Orleans Building	Little Bayou Castine	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Mamacita's Gerard Street LLC	Little Bayou Castine	No	2,120	0.000093	0.000116	30		20%	69.0	0.6922	0.5537	0.1384	0.0000	0.0000	0.0000	0.0000	0.6922	0.5537	0.1384
St Tammany Parish Government - Castine Regional Sewage Treatment Plant	Bayou Castine	No	1,000,000	0.043812	0.054765	10	4	20%	23.0	108.8290	87.0632	21.7658	17.2000	81.3852	65.1081	16.2770	190.2142	152.1713	38.0428
Square 188 Rural Mandeville POA Inc	Bayou Castine	No	4,000	0.000175	0.000219	30		20%	69.0	1.3059	1.0448	0.2612	0.0000	0.0000	0.0000	0.0000	1.3059	1.0448	0.2612
Kinder Haus Mandeville Inc - Kinder Haus Montessori	Lake Pontchartrain	No	1,345	0.000059	0.000074	30		20%	69.0	0.4391	0.3513	0.0878	0.0000	0.0000	0.0000	0.0000	0.4391	0.3513	0.0878
Mandeville City of - Municipal Separate Storm Sewer System	Various waterbodies	No	0	0.000000	0.000000			20%	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mandeville Karate Training Center	Lake Pontchartrain	No	1,240	0.000054	0.000068	45		20%	103.5	0.6073	0.4858	0.1215	0.0000	0.0000	0.0000	0.0000	0.6073	0.4858	0.1215
Service Master Absolute Cleaning Services LLC	Bayou Chinchuba	No	540	0.000024	0.000030	45		20%	103.5	0.2645	0.2116	0.0529	0.0000	0.0000	0.0000	0.0000	0.2645	0.2116	0.0529
Knight's Wrecker Service	Bayou Chinchuba	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
KT Automotive Inc	Little Bayou Castine	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Lazaro's Heating & Air Conditioning Inc	Bayou Chinchuba	No	120	0.000005	0.000007	45		20%	103.5	0.0588	0.0470	0.0118	0.0000	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Crossroads Shopping Center	Lake Pontchartrain	No	4,400	0.000193	0.000241	45		20%	103.5	2.1548	1.7239	0.4310	0.0000	0.0000	0.0000	0.0000	2.1548	1.7239	0.4310
Richard J Vanek Properties LLC - HMIH	Lake Pontchartrain	No	80	0.000004	0.000004	45		20%	103.5	0.0392	0.0313	0.0078	0.0000	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Dave's Collision Shop	Lake Pontchartrain	No	200	0.000009	0.000011	45		20%	103.5	0.0979	0.0784	0.0196	0.0000	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Governor Control Systems Inc	Lake Pontchartrain	No	300	0.000013	0.000016	45		20%	103.5	0.1469	0.1175	0.0294	0.0000	0.0000	0.0000	0.0000	0.1469	0.1175	0.0294
JRM Bel LLC - Southern Pipe & Supply Inc	Bayou Chinchuba	No	150	0.000007	0.000008	45		20%	103.5	0.0735	0.0588	0.0147	0.0000	0.0000	0.0000	0.0000	0.0735	0.0588	0.0147
WREDCO - Weyerhauser Real Estate & Development Co	Bayou Castine	No	300,000	0.013144	0.016430	10	5	20%	23.0	32.6487	26.1190	6.5297	21.5000	30.5194	24.4156	6.1039	63.1681	50.5345	12.6336
Greenleaves Utility Co - Greenleaves Subdivision	Bayou Chinchuba	No	950,000	0.041621	0.052027	10	4	20%	23.0	103.3876	82.7100	20.6775	17.2000	77.3159	61.8527	15.4632	180.7035	144.5628	36.1407
Brookside Office Complex - Northshore I Commercial Condo Association Inc	Bayou Chinchuba	No	2,100	0.000092	0.000115	45		20%	103.5	1.0284	0.8227	0.2057	0.0000	0.0000	0.0000	0.0000	1.0284	0.8227	0.2057
Lanier Music	Bayou Chinchuba	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Mandeville Christian Fellowship Church	Little Bayou Castine	No	1,000	0.000044	0.000055	30		20%	69.0	0.3265	0.2612	0.0653	0.0000	0.0000	0.0000	0.0000	0.3265	0.2612	0.0653
Marbar LLC	Bayou Chinchuba	No	160	0.000007	0.000009	45		20%	103.5	0.0784	0.0627	0.0157	0.0000	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Hosanna Lutheran Church Inc	Bayou Chinchuba	No	3,500	0.000153	0.000192	30		20%	69.0	1.1427	0.9142	0.2285	0.0000	0.0000	0.0000	0.0000	1.1427	0.9142	0.2285
Chilly's Famous Sno-Balls	Little Bayou Castine	No	40	0.000002	0.000002	45		20%	103.5	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Latter & Blum Inc	Bayou Chinchuba	No	560	0.000025	0.000031	45		20%	103.5	0.2742	0.2194	0.0548	0.0000	0.0000	0.0000	0.0000	0.2742	0.2194	0.0548
OPS Turnkey LLC	Bayou Chinchuba	No	200	0.000009	0.000011	45		20%	103.5	0.0979	0.0784	0.0196	0.0000	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196

St Tammany Parish Government -			1		1					1					1		l .	1	1
Forest Park Apts STP	Bayou Chinchuba	No	5,400	0.000237	0.000296	30		20%	69.0	1.7630	1.4104	0.3526	0.0000	0.0000	0.0000	0.0000	1.7630	1.4104	0.3526
St Tammany Parish of - Wadsworth Subdivision WWTP	Bayou Castine	No	180,000	0.007886	0.009858	10	5	20%	23.0	19.5892	15.6714	3.9178	21.5000	18.3117	14.6493	3.6623	37.9009	30.3207	7.5802
The Soil & Garden Depot	Bayou Chinchuba	No	40	0.000002	0.000002	45		20%	103.5	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
All Creatures Country Club - Shari K Karanas - WWTP	Bayou Castine	No	800	0.000035	0.000044	45		20%	103.5	0.3918	0.3134	0.0784	0.0000	0.0000	0.0000	0.0000	0.3918	0.3134	0.0784
S&G Investments LLC	Bayou Chinchuba	No	160	0.000007	0.000009	45		20%	103.5	0.0784	0.0627	0.0157	0.0000	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Dejaunay Hair Design	Bayou Chinchuba	No	40	0.000002	0.000002	45		20%	103.5	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Gayle Betz - Century 21 Gaylaxey Office Building	Bayou Chinchuba	No	380	0.000017	0.000021	45		20%	103.5	0.1861	0.1489	0.0372	0.0000	0.0000	0.0000	0.0000	0.1861	0.1489	0.0372
Liberty Self Storage #11	Bayou Chinchuba	No	320	0.000014	0.000018	45		20%	103.5	0.1567	0.1254	0.0313	0.0000	0.0000	0.0000	0.0000	0.1567	0.1254	0.0313
B&N Investments	Bayou Chinchuba	No	2,480	0.000109	0.000136	45		20%	103.5	1.2145	0.9716	0.2429	0.0000	0.0000	0.0000	0.0000	1.2145	0.9716	0.2429
H2O Systems Inc - Woodland Apartments STF	Bayou Chinchuba	No	45,000	0.001972	0.002464	10		20%	23.0	4.8973	3.9178	0.9795	0.0000	0.0000	0.0000	0.0000	4.8973	3.9178	0.9795
Liberty Self Storage LLC #3	Bayou Chinchuba	No	320	0.000014	0.000018	45		20%	103.5	0.1567	0.1254	0.0313	0.0000	0.0000	0.0000	0.0000	0.1567	0.1254	0.0313
C&C Drugs	Bayou Chinchuba	No	160	0.000007	0.000009	45		20%	103.5	0.0784	0.0627	0.0157	0.0000	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
St Tammany Parish Government - Woodcrest Subdivision	Little Bayou Castine	No	5,600	0.000245	0.000307	30		20%	69.0	1.8283	1.4627	0.3657	0.0000	0.0000	0.0000	0.0000	1.8283	1.4627	0.3657
St Tammany Parish Government - Twin Oaks	Bayou Chinchuba	No	8,000	0.000350	0.000438	10		20%	23.0	0.8706	0.6965	0.1741	0.0000	0.0000	0.0000	0.0000	0.8706	0.6965	0.1741
Southern Fastening Systems	Bayou Chinchuba	No	100	0.000004	0.000005	45		20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
Mandeville Christian Church	Bayou Chinchuba	No	150	0.000007	0.000008	45		20%	103.5	0.0735	0.0588	0.0147	0.0000	0.0000	0.0000	0.0000	0.0735	0.0588	0.0147
Northlake Automotive	Bayou Chinchuba	No	200	0.000009	0.000011	45		20%	103.5	0.0979	0.0784	0.0196	0.0000	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
B&N Investments - Southern Country Designs	Bayou Chinchuba	No	200	0.000009	0.000011	45		20%	103.5	0.0979	0.0784	0.0196	0.0000	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Dr Robert Hurst - SWWT	Bayou Chinchuba	No	40	0.000002	0.000002	45		20%	103.5	0.0196	0.0157	0.0039	0.0000	0.0000	0.0000	0.0000	0.0196	0.0157	0.0039
Richard St Pe Co Inc	Bayou Chinchuba	No	60	0.000003	0.000003	45		20%	103.5	0.0294	0.0235	0.0059	0.0000	0.0000	0.0000	0.0000	0.0294	0.0235	0.0059
Yeoh & Williams LLC - Little Tokyo	Bayou Chinchuba	No	1,620	0.000071	0.000089	30		20%	69.0	0.5289	0.4231	0.1058	0.0000	0.0000	0.0000	0.0000	0.5289	0.4231	0.1058
B&N Investments - Onesource Professional Search	Bayou Chinchuba	No	120	0.000005	0.000007	45		20%	103.5	0.0588	0.0470	0.0118	0.0000	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118
Tire Kingdom #180	Bayou Chinchuba	No	4,999	0.000219	0.000274	45		20%	103.5	2.4482	1.9585	0.4896	0.0000	0.0000	0.0000	0.0000	2.4482	1.9585	0.4896
B&N Investments - Basic Elements Day Spa	Bayou Chinchuba	No	160	0.000007	0.000009	45		20%	103.5	0.0784	0.0627	0.0157	0.0000	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Patrick Shannon Allison DDS	Bayou Chinchuba	No	220	0.000010	0.000012	45		20%	103.5	0.1077	0.0862	0.0215	0.0000	0.0000	0.0000	0.0000	0.1077	0.0862	0.0215
Redi Med Clinic	Bayou Chinchuba	No	200	0.000009	0.000011	45		20%	103.5	0.0979	0.0784	0.0196	0.0000	0.0000	0.0000	0.0000	0.0979	0.0784	0.0196
Tiffany Lanes	Bayou Chinchuba	No	8,480	0.000372	0.000464	30		20%	69.0	2.7686	2.2149	0.5537	0.0000	0.0000	0.0000	0.0000	2.7686	2.2149	0.5537
Quad Investments LLC	Bayou Chinchuba	No	500	0.000022	0.000027	45		20%	103.5	0.2449	0.1959	0.0490	0.0000	0.0000	0.0000	0.0000	0.2449	0.1959	0.0490
Darby Holdings LLC - Asbury Square	Bayou Chinchuba	No	300	0.000013	0.000016	45		20%	103.5	0.1469	0.1175	0.0294	0.0000	0.0000	0.0000	0.0000	0.1469	0.1175	0.0294
2156 3rd Street LLC - Creations Galore	Bayou Chinchuba	No	240	0.000011	0.000013	45		20%	103.5	0.1175	0.0940	0.0235	0.0000	0.0000	0.0000	0.0000	0.1175	0.0940	0.0235
La Petite Maison Childcare LLC	Bayou Chinchuba	No	400	0.000018	0.000022	45		20%	103.5	0.1959	0.1567	0.0392	0.0000	0.0000	0.0000	0.0000	0.1959	0.1567	0.0392
Asbury Drive Office Building	Bayou Chinchuba	No	240	0.000011	0.000013	45		20%	103.5	0.1175	0.0940	0.0235	0.0000	0.0000	0.0000	0.0000	0.1175	0.0940	0.0235
Sun Cleaners LLC	Bayou Chinchuba	No	480	0.000021	0.000026	45		20%	103.5	0.2351	0.1881	0.0470	0.0000	0.0000	0.0000	0.0000	0.2351	0.1881	0.0470
Thomas Danos - STP	Bayou Chinchuba	No	280	0.000012	0.000015	30		20%	69.0	0.0914	0.0731	0.0183	0.0000	0.0000	0.0000	0.0000	0.0914	0.0731	0.0183
Safeway Industries	Bayou Chinchuba	No	120	0.000005	0.000007	45		20%	103.5	0.0588	0.0470	0.0118	0.0000	0.0000	0.0000	0.0000	0.0588	0.0470	0.0118

St Tammany Parish Hospital - Hospice	Bayou Chinchuba	No	400	0.000018	0.000022	45	20%	103.5	0.1959	0.1567	0.0392	0.0000	0.0000	0.0000	0.0000	0.1959	0.1567	0.0392
Marret LLC - 2180 3rd St Bldg	Bayou Chinchuba	No	80	0.000004	0.000004	45	20%	103.5	0.0392	0.0313	0.0078	0.0000	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Riverside Veterinary Hospital	Bayou Chinchuba	No	500	0.000022	0.000027	30	20%	69.0	0.1632	0.1306	0.0326	0.0000	0.0000	0.0000	0.0000	0.1632	0.1306	0.0326
NU-Lite Electrical Supply	Bayou Chinchuba	No	100	0.000004	0.000005	45	20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
DECS Investments LLC	Bayou Chinchuba	No	800	0.000035	0.000044	45	20%	103.5	0.3918	0.3134	0.0784	0.0000	0.0000	0.0000	0.0000	0.3918	0.3134	0.0784
Tammany Oaks Church of Christ	Bayou Chinchuba	No	2,250	0.000099	0.000123	45	20%	103.5	1.1019	0.8815	0.2204	0.0000	0.0000	0.0000	0.0000	1.1019	0.8815	0.2204
HJH Land Development	Bayou Chinchuba	No	260	0.000011	0.000014	45	20%	103.5	0.1273	0.1019	0.0255	0.0000	0.0000	0.0000	0.0000	0.1273	0.1019	0.0255
WSA LLC - 3933 Hwy 59 Building	Bayou Chinchuba	No	300	0.000013	0.000016	45	20%	103.5	0.1469	0.1175	0.0294	0.0000	0.0000	0.0000	0.0000	0.1469	0.1175	0.0294
Total Environmental Solutions Inc - Beau Pre Subdivision	Bayou Chinchuba	No	30,000	0.001314	0.001643	10	20%	23.0	3.2649	2.6119	0.6530	0.0000	0.0000	0.0000	0.0000	3.2649	2.6119	0.6530
DeVun Veterinary Medical Hospital	Bayou Chinchuba	No	120	0.000005	0.000007	30	20%	69.0	0.0392	0.0313	0.0078	0.0000	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
Fountainbleau Junior & Fountainbleau High Schools	Bayou Chinchuba	No	66,900	0.002931	0.003664	10	20%	23.0	7.2807	5.8245	1.4561	0.0000	0.0000	0.0000	0.0000	7.2807	5.8245	1.4561
Campbell Cabinet Co Inc	Bayou Chinchuba	No	280	0.000012	0.000015	45	20%	103.5	0.1371	0.1097	0.0274	0.0000	0.0000	0.0000	0.0000	0.1371	0.1097	0.0274
Hwy 59 Project - Construction	Bayou Chinchuba	No	140	0.000006	0.000008	45	20%	103.5	0.0686	0.0548	0.0137	0.0000	0.0000	0.0000	0.0000	0.0686	0.0548	0.0137
Campbell Shelving	Bayou Chinchuba	No	160	0.000007	0.000009	45	20%	103.5	0.0784	0.0627	0.0157	0.0000	0.0000	0.0000	0.0000	0.0784	0.0627	0.0157
Campbell Ventures No 3 LLC	Bayou Chinchuba	No	280	0.000012	0.000015	45	20%	103.5	0.1371	0.1097	0.0274	0.0000	0.0000	0.0000	0.0000	0.1371	0.1097	0.0274
Campbell Shelving Co Inc - Campbell Building	Bayou Chinchuba	No	100	0.000004	0.000005	45	20%	103.5	0.0490	0.0392	0.0098	0.0000	0.0000	0.0000	0.0000	0.0490	0.0392	0.0098
OJALA Ltd - 5 Minute Oil Change	Bayou Chinchuba	No	80	0.000004	0.000004	45	20%	103.5	0.0392	0.0313	0.0078	0.0000	0.0000	0.0000	0.0000	0.0392	0.0313	0.0078
BMC Investments LLC - Strip Mall	Bayou Chinchuba	No	400	0.000018	0.000022	45	20%	103.5	0.1959	0.1567	0.0392	0.0000	0.0000	0.0000	0.0000	0.1959	0.1567	0.0392
SUB-TOTAL Loads									346.94	277.56	69.39		226.09	180.87	45.22	573.03	458.43	114.61
(1) - Load(kg/day) = 86.4 x Ultimate Cor (2) - [UCBOD conc. = CBOD5(mg/l) x 2	, , ,	mg/l) x 4.31																

Appendix E3 –Reference Stream Data

REFERENCE STREAM NONPOINT LOADING

REFERENCE STREAM	WIDTH (ft)	NONPOINT FLOW (cfs/mi)	NONPOINT NBOD _U (lb/mi/day)	$\begin{array}{c} \textbf{NONPOINT} \\ \textbf{NBOD}_{\textbf{U}} & (\textbf{gm} \\ \textbf{O}_{\textbf{2}}/\textbf{m2}/\textbf{day}) \end{array}$	NONPOINT CBOD _U (lb/mi/day)	NONPOINT CBOD _U (gm O ₂ /m2/day)	TEMPERATURE (deg C)	DISSOLVED OXYGEN LEVEL (mg/L)	SOD @ 20 deg C (gm O ₂ \m ² -d)	TOTAL BENTHIC LOAD @ 20 deg C (gm O ₂ \m²-day)	STREAM TEMP (deg C)	SOD @ STREAM TEMP (gm O ₂ \m²-day)	$\begin{array}{cc} \textbf{BENTHIC LOAD} \\ \textbf{@ STREAM} \\ \textbf{TEMP} & \textbf{(gm} \\ \textbf{O}_2 \backslash \textbf{m}^2 \textbf{-day}) \end{array}$
Big Roaring	52		5.35	0.095	38.70	0.688	20.150	5.880	1.45	2.234	20.15	1.466	2.249
Chemin-a-haut	40		1.46	0.034	8.10	0.187	17.170	5.530	2.95	3.171	17.17	2.410	2.631
Indian Bayou	72		6.97	0.090	16.95	0.218	20.820	6.280	1.52	1.827	20.80	1.609	1.917
Leading Bayou	10		0.238	0.022	0.34	0.031	14.250	7.640	2.23	2.278	14.25	1.476	1.529
Middle fork d'Arbonne	42		15.26	0.336	13.55	0.298	28.820	4.510	1.22	1.850	28.82	2.281	2.915
Beaucoup	26		14	0.498	4.75	0.169	16.450	3.530	4.20	4.867	16.45	3.260	3.927
Salline Bayou	35	0.77	61.93	1.637	20.08	0.531	16.110	8.280	2.25	4.417	16.11	1.704	3.872
Sixmile Bayou	54	0.45	0	0.000	0.00	0.000	24.180	7.770	0.00	0.000	24.18	0.000	0.000
Kisatchie Bayou (1995, sites 2-3)	N/A		N/A	N/A	N/A	N/A	14.34	9.61	N/A	N/A	N/A	N/A	N/A
Kisatchie Bayou (1996, Sites 3-4)	56		Not Done	Not Done	Not Done	Not Done	28.77	7.38	Not Done	Not Done	28.77	Not Done	Not Done
Kisatchie Bayou (1996, Sites 4-5)	59		Not Done	Not Done	Not Done	Not Done	27.70	6.61	Not Done	Not Done	27.70	Not Done	Not Done
Meridian Creek (1995, Sites 2-3)	17.21		N/A	N/A	N/A	N/A	25.00	5.52	N/A	N/A	25.00	N/A	N/A
Meridian Creek (1996, Sites 2-3)	18.04		0	0.000	0.00	0.000	25.770	5.140	1.00	1.000	25.77	1.510	1.510
Pearl Creek (Sites 2-3)	17.9		0	0.000	0.00	0.000	15.870	9.220	0.00	0.000	15.87	0.000	0.000
Calcasieu River (Sites 2-3)	72		Not Done	Not Done	Not Done	Not Done	27.86	7.72	Not Done	Not Done	27.86	Not Done	Not Done
Average		0.61	10.5208	0.271	10.25	0.21	21.55	6.71	1.68	2.16	22.06	1.57	2.055

Stream	Date	Time/	Site	BOD Dilution*	CBODu	kd	NBODu	kn	BODu	BOD60
		Sample		NS, S (mg/l)	(mg/l)	(1/day)	(mg/l)	(1/day)	(mg/l)	(mg/l)
Beaucoup	10/10/1995	1315	1	100, 100	4.65	0.06	4.12	0.17	9.95	7.8
Creek		1330	1	100, 100	1.8	0.096	4.78	0.17	7.68	5.5
		1335	1	100, 100	1.7	0.172	8.5	0.18	9.49	6.9
Big Roaring	10/10/1995	1000	1	100, 100	3.57	0.194	4.51	0.017	6.23	6.5
Bayou		1010	1	100, 100	4.06	0.211	6.07	0.017	8.33	8
,		1020	1	100, 100	2.82	0.141	5.66	0.015	6.43	6.3
Chemin-	10/10/1995	1845	1	100, 100	2.81	0.182	6.52	0.017	7.25	7.1
a-Haut		1900	1	100, 100	1.4	0.226	3.77	0.017	4.27	4.1
		1915	1	100, 100	2.48	0.126	3.58	0.018	4.7	4.9
Mid Fork B.	8/14/1995	1830	1	100, 100	1.35	0.081	13.09	0.021	11.44	9
D'Arbonne		1840	1	100, 100	0.65	0.226	13.46	0.023	15.75	9.5
		1850	1	100, 100	0.58	0.226	10.36	0.033	13.08	8.6
Indian	10/9/1995	1200	1	100, 100	3.27	0.106	7.66	0.018	8.61	8.1
Bayou		1215	1	100, 100	3.31	0.119	6.83	0.018	8.61	7.8
		1230	1	100, 100	2.25	0.111	7.3	0.017	8.5	6.8
Kisatchie	10/25/1995	805	1	200, 300	1.7	0.187	3.55	0.018	3.84	4.1
Bayou		0840-2	2	200, 300	1.2	0.187	3.85	0.021	3.83	4
		0840-3	3	200, 300	1.69	0.141	2.6	0.017	3.26	3.4
Leading	10/10/1995	1100	1	100, 100	1.04	0.182	7.7	0.018	7.24	6.1
Bayou		1105	1	100, 100	0.94	0.191	8.15	0.017	7.88	6.3
		1110	1	100, 100	1.02	0.221	7.62	0.021	6.93	6.4
Meridian	8/15/1995	740	1	200, 300	0.61	0.226	9.87	0.023	9.17	7.1
Creek		805	2	200, 300	0.81	0.226	9.03	0.038	9.43	7.8
		850	3	200, 300	0.81	0.226	9.85	0.023	9.45	7.2
Pearl	10/17/1995	730	1	200, 300	2.71	0.119	2.24	0.035	4.6	4.7
Creek		830	2	200, 300	2.06	0.035	2.23	0.02	4.06	3.3
		1135	3	200, 300	2.25	0.035	0.92	0.02	3.68	2.8
		1115-trib	Trib	200, 300	2.25	0.035	0.28	0.226	2.7	2.4
Saline	10/24/1995	800	1	200, 300	1.69	0.111	2.98	0.018	3.7	3.7
Bayou		830	2	200, 300	1.5	0.172	3.46	0.017	3.68	3.6
		2000	3	200, 300	1.7	0.187	3.94	0.018	4.22	4.4
Kisatchie	8/20/1996	800	1	300, 300	1.54	0.141	4.2	0.018	4.52	4.09
Bayou		1303	3	300, 300	1.51	0.096	4.23	0.018	5.65	4.11
		1935	4	300, 300	1.68	0.081	4.49	0.018	5.15	4.66
	8/22/1996	215	5	300, 300	2.59	0.05	2.73	0.02	5.44	4.23
Sixmile	9/17/1996	805	1	300, 300	0.9	0.202	4.01	0.018	4.21	3.61
Creek		958	2	300, 300	2.26	0.187	2.46	0.016	4	4.17
		1730	3	300, 300	1.78	0.187	4.58	0.018	4.7	4.6
Meridian	8/7/1996	755	1	300, 300	14.47	0.03	0.22	0.02	15.12	12.3
Creek		1000	2	300, 300	6.86	0.033	4.92	0.018	14.11	9.54
		1250	3	300, 300	4.06	0.048	7.73	0.018	12.89	9.1
Calcasieu	9/4/1996	830	1	300, 300	2.36	0.035	3.08	0.018	5.79	4.15
River		952	2	300, 300	2.24	0.035	3.56	0.018	6.06	4.34
		1533	2A	300, 300	9.58	0.035	10.92	0.017	23.25	15.5
		1612	3	300, 300	3.15	0.035	3.13	0.017	7.38	4.85

236

Site ID Number	Waterbod y	Site Description	Subsegm ent	Collection Date	Collection Time	LAB ID NUMBER	Chloride, lon Chromatograp h (ppm)	Sulfate (ppm)	Specific Conductance (umhos/cm)	Sodium (ppm)	SALINITY (ppt)	Alkalinity (ppm)	Hardness (ppm)	pH, Ultimat e BOD survey	TDS (ppm)	TSS (ppm)	Turbidity (NTU)	Color (PCU)	Ammonia- Nitrogen (ppm)	Nitrate+ Nitrite Nitroge n (ppm)	TKN (pp m)	(I- I-	TP (ppm)
0447	Anacoco	north of Rosepine, downstream of	110506	1/29/2003	11:00:00 AM	AF01822	4.6	3.2	45.3	12.9		9.7	13.9	5.96	52.7	15.2	19		ND	0.09	0.41	6.1	0.09
	Bayou	bridge on Hawkins Road		10/8/2003	11:30:00 AM	AF22918 AF04741	9.2 2.8	4.4 4.5	120 30.7	10.7 2.5		36.4 3.5	32.3 5.6	6.6 6.65	75.3 59.3	6.5 6.5	7.6 12	35	ND ND	0.56 ND	0.25 ND	5.1	0.1
0450	Little Kisatchie	north of Leesville, downstream of bridge on LA Hwy 118 in Kisatchie	101103	10/8/2003	10:05:00 AM	AF22923	3.9	5.9	50.5	5		7.6	8.8	6.92	67.3	ND	2.6	25	ND	ND	0.1	3.7	0.06
0.00	Bayou	National Forest	101100	3/11/2004	9:10:00 AM	AG06009	2.9	4.4	31.5			3.9	6.7	6.55	56	4	13		ND	ND	0.11	4	0.09
0457	Chemin-A-	north of Bastrop, upstream of	80401	11/20/2002	10:10:00 AM	AE25657	14.7	4.5	133	11.6		43.6	40.5	6.52	99.3	ND	8.1		ND	ND	0.7	9.9	0.07
0437	Haut Creek	bridge on Chem Cutoff Road	00401	10/22/2003	9:50:00 AM	AF24138	18.1	ND	204	16.5		83.2	70.2	6.89	114	ND	2.8		ND	0.06	0.27	7.3	0.07
0.450	Bayou	northeast of Bastrop, upstream of	00404	11/20/2002	11:00:00 AM	AE25662	15.2	12.6	133	9.1		41.6	46.2	6.32	125	18	58		ND	0.18	0.89	8.1	0.23
0458	Bartholeme	bridge on Knox Ferry Road	80401	10/22/2003	10:25:00 AM 9:15:00 AM	AF24143 AG02244	19.9 8.9	6.4 6.4	231 111	15.7 6.7		89.7 30.4	92.7 34.9	7.07 6.65	150 111	23.3	22 80		ND ND	0.08 ND	0.31	7.2 12	0.11
-	Duck	east of Pineville, upstream of		11/20/2004	11:50:00 AM	AE25667	2.4	ND	48.5	2.9		15.4	21.1	5.89	91.3	30.7	16		0.16	ND	1.93	30.7	0.27
0466	Slough	bridge on Muddy Bayou Road in	101501	1/28/2004	11:15:00 AM	AG02249	2.1	ND	37.3	1.8		8.9	14.9	NR	62	9.5	17		ND	ND	1.01	27	0.05
0486		, ,		11/20/2002	11:10:00 AM	AE25672	2.2	ND	49.3	2.1		20.3	26.5	5.93	105	22.7	22		ND	ND	1.85	33.2	0.08
0466				1/28/2004	12:00:00 PM	AG02254	1.8	ND	47.1	1.5		14	21.7	NR	72.7	6	18		Nd	ND	1.69	34.8	0.06
	Little Bayou	north of Simpson, downstream of				AF04746	3.2	5.3	35.7	2.9		4	6.9	5.93	53.3	4.5	11		ND	ND	ND	3.1	80.0
0487	Pierre	bridge on LA Hwy 118 in Kisatchie	101103	10/8/2003	9:45:00 AM 9:10:00 AM	AF22928 AG06013	5.1 3.1	9.2 5.5	64.6 37.2	7.1		10.1 4.2	12.1 7.9	6.85 6.49	88 65.3	ND 16.5	4 13	25	ND ND	ND ND	ND 0.19	3.5 5.1	0.07
_	Bear Head	National Forest west/northwest of DeQuincv.		3/11/2004 1/29/2003	12:10:00 AM	AF01827	9.6	1.8	37.2 45.2	5.2		ND	9.1	6.07	70	9.5	25		ND ND	ND	0.19	9.1	ND
0488	Creek	downstream of bridge on LA Hwy	30807	10/8/2003	1:10:00 PM	AF22933	5.1	2	37.6	3.7		2.6	11.5	6.49	75.3	4.7	9.3	180	ND	ND	0.66	20.4	0.08
•		north of DeQuincy, downstream of		1/29/2003	1:34:00 PM	AF01842	8.2	2.4	49.5	5.2		6.3	12.7	5.53	64.7	14.3	23		ND	ND	0.31	7.4	0.11
0489	Bechwith Creek	bridge on Smokey Cove	30803	10/8/2003	1:50:00 PM	AF22938	5.2	2.4	50.9	3.2		9.5	16.6	6.44	80.7	9.3	13	110	ND	ND	1.11	14.1	0.1
		Pentecostal Church Road		3/11/2004	9:10:00 AM	AG06017	6.9	1.6	52.8			8.5	14.7	6.51	74	7	20		ND	0.06	0.7	13.9	ND
0490	Castor	east of Oberlin, downstream of	50303	1/29/2003	10:45:00 AM	AF01847	5.4	2.7	49.2	4.3		12.7	14.4	6.3	87.3	14	44		0.15	0.14	0.58	7.2	0.13
	Creek	bridge on Parish Road 146		10/8/2003 1/29/2003	10:45:00 AM 11:30:00 AM	AF22943 AF01852	6.6 12.9	2.4	77 93.2	4.2 10.7		22.5 16.6	22.7 19.7	6.83	77.3	8 34.7	13 64	110	ND 0.13	ND 0.44	1.04 0.94	12.9 7.3	0.17
0491	Bayou	northwest of mamou, upstream of	50301	10/8/2003	11:45:00 AM	AF01852 AF22948	33.1	4.1 6.3	290	43.1		85.2	46.2	6.26 8.07	108 219	6	37	90	0.13	0.44	1.54	14.1	0.18
0431	Nezpique	bridge on LA Hwy. 376	00001	3/11/2004	9:10:00 AM	AG06029	6.6	2.5	79	40.1		23.3	22.7	6.94	135	21.5	82	- 50	0.12	0.26	1.4	17.2	0.22
	Danie			11/20/2002	10:53:00 AM	AE25687	4	ND	22.2	2		2.2	ND	5.08	26.7	4	3.7		ND	0.07	0.36	6.8	0.14
0494	Bogue Lusa Creek	near Sheridan, downstream of bridge on LA Hwy 439	90401	10/22/2003	11:30:00 AM	AF24148	3.9	ND	22.3	2.2		2.9	ND	7.42	22.7	ND	2.9		ND	0.08	0.2	4.1	0.07
	Lusa Cieek	blidge off EATTWy 409		1/28/2004	11:20:00 AM	AG02259	3.9	ND	24.1	2		2.5	5.4	6.66	ND	ND	4.3		ND	0.09	0.54	4.9	ND
	T. 1 . 1			11/20/2002	9:30:00 AM	AE25692	5.3	ND	45.2	3.1		9.2	11.5	5.49	30	9	9.2		ND	0.81	0.51	3	0.11
0495	Tchefuncte River	west of Wilmer, downstream of bridge on LA Hwy 10	40801	10/22/2003	10:40:00 AM 10:45:00 AM	AF24153 AG02264	5 5.3	3.2 ND	37.6 48.6			6.5 8.2	8.4 10.8		22 23.3	4 ND	4.3 7.1		ND 0.23	0.84 0.85	0.19	ND 3.6	0.08
	KIVOI	blidge off Ex Tiwy To		3/11/2004	9:10:00 AM	AG06041	5.1	ND	47.4			8.3	11.9		37.3	9	9.2		0.23	0.84	0.35	2.7	0.11
	Cuitta a da a					AF04751	4	ND	34.1	2.4		7.1	8.3	6.38	34	6.3	7.8		ND	0.18	ND	ND	0.07
0496	Crittenden Creek	north of Greensburg, upstream of bridge on LA Hwy 441	40501	10/8/2003	2:25:00 PM	AF22958	4.1	ND	32.7	3		6.9	7.2	7.36	30	5	4.2	25	ND	0.19	ND	ND	0.07
	Oleek	blidge on Ex riwy 441		3/11/2004	9:10:00 AM	AG06103	3.7	ND	34.9			7.8	9.5	6.78	ND	8	9.2		ND	0.19	0.2	3.3	0.07
				4/00/0000	0.05.00.414	AF04756	3.7	ND	35.2	3.5		7.9	7.9 7.7	0.50	36.7	16.5	15		ND	0.07	ND	ND	0.07
0497				1/29/2003 10/8/2003	9:35:00 AM 3:35:00 PM	AF01857 AF22968	4.1 3.9	ND ND	31.9 30.6	3.7 3.4		7.6	7.7	6.56 6.8	22 38.7	4.5 31	6 13	15	ND ND	0.07	ND 0.21	ND ND	0.07
				3/11/2004	9:10:00 AM	AG06107	3.7	1.3	34.5	3.4		7.5	8.2	6.76	17.3	7	9.7	15	ND	0.08	0.21	3	0.00
	Middle					AF04766	5.9	5.6	60.5	5.4		12.3	12.9	6.6	46	6.5	7.1		ND	ND	ND	ND	ND
0498	Fork	north of Jackson, downstream of	70502	11/20/2002	10:30:00 AM	AE25707	6.4	4.3	60.8	6.6		15.3	15		50.7	ND	3.9		ND	0.09	0.21	ND	0.05
0498	Thopmson	bridge on LA Hwy 421	70302	10/22/2003	10:30:00 AM	AF24158	7.6	2.6	66.4	7.5		17.7	13.9	6.61	52.7	4	2.5		ND	0.05	ND	ND	0.07
	Creek			1/28/2004	11:15:00 AM	AG02269	4.7	4.7	52.7	4.1		8.9	11.3	NR	42.7	7	26		ND	0.2	0.56	4.2	0.07
	\\\ 4 \(\(\) 1.			11/20/2002	11:45:00 AM	AF04771 AE25712	6.7 8.7	9.6 7.3	90.7 107	7.7 12.6		23.5 32.8	22.2 24.7	6.8	132	11 4	10 6.5		ND ND	ND 0.44	0.16	2.2	0.09
0525	West Fork Thompson	north of Jackson, upstream of bridge on Laurel Hill Creek	70502	10/22/2003	9:45:00 AM	AF24163	8.3	4.3	93.7	10.6		32.8	21.1	6.26	76 66.7	ND	2.9		ND ND	0.44	0.41	2.2	0.06
0020	Creek	Rd./Harris Conner Rd.	10002	1/28/2004	10:05:00 AM	AG02274	5.7	7.6	84.8	6.6		17.6	20.1	6.58	65.3	9.5	2.9		ND	0.1	0.19	5.6	0.08
	0.00.0			1/28/2004	10:05:00 AM	AG02279	5.6	7.8	85.3	6.6		17.5	20.4	6.61	58.7	8	27		ND	0.5	0.27	5.3	0.06
	Little	porthoast of Nanuood, downstras m				AF04776	8.7	2.3	66	6.7		13.7	14.5	6.5	47.3	10.5	10.1		ND	0.24	0.27	2	0.09
0526	Comite	northeast of Norwood, downstream of bridge on Parish Rd, 1 mi east of	40101	11/20/2002	9:05:00 AM	AE25717	8.9	1.8	67.2	7.3		14.6	15.2	6.02	55.3	ND	6.9		ND	0.45	0.51	2.3	0.1
5525	Creek	LA Hwy 19		10/22/2003	11:30:00 AM	AF24173	9.1	1.7	60.1	7.8		12	11.9	6.25	46.7	5.5	6.3		ND	0.37	0.49	2.2	0.07
——		, ,	1	1/28/2004	12:50:00 PM	AG02284	7.3	2.9	65.5	5.4	1	11.2	14.4	6.57	53.3	5	19	-	ND ND	0.42	0.85	5.7	80.0
0527	Bogue Falaya	north of Folsum, downstream of	40804	10/22/2003	12:45:00 PM 10:00:00 AM	AF24183 AG02289	3.9 4.5	ND ND	25.7 29.6	2.4		4.6	5.9 6.9	6.39 6.44	24.7 ND	5.5 ND	3.3 3.8	-	ND 0.12	0.07	0.33	3.1 4.7	ND ND
0527	River	bridge on Joseph Road	40004	3/11/2004	9:10:00 AM	AG02289 AG06111	3.9	ND	29.6	2.4		4.4	6.6	6.86	29.3	ND	4.5		ND	0.07	0.51	6.1	ND
	171401			3/11/2004	5.15.50 AW	/1000111	0.0	140	21.0	1	1	1 7.7	5.0	0.00	23.0	140	7.0		1 140	0.00	0.10	0.1	.,,,,

Appendix F – Survey Data Measurements and Analysis Results

Appendix F1 – Water Quality Data

					Bayo	u C	ane Wa	ter Q	uali	ty D	ata	Sumn	nary	1				
							Specific					Nitrite/ Nitrate		Ammonia-	True			
LEAU	DEQ	Chloride	Sulfate	Hardness	Alkalinity		Conductance	Sodium	TOC	TP	TDS	Nitrogen	TKN	Nitrogen		Turbidity	TSS	Chl A
Site #	Site #	(mg/L)	(mg/L)	(mg/L)	(mg/L)	рΗ	(umhos/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) ¹	(mg/L)	(mg/L) ¹	(PCU)	(NTU)	(mg/L) ¹	$(ug/L)^2$
3665		21.5	5.5	25.1	50.8	7.37	193.0	29.5	24.7	0.58	145	ND	1.41	0.23	210	9.5	ND	8.5
3752	BC04	63.7	11.2	28.1	121.0	7.58	444.0	85.3	18.2	0.61	268	0.05	0.97	0.21	110	5.2	ND	NM
3753	BC05	527.0	45.3	163.0	71.3	6.88	1722.0	292.0	23.8	0.19	1028	ND	1.44	ND	100	6.3	7.0	33.6
3755	BC07	912.0	87.3	290.0	69.9	7.03	2756.0	507.0	24.9	0.17	1710	ND	1.08	ND	100	6.1	6.5	NM
3666		1044.0	112.0	335.0	70.6	7.01	3058.0	574.0	22.6	0.23	1950	ND	1.55	0.25	100	8.7	10.0	28.5
3756	BC09	1097.0	136.0	358.0	66.1	6.94	3166.0	597.0	18.2	0.17	1960	ND	1.28	ND	60	5.9	8.5	NM
Al9371	SLSH	22.5	18.1	14.3	173.0	7.67	458.0	91.9	5.5	3.12	274	2.63	0.7	ND	22	3	4.0	NM
¹ ND=Nor	-Detect																	
² NM=Not	Measur	ed																

Collection_Date	Site_ID	Lab_Sample_Type	Analysis_name	Result	Units
06/18/2008	3665	TRG	Alkalinity	50.8	mg/L
06/18/2008	3665	TRG	True Color	210	PCU
06/18/2008	3665	TRG	Specific Conductance	193	umhos/cm
06/18/2008	3665	TRG	Turbidity	9.5	NTU
06/18/2008	3665	TRG	TSS		mg/L
06/18/2008	3665	TRG	TDS	145	mg/L
06/18/2008	3665	TRG	Chloride by IC	21.5	mg/L
06/18/2008	3665	TRG	Sulfate	5.5	mg/L
06/18/2008	3665	TRG	Sodium	29.5	mg/L
06/18/2008	3665	TRG	TKN	1.41	mg/L
06/18/2008	3665	TRG	TP	0.58	mg/L
06/18/2008	3665	TRG	Nitrate+Nitrite Nitrogen		mg/L
06/18/2008	3665	TRG	Ammonia-Nitrogen	0.23	mg/L
06/18/2008	3665	TRG	Hardness	25.1	mg/L
06/18/2008	3665	TRG	TOC	24.7	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 1		mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 2	3.1	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 3	4.2	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 4	5.5	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 5	7.2	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 6	9.3	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 7	11.2	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 8	13.0	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Reading 9	14.4	mg/L
06/18/2008	3665	TRG	Non-Filtered BOD 60 - Final	15.5	mg/L
06/18/2008	3665	TRG	NO2NO3 - Initial Reading		mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 1		mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 2		mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 3		mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 4		mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 5	0.13	mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 6	0.45	mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 7	0.51	mg/L
06/18/2008	3665	TRG	NO2NO3 - Reading 8	0.41	mg/L

06/18/2008	3665	TRG	NO2NO3 - Reading 9	0.58	mg/L
06/18/2008	3665	TRG	NO2NO3 - Final	0.52	mg/L
06/18/2008	3665	TRG	TKN (60 Day BOD)	0.77	mg/L
06/18/2008	3665	TRG	TOC (60 Day BOD)	18.4	mg/L
06/18/2008	3665	TRG	pH, Ultimate BOD survey	7.37	pH units
06/18/2008	3665	TRG	Chlorophyll A (calculated)	8.5	ug/L
06/18/2008	3666	TRG	Alkalinity	70.6	mg/L
06/18/2008	3666	TRG	True Color	100	PCU
06/18/2008	3666	TRG	Specific Conductance	3058	umhos/cm
06/18/2008	3666	TRG	Turbidity	8.7	NTU
06/18/2008	3666	TRG	TSS	10.0	mg/L
06/18/2008	3666	TRG	TDS	1950	mg/L
06/18/2008	3666	TRG	Chloride by IC	1044	mg/L
06/18/2008	3666	TRG	Sulfate	112	mg/L
06/18/2008	3666	TRG	Sodium	574	mg/L
06/18/2008	3666	TRG	TKN	1.55	mg/L
06/18/2008	3666	TRG	TP	0.23	mg/L
06/18/2008	3666	TRG	Nitrate+Nitrite Nitrogen		mg/L
06/18/2008	3666	TRG	Ammonia-Nitrogen	0.25	mg/L
06/18/2008	3666	TRG	Hardness	335	mg/L
06/18/2008	3666	TRG	TOC	22.6	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 1		mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 2	3.9	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 3	5.7	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 4	7.4	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 5	9.5	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 6	11.7	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 7	14.4	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 8	16.1	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Reading 9	17.5	mg/L
06/18/2008	3666	TRG	Non-Filtered BOD 60 - Final	18.6	mg/L
06/18/2008	3666	TRG	NO2NO3 - Initial Reading		mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 1		mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 2		mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 3		mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 4	0.07	mg/L

06/18/2008	3666	TRG	NO2NO3 - Reading 5	0.23	mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 6	0.50	mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 7	0.77	mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 8	0.78	mg/L
06/18/2008	3666	TRG	NO2NO3 - Reading 9	0.89	mg/L
06/18/2008	3666	TRG	NO2NO3 - Final	0.87	mg/L
06/18/2008	3666	TRG	TKN (60 Day BOD)	0.84	mg/L
06/18/2008	3666	TRG	TOC (60 Day BOD)	15.2	mg/L
06/18/2008	3666	TRG	pH, Ultimate BOD survey	7.01	pH units
06/18/2008	3666	TRG	Chlorophyll A (calculated)	28.5	ug/L
06/18/2008	3752	TRG	Alkalinity	121	mg/L
06/18/2008	3752	TRG	True Color	110	PCU
06/18/2008	3752	TRG	Specific Conductance	444	umhos/cm
06/18/2008	3752	TRG	Turbidity	5.2	NTU
06/18/2008	3752	TRG	TSS		mg/L
06/18/2008	3752	TRG	TDS	268	mg/L
06/18/2008	3752	TRG	Chloride by IC	63.7	mg/L
06/18/2008	3752	TRG	Sulfate	11.2	mg/L
06/18/2008	3752	TRG	Sodium	85.3	mg/L
06/18/2008	3752	TRG	TKN	0.97	mg/L
06/18/2008	3752	TRG	TP	0.61	mg/L
06/18/2008	3752	TRG	Nitrate+Nitrite Nitrogen	0.05	mg/L
06/18/2008	3752	TRG	Ammonia-Nitrogen	0.21	mg/L
06/18/2008	3752	TRG	Hardness	28.1	mg/L
06/18/2008	3752	TRG	TOC	18.2	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 1		mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 2	3.5	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 3	4.7	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 4	5.9	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 5	7.3	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 6	9.6	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 7	11.7	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 8	12.8	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Reading 9	13.7	mg/L
06/18/2008	3752	TRG	Non-Filtered BOD 60 - Final	15.1	mg/L
06/18/2008	3752	TRG	NO2NO3 - Initial Reading	0.06	mg/L

06/18/2008	3752	TRG	NO2NO3 - Reading 1	0.06	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 2	0.06	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 3	0.06	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 4	0.07	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 5	0.13	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 6	0.48	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 7	0.73	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 8	0.65	mg/L
06/18/2008	3752	TRG	NO2NO3 - Reading 9	0.78	mg/L
06/18/2008	3752	TRG	NO2NO3 - Final	0.73	mg/L
06/18/2008	3752	TRG	TKN (60 Day BOD)	0.63	mg/L
06/18/2008	3752	TRG	TOC (60 Day BOD)	12.2	mg/L
06/18/2008	3752	TRG	pH, Ultimate BOD survey	7.58	pH units
06/18/2008	3753	TRG	Alkalinity	71.3	mg/L
06/18/2008	3753	TRG	True Color	100	PCU
06/18/2008	3753	TRG	Specific Conductance	1722	umhos/cm
06/18/2008	3753	TRG	Turbidity	6.3	NTU
06/18/2008	3753	TRG	TSS	7.0	mg/L
06/18/2008	3753	TRG	TDS	1028	mg/L
06/18/2008	3753	TRG	Chloride by IC	527	mg/L
06/18/2008	3753	TRG	Sulfate	45.3	mg/L
06/18/2008	3753	TRG	Sodium	292	mg/L
06/18/2008	3753	TRG	TKN	1.44	mg/L
06/18/2008	3753	TRG	TP	0.19	mg/L
06/18/2008	3753	TRG	Nitrate+Nitrite Nitrogen		mg/L
06/18/2008	3753	TRG	Ammonia-Nitrogen		mg/L
06/18/2008	3753	TRG	Hardness	163	mg/L
06/18/2008	3753	TRG	TOC	23.8	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 1		mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 2	3.5	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 3	4.8	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 4	6.0	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 5	6.9	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 6	8.1	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 7	10.9	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 8	12.9	mg/L

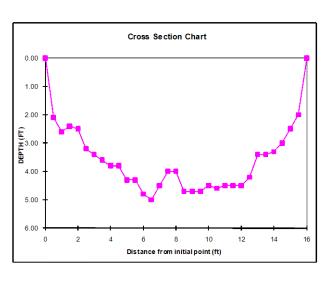
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Reading 9	14.1	mg/L
06/18/2008	3753	TRG	Non-Filtered BOD 60 - Final	15.4	mg/L
06/18/2008	3753	TRG	NO2NO3 - Initial Reading		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 1		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 2		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 3		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 4		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 5		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 6		mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 7	0.27	mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 8	0.42	mg/L
06/18/2008	3753	TRG	NO2NO3 - Reading 9	0.52	mg/L
06/18/2008	3753	TRG	NO2NO3 - Final	0.55	mg/L
06/18/2008	3753	TRG	TKN (60 Day BOD)	0.92	mg/L
06/18/2008	3753	TRG	TOC (60 Day BOD)	16.9	mg/L
06/18/2008	3753	TRG	pH, Ultimate BOD survey	6.88	pH units
06/18/2008	3753	TRG	Chlorophyll A (calculated)	33.6	ug/L
06/18/2008	3755	TRG	Alkalinity	69.9	mg/L
06/18/2008	3755	TRG	True Color	100	PCU
06/18/2008	3755	TRG	Specific Conductance	2756	umhos/cm
06/18/2008	3755	TRG	Turbidity	6.1	NTU
06/18/2008	3755	TRG	TSS	6.5	mg/L
06/18/2008	3755	TRG	TDS	1710	mg/L
06/18/2008	3755	TRG	Chloride by IC	912	mg/L
06/18/2008	3755	TRG	Sulfate	87.3	mg/L
06/18/2008	3755	TRG	Sodium	507	mg/L
06/18/2008	3755	TRG	TKN	1.08	mg/L
06/18/2008	3755	TRG	TP	0.17	mg/L
06/18/2008	3755	TRG	Nitrate+Nitrite Nitrogen		mg/L
06/18/2008	3755	TRG	Ammonia-Nitrogen		mg/L
06/18/2008	3755	TRG	Hardness	290	mg/L
06/18/2008	3755	TRG	TOC	24.9	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 1		mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 2	4.0	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 3	5.6	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 4	7.1	mg/L

06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 5	8.2	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 6	10.7	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 7	13.2	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 8	15.5	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Reading 9	17.0	mg/L
06/18/2008	3755	TRG	Non-Filtered BOD 60 - Final	18.1	mg/L
06/18/2008	3755	TRG	NO2NO3 - Initial Reading		mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 1		mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 2		mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 3		mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 4		mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 5		mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 6	0.31	mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 7	0.56	mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 8	0.58	mg/L
06/18/2008	3755	TRG	NO2NO3 - Reading 9	0.73	mg/L
06/18/2008	3755	TRG	NO2NO3 - Final	0.67	mg/L
06/18/2008	3755	TRG	TKN (60 Day BOD)	0.89	mg/L
06/18/2008	3755	TRG	TOC (60 Day BOD)	17.4	mg/L
06/18/2008	3755	TRG	pH, Ultimate BOD survey	7.03	pH units
06/18/2008	3756	TRG	Alkalinity	66.1	mg/L
06/18/2008	3756	TRG	True Color	60	PCU
06/18/2008	3756	TRG	Specific Conductance	3166	umhos/cm
06/18/2008	3756	TRG	Turbidity	5.9	NTU
06/18/2008	3756	TRG	TSS	8.5	mg/L
06/18/2008	3756	TRG	TDS	1960	mg/L
06/18/2008	3756	TRG	Chloride by IC	1097	mg/L
06/18/2008	3756	TRG	Sulfate	136	mg/L
06/18/2008	3756	TRG	Sodium	597	mg/L
06/18/2008	3756	TRG	TKN	1.28	mg/L
06/18/2008	3756	TRG	TP	0.17	mg/L
06/18/2008	3756	TRG	Nitrate+Nitrite Nitrogen		mg/L
06/18/2008	3756	TRG	Ammonia-Nitrogen		mg/L
06/18/2008	3756	TRG	Hardness	358	mg/L
06/18/2008	3756	TRG	TOC	18.2	mg/L
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 1		mg/L

06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 2	3.4	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 3	4.9	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 4	6.2	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 5	7.4	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 6	9.1	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 7	11.2	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 8	12.5	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Reading 9	13.3	mg/L	
06/18/2008	3756	TRG	Non-Filtered BOD 60 - Final	14.2	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Initial Reading		mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 1		mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 2		mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 3		mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 4	0.05	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 5	0.11	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 6	0.34	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 7	0.57	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 8	0.56	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Reading 9	0.67	mg/L	
06/18/2008	3756	TRG	NO2NO3 - Final	0.61	mg/L	
06/18/2008	3756	TRG	TKN (60 Day BOD)	0.84	mg/L	
06/18/2008	3756	TRG	TOC (60 Day BOD)	11.5	mg/L	
06/18/2008	3756	TRG	pH, Ultimate BOD survey	6.94	pH units	
06/18/2008	AI9371	TRG	Alkalinity	173	mg/L	
06/18/2008	AI9371	TRG	True Color	22	PCU	
06/18/2008	AI9371	TRG	Specific Conductance	458	umhos/cm	
06/18/2008	AI9371	TRG	Turbidity	3.0	NTU	
06/18/2008	AI9371	TRG	TSS	4.0	mg/L	
06/18/2008	AI9371	TRG	TDS	274	mg/L	
06/18/2008	AI9371	TRG	Chloride by IC	22.5	mg/L	
06/18/2008	AI9371	TRG	Sulfate	18.1	mg/L	
06/18/2008	AI9371	TRG	Sodium	91.9	mg/L	
06/18/2008	AI9371	TRG	TKN	0.70	mg/L	
06/18/2008	AI9371	TRG	TP	3.12	mg/L	
06/18/2008	AI9371	TRG	Nitrate+Nitrite Nitrogen	2.63	mg/L	
06/18/2008	AI9371	TRG	Ammonia-Nitrogen		mg/L	

06/18/2008	AI9371	TRG	Hardness	14.3	mg/L
06/18/2008	AI9371	TRG	TOC	5.5	mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 1		mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 2		mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 3		mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 4		mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 5	2.5	mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 6	3.0	mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 7	3.7	mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 8	4.3	mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Reading 9	4.6	mg/L
06/18/2008	AI9371	TRG	Non-Filtered BOD 60 - Final	4.9	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Initial Reading	2.58	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 1	2.58	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 2	2.50	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 3	2.49	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 4	2.50	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 5	2.67	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 6	2.82	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 7	2.86	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 8	2.64	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Reading 9	2.91	mg/L
06/18/2008	AI9371	TRG	NO2NO3 - Final	2.74	mg/L
06/18/2008	AI9371	TRG	TKN (60 Day BOD)	0.21	mg/L
06/18/2008	AI9371	TRG	TOC (60 Day BOD)	3.5	mg/L
06/18/2008	AI9371	TRG	pH, Ultimate BOD survey	7.67	pH units

Appendix F2 – Cross Sections and Discharge Measurements


Bayou C	ane 0409	03, 04090	4			
Field Data	Summary	- Discharge	s and Cr	oss Sec	tions	
Site #	Width (ft)	Width (m)	Depth (ft)	Depth (m)	Flow (cfs)	Flow (cms)
3665	16.00	4.877	3.65	1.113	0.030	0.0008
SLSH		0.000		0.000		0.0000
BC04 - 3752	52.00	15.850	3.56	1.085		
BC05 - 3753	91.00	27.737	3.90	1.189	-6.590	-0.1866
BC06 - 3754						
(dye dump)	93.00	28.346	3.35	1.021		0.0000
BC07 - 3755	70.50	21.488	3.97	1.210		0.0000
3666	65.00	19.812	3.79	1.156	-51.710	-1.4643

				Bayou Ca	ne Discharge	(River Cat)	Data	
Site	Date	Time	Area(ft²)	Width(ft)	Total Discharge(cfs)	Top Discharge(cfs)	Middle Discharge(cfs)	Bottom Discharge(cfs)
3666	6/18/2008	9:15	246.5	65	-51.71	-22.1	-19.3	-10.3
3753	6/18/2008	10:30	355.3	91	-6.59	0	-4.9	-1.7
3665	6/18/2008	11:45	90.6	23	0.03	0	-0.1	0.2

STREAM CROSS-SECTION SPREADSHEET

Site Number.	3665	Subsegment	040903	Waterbody:	Bayou Can	e
Site Description:	Top Boat Site					
Type of Equipment:	Fathometer	Hydrotrac 🗹 Manual				
Initial Bank:	⊻RDB LLDB			WIDTH (II):		16.00
Tapedown:				AREA ² (ft ²):		58.40
Guage Height:				AVG. DEPTH3	(ft):	3.65
-						

Point (ft) Wedth* (tt) Depth (tt) Ares* (sq.ii.) % of	1.80\$ 2.23\$ 2.05\$ 2.14\$ 2.74\$ 2.91\$ 3.08\$ 3.25\$ 3.25\$
2 0.50 0.50 2.10 1.05 3 1.00 0.50 2.60 1.30 4 1.50 0.50 2.40 1.20	2.23\$ 2.05\$ 2.14\$ 2.74\$ 2.91\$ 3.08\$ 3.25\$ 3.25\$
3 1.00 0.50 2.60 1.30 4 1.50 0.50 2.40 1.20	2.23\$ 2.05\$ 2.14\$ 2.74\$ 2.91\$ 3.08\$ 3.25\$ 3.25\$
4 1.50 0.50 2.40 1.20	2.05% 2.14% 2.74% 2.91% 3.08% 3.25% 3.25%
	2.14% 2.74% 2.91% 3.08% 3.25% 3.25%
5 0 00 0 50 105	2.74* 2.91* 3.08* 3.25* 3.25*
5 2.00 0.50 2.50 1.25	2.91* 3.08* 3.25* 3.25*
6 2.50 0.50 3.20 1.60	3.08% 3.25% 3.25%
7 3.00 0.50 3.40 1.70	3.25 % 3.25 %
8 3.50 0.50 3.60 1.80	3.25%
9 4.00 0.50 3.80 1.90	
10 4.50 0.50 3.80 1.90	2 60%
11 5.00 0.50 4.30 2.15	
12 5.50 0.50 4.30 2.15	3.68%
13 6.00 0.50 4.80 2.40	4.11%
14 6.50 0.50 5.00 2.50	4.28%
15 7.00 0.50 4.50 2.25	3.85%
16 7.50 0.50 4.00 2.00	3.42%
17 8.00 0.50 4.00 2.00	3.42*
18 8.50 0.50 4.70 2.35	4.02%
19 9.00 0.50 4.70 2.35	4.02%
20 9.50 0.50 4.70 2.35	4.02%
21 10.00 0.50 4.50 2.25	3.85%
22 10.50 0.50 4.60 2.30	3.94%
23 11.00 0.50 4.50 2.25	3.85%
24	3.85%
	3.85%
26 12.50 0.50 4.20 2.10 27 13.00 0.50 3.40 1.70	3.60% 2.91%
28 13.50 0.50 3.40 1.70	2.91%
29 14.00 0.50 3.30 1.65	2.83%
30 14.50 0.50 3.00 1.50	2.57*
31 15.00 0.50 2.50 1.25	2.14%
32 15.50 0.50 2.00 1.00	1.71%
33 16.00 0.25 0.00 0.00	0.00%
34	
35	
36	
37	
38	
39	
40	
	.00.00%

Data Collection Cres	7	Office Data Work	
Measurement made by:	Hicks	Data Inputed by / Date:	Jones 6/20/2008
Notetak er/Recorder:	Jones	Data Input Checked by / Date:	Keith 6/20/2008
Officer:			

Note 1: WIDTH (t) = sum of the width column

Note 2: AREA (sq.ft.) = sum of the area column

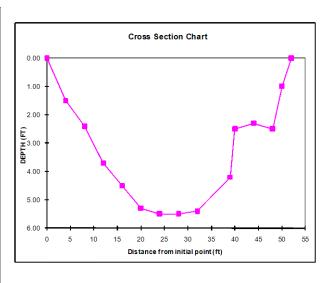
Note 3: AVG. DEPTH (t) = area/width (using the values from this table)

Note 4: Width of element

Note 5: Area=Width*Depth for element

Note 6: Percent area = element area/total area x 100%

Note 7: Percent area should be less than 10% as per USGS standard.


Note 8: Blank fields are cleared from all calculations.

Note 9: The cross sections are taken at areas representative of the stream.

STREAM CROSS-SECTION SPREADSHEET

Site Number:	3752	Subsegment	040903	Waterbody:	Bayou Can	e
Site Description:	Just above Hwy. 19	0				
Type of Equipment:	✓ Fathometer	Hydrotrac 🔔 Manual				
Initial Bank:	⊻RDB LLDB			wштн¹ (т):		52.00
Tapedown:				AREA ² (ft ²):		185.05
Guage Height:				AVG. DEPTH ³ ((ft):	3.56
Date:	6/17/2008					

	Date:	6/17/2008	•		
Subsection	Distance from initial point (fl)	Width ⁴ (ft)	Depth (fi)	Area ⁵ (sq.ft.)	Area of element as % of Total Area ^{6 & 7}
1	0.00	2.00	0.00	0.00	
2	4.00	4.00	1.50	6.00	3.24%
3	8.00	4.00	2.40	9.60	5.19₹
4	12.00	4.00	3.70	14.80	8.00%
5	16.00	4.00	4.50	18.00	9.73%
6	20.00	4.00	5.30	21.20	11.46%
7	24.00	4.00	5.50	22.00	11.89%
8	28.00	4.00	5.50	22.00	11.89%
9	32.00	5.50	5.40	29.70	16.05%
10	39.00	4.00	4.20	16.80	9.08%
11	40.00	2.50	2.50	6.25	3.38*
12	44.00	4.00	2.30	9.20	4.97%
13 14	48.00	3.00	2.50	7.50	4.05%
15	50.00	2.00 1.00	0.00	2.00 0.00	1.08%
16	52.00	1.00	0.00	0.00	0.004
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
	Total	52.00		185.05	100.00%

Data Collection Crev	Y	Office Data Work	
Measurement made by:	Keith	Data Inputed by / Date:	Jones 6/20/2008
Notetak er/Recorder:	Jones	Data Input Checked by / Date:	Keith 6/20/2008
Officer:			

Note 1: WIDTH (ft) = sum of the width column

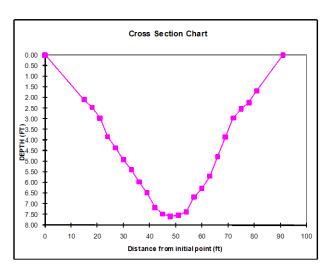
Note 2: AREA (sq.ft.) = sum of the area column

Note 3: AVG. DEPTH (ft) = area/width (using the values from this table)

Note 4: Width of element

Note 5: Area=Width*Depth for element

Note 6: Percent area = element area/total area x 100%


Note 7: Percent area should be less than 10% as per USGS standard.

Note 8: Blank fields are cleared from all calculations.

STREAM CROSS-SECTION SPREADSHEET

Sife Number: 3753	Subsegment:	040904	Waterbody:	Bayou Can	e
Site Description: Just below Hwy. 190					
Type of Equipment: Fathometer Hydr	otrac 💆 Manual				
Initial Bank: ✓ RDB 🔲 LDB			wштн¹ (п):		91.00
Tapedovn:			AREA ² (ft ²):		355.26
Guage Height:			AVG. DEPTH3	(fi):	3.90

	Date: 6/18/2008					
Subsection	Distance from initial point (fl)	Width ⁴ (ft)	Depth (ff)	Area ⁵ (sq.ft.)	Area of element as % of Total Area ^{6 & 7}	
1	0.00	7.50	0.00	0.00		
2	15.00	9.00	2.09	18.81	5.29*	
3	18.00	3.00	2.46	7.38	2.08%	
4	21.00	3.00	2.97	8.91	2.51%	
5	24.00	3.00	3.84	11.52	3.24%	
6	27.00	3.00	4.37	13.11	3.69%	
7	30.00	3.00	4.92	14.76	4.15₹	
8	33.00	3.00	5.39	16.17	4.55₹	
9	36.00	3.00	5.96	17.88	5.03*	
10	39.00	3.00	6.48	19.44	5.47%	
11	42.00	3.00	7.17	21.51	6.05%	
12	45.00	3.00	7.49	22.47	6.33%	
13	48.00	3.00	7.58	22.74	6.40%	
14	51.00	3.00	7.53	22.59	6.36%	
15	54.00	3.00	7.38	22.14	6.23*	
16	57.00	3.00	6.68	20.04	5.64%	
17	60.00	3.00	6.27	18.81	5.29*	
18	63.00	3.00	5.69	17.07	4.80%	
19	66.00	3.00	4.78	14.34	4.04%	
20 21	69.00	3.00	3.85 2.96	11.55 8.88	3.25%	
22	72.00 75.00	3.00	2.53	7.59	2.50%	
23		3.00	2.53		1.88%	
24	78.00 81.00	6.50	1.67	6.69 10.86	3.06%	
25	91.00	5.00	0.00	0.00	0.00%	
26	91.00	3.00	0.00	0.00	0.00%	
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
	Total	91.00		355.26	100.00%	

Data Collection Cres	•	Office Data Work	
Measurement made by:	Beard	Data Inputed by / Date:	Jones 6/24/2008
Notetak er/Recorder:		Data Input Checked by / Date:	Beard 6/24/2008
Officer:			

Note 1: WIDTH (ft) = sum of the width column

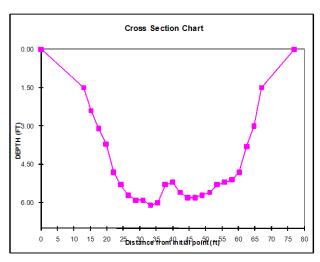
Note 2: AREA (sq.ft.) = sum of the area column

Note 3: AVG. DEPTH (ft) = area/width (using the values from this table)

Note 4: Width of element

Note 5: Area=Width*Depth for element

Note 6: Percent area = element area/total area x 100%


Note 7: Percent area should be less than 10% as per USGS standard.

Note 8: Blank fields are cleared from all calculations.

STREAM CROSS-SECTION SPREADSHEET

Sife Number:	3755	Subsegment	040904	Waterbody:	Bayou Can	e
Site Description:				_		
Type of Equipment:	✓ Fathometer	Hydrotrac Manual				
Initial Bank:	⊻RDB LLDB			WIDTH (M):		70_50
Tapedown:	N/A			AREA ² (ft ²):		279.60
Guage Height:	N/A			AVG. DEPTH3(ft):	3.97

	Date: 6/18/2008					
Subsection	Distance from initial point (ft)	Width ⁴ (ft)	Depth (ff)	Area ⁵ (sq.ft.)	Area of element as % of Total Area ^{6 & 7}	
1	0.0		0.00			
2	13.0	7.63	1.50	11.44	4.09%	
3	15.3	2.25	2.40	5.40	1.93%	
4	17.5	2.25	3.10	6.98	2.49%	
5	19.8	2.25	3.70	8.33	2.98%	
6	22.0	2.25	4.80	10.80	3.86%	
7	24.3	2.25	5.30	11.93	4.27%	
8	26.5	2.25	5.70	12.83	4.59%	
9	28.8	2.25	5.90	13.28	4.75%	
10	31.0	2.25	5.90	13.28	4.75%	
11	33.3	2.25	6.10	13.73	4.91%	
12	35.5	2.25	6.00	13.50	4.83%	
13	37.8	2.25	5.30	11.93	4.27%	
14	40.0	2.25	5.20	11.70	4.18%	
15	42.3	2.25	5.60	12.60	4.51%	
16	44.5	2.25	5.80	13.05	4.67%	
17	46.8	2.25	5.80	13.05	4.67%	
18	49.0	2.25	5.70	12.83	4.59%	
19	51.3	2.25	5.60	12.60	4.51%	
20	53.5	2.25	5.30	11.93	4.27%	
21	55.8	2.25	5.20	11.70	4.18%	
22	58.0	2.25	5.10	11.48	4.10%	
23	60.3	2.25	4.80	10.80	3.86%	
24	62.5	2.25	3.80	8.55	3.06%	
25	64.8	2.25	3.00	6.75	2.41%	
26	67.0	6.13	1.50	9.19	3.29%	
27	77.0	5.00	0.00	0.00	0.00%	
28						
$\neg $	Total	70.50		279.60	100.00%	

Data Collection Crew	T. Yoes, D. Borne, J. Earles	Office Data Work	
Measurement made by:	T. Yoes, D. Borne, I. Earles	Data Inputed by / Date:	T. Yoes/ 6/26/2008
Notetak er/Recorder:	T. Yoes	Data Input Checked by / Date:	J. Earles / 6/27/08
Other			

Owner:

Note 1: WIDTH (II) = surn of the width column

Note 2: AREA (sq.II.) = surn of the area column

Note 3: AVG. DEPTH (II) = area/width (using the values from this table)

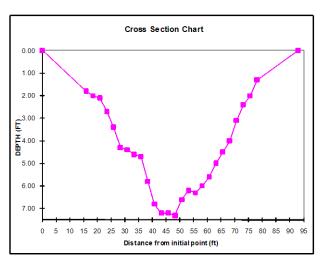
Note 4: Width of element

Note 5: Area=Width*Depth for element

Note 6: Percent area = element area/total area x 100%

Note 7: Percent area should be less than 10% as per USGS standard.

Note 8: Blank fields are cleared from all calculations.


STREAM CROSS-SECTION SPREADSHEET

Site Number: Dye XS Dump Subsegment: O40904 Waterbody: Bayou Cane
Site Description: *See GPS* (Survey Site 3754)

Type of Equipment: ☐ Fathometer ☑ Hydrotrac ☐ Manual

wintry (16):	93.00
AREA ² (ft ²):	311.21
AVG. DEPTH3(ft):	3.35

Subsection	Distance from initial point (ft)	Width ⁴ (ft)	Depth (fi)	Area ⁵ (sq.ft.)	Area of element as % of Total Area ^{6 & 7}
1	0.0	8.00	0.00	0.00	
2	16.0	9.24	1.80	16.63	5.34*
3	18.5	2.48	2.00	4.96	1.59*
4	21.0	2.48	2.10	5.21	1.67%
5	23.4	2.48	2.70	6.70	2.15%
6	25.9	2.48	3.40	8.43	2.71%
7	28.4	2.48	4.30	10.66	3.43%
8	30.9	2.48	4.40	10.91	3.51%
9	33.4	2.48	4.60	11.41	3.67%
10	35.8	2.48	4.70	11.66	3.75%
11	38.3	2.48	5.80	14.38	4.62%
12	40.8	2.48	6.80	16.86	5.42%
13	43.3	2.48	7.20	17.86	5.74%
14	45.8	2.48	7.20	17.86	5.74%
15	48.2	2.48	7.30	18.10	5.82%
16	50.7	2.48	6.60	16.37	5.26%
17	53.2	2.48	6.20	15.38	4.94%
18	55.7	2.48	6.30	15.62	5.02%
19	58.2	2.48	6.00	14.88	4.78%
20	60.6	2.48	5.60	13.89	4.46%
21	63.1	2.48	5.00	12.40	3.98%
22	65.6	2.48	4.50	11.16	3.59%
23	68.1	2.48	4.00	9.92	3.19%
24	70.6	2.48	3.10	7.69	2.47%
25	73.0	2.48	2.40	5.95	1.91%
26	75.5	2.48	2.00	4.96	1.59%
27	78.0	8.74	1.30	11.36	3.65%
28	93.0	7.50	0.00	0.00	0.00%
T	Total	93.00		311.21	100.00%

Data Collection Crew		Office Data Work	
Measurement made by:	J. Earles, T. Yoes,	Data Inputed by / Date:	A. Tieben, 6/27/2008
Notetak er/Recorder:	J. Earles, T. Yoes,	Data Input Checked by / Date:	E. Gamer
Ofter			

Note 1: WIDTH (It) = sum of the width column

Note 2: AREA (sq.ft.) = sum of the area column

Note 3: AVG. DEPTH (it) = area/width (using the values from this table)

Note 4: Width of element

Note 5: Area=Width*Depth for element

Note 6: Percent area = element area/total area x 100%

Note 7: Percent area should be less than 10% as per USGS standard.

Note 8: Blank fields are cleared from all calculations.

Appendix F3 – Field Notes

ENGINEERING INSITU REPORT

PROJECT NUMBER

PROJECT NAME

Bayou Cane TMDL Survey (Subsegments 040903 and 040904)

SITE ID NUMBER	COLL DATE	ECTION TIME	DEPTH, m	TEMP, deg C	DO CONC., mg/L	DO PERCENT SAT (100% = 1)	pH, Standard Units	SPECIFIC COND., umhos/cm	SECCHI DISK DEPTH, centimeters	SAL, ug/L	BAT, volts
BC04	6/18/2008	10:00:00 AM	1	28.44	1.91	24.7	7.45	466.3		0.23	
BC05	6/18/2008	10:20:00 AM	1	29.65	2.26	29.9	6.89	1745	18	0.93	
BC07	6/18/2008	10:10:00 AM	1	29.83	1.17	15.7	6.86	3057		1.66	
BC09	6/18/2008	9:15:00 AM	0.3	29.25	4.72	62.2	7.32	3616		1.97	
SLSH	6/18/2008	9:50:00 AM	-999	28.53	8.09	104.6	7.77	446		0.22	
3665	6/18/2008	9:15:00 AM	1	27.42	0.52	6.5	6.82	177.8	10	0.08	
3666	6/18/2008	9:45:00 AM	0.75	29.97	2.39	32	6.97	3464	24	1.88	

Bayou Cane (040903 & 040904)

<u>040903 - Bayou Cane - Headwaters to U.S. Hwy 190</u> 040904 - Bayou Cane - U.S. Hwy. 190 to Lake Pontchartrain

Project # ES2008003 Survey Report June 2008

Bayou Cane is located in the Pontchartrain Basin. The stream was surveyed from the upper most accessible part of the stream (just above Hwy. 190) to Lake Pontchartrain. The survey was conducted on June 16 through June 20, 2008. Land use along the bayou is primarily residential in 040903 and primarily wetland in 040904.

Water Quality samples were taken throughout the length of the bayou along with In-Situ field readings. Stream discharge measurements were taken at three locations (3666, 3753, and 3665.)

A Dye Study was performed in the lower portion of the stream. Dye was injected at site # 3754. Dye concentrations were recorded in two separate boat runs which covered approximately 48 hours. Also continuous dye monitors were deployed and collected data throughout the week of the survey. A more detailed explanation of the dye study can be found on the Watershed Shared Network (ws_ surveys) Bayou Cane file.

There was one (1) discharger (Louisiana State Hospital) sampled during this survey.

Six (6) Continuous Water Quality Monitors were set up to log during the course of the survey. Included with this report are all survey data including: field notes, discharge measurements, site GPS, stream cross-sections, continuous water quality monitor data, weather station data, and water quality sample records. Data from the dye study, which includes site GPS, dye concentration log, stream cross-sections and a field log, are also included. Electronic copies of this data are available on the Watershed Shared Network (ws_surveys).

Survey crews encountered no notable problems.

	Site Information	on	
Site #: 366 5 (BC 02) Waterbody: Bayou Co	Subsegment: <u>04098</u>		
Tapedown 1:	Staff Gauge 1:		
	Cost Sitp		
Personnel: Garage, A	Alleman		
/	Data Collection (X).		
Weather Conditions:	Temperature (°F): Wi	nd (mph):	Wind Direction:
Clear 🕅 Overcast 🗌	Hot >85° [£] <1 Warm > 75° □ 1-5		NW N NE SW S M SE [
Drizzle/Light Rain L	Mild > 65° ☐ 6-1	0 🗀	SW SE SE
Showers [Temperature (°F): Will Hot >85° []	15 🗍	Variable [
Cloud Cover.			1000/ 🗔
0 –10% [X] 11	1 – 40% 🗌 41 – 70%	71 -	100% 📙
Stream Characteristics:	, IFI		
Waterbody Type: Stream Flowing: Measurable Flo	w: 7 Flow Direction Upstre	am 🛛 Downstr	eam Tidaliy Influ
/ -	Vind Influence Direction: Upstr		
	☐ Wind Influence: ☐		
	Sedimentation/Turbidity F		
Algae Present			
Figating/Aquatic Vegeta	tion % Surface Coverage: <1	resent in Water	26-50%
Floating/Aquatic Vegeta	tion % Surface Coverage: <1 🕻	7esent in Water 1-25% 75%	26-50% 76-100%
	tion % Surface Coverage: <1 [51	1-25% 75%	26-50% 76-100%
Floating/Aquatic Vegeta Water Quality Samples Taken	tion % Surface Coverage: <1 [51	1-25% 75%	26-50% 76-100%
	tion % Surface Coverage: <1 [51	1-25% 75% ameters:	26-50% 76-100%
Nater Quality Samples Taken	tion % Surface Coverage: <1 51. Water Quality Field Para Water Quality Field Pa	1-25% 75% ameters: rameters	26-50% 76-100% Profiling: 7
Nater Quality Samples Taken Time: Temp.(°C)	tion % Surface Coverage: <1 & 51. Water Quality Field Par. Water Quality Field Par. pH:	1-25% 75% ameters: rameters	26-50% 76-100% Profiling: 7
Nater Quality Samples Taken Time: Temp.(°C)	tion % Surface Coverage: <1 51. Water Quality Field Para Water Quality Field Pa	1-25% 75% ameters: rameters	26-50% 76-100% Profiling: 7
Nater Quality Samples Taken Time: Temp.(°C)	tion % Surface Coverage: <1	1-25% 75% ameters: rameters	26-50% 76-100% Profiling: 7
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID:	tion % Surface Coverage: <1	1-25% 75%	26-50% 76-100% Profiling: Ccm): (m): Secch
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID:	tion % Surface Coverage: <1	1-25% 75%	26-50% 76-100% Profiling:
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved	water Quality Field Par: Water Quality Field Par: Water Quality Field Par: pH: Salinity: Continuous Monitor IC	1-25% 75%	26-50% 76-100% Profiling:
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved	water Quality Field Par: Water Quality Field Par: Water Quality Field Par: pH: Salinity: Continuous Monitor IC	1-25% 75%	26-50% 76-100% Profiling:
Mater Quality Samples Taken Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved Water Level Monitor Deployed	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor IC	1-25% 75%	26-50% 76-100% Profiling: Secch
Mater Quality Samples Taken Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved Water Level Monitor Deployed	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor IC	1-25% 75%	26-50% 76-100% Profiling: (cm): (m): Secch
Water Quality Samples Taken Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved Water Level Monitor Deployed	Water Quality Field Para Water Quality Field Para Water Quality Field Para Salinity: Continuous Monitor IC Continuous Monitor IC Instrument ID:	1-25% 75%	26-50% 76-100% Profiling: (cm): (m): Secch
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved Water Level Monitor Deployed Flow Measurement: Ty Instrument ID:	Water Quality Field Para Water Quality Field Para Water Quality Field Para : pH: : Salinity: Continuous Monitor ID : Continuous Monitor ID : Instrument ID: eployed Instrument ID:	1-25% 75%	26-50% 76-100% Profiling: (cm): (m): Secch
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved Water Level Monitor Deployed Flow Measurement: Ty Instrument ID: Stream Velocity Monitor Deployed Velocity Estimated:	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor II Continuous Monitor II Instrument ID: Progue Of Measurement: Wading [peployed Instrument ID: Drogue Estimate:	1-25% 75%	26-50% 76-100% Profiling: Secch Secch Secch Secch Section Se
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Deployed Water Level Monitor Deployed Flow Measurement: Ty Instrument ID: Stream Velocity Monitor De Velocity Estimated: Right Descending B	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor II Continuous Monitor II Instrument ID: Peployed Instrument ID: Drogue Estimate: lank Distance (ft):	ameters: ameters: ameters pepth Depth Monitor Depth (100 2 Stationary Dye Time (s):	26-50% 76-100% Profiling: Secch
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Deployed Water Level Monitor Deployed Flow Measurement: Ty Instrument ID: Stream Velocity Monitor De Velocity Estimated: Right Descending B	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor II Continuous Monitor II Instrument ID: Progue Of Measurement: Wading [peployed Instrument ID: Drogue Estimate:	ameters: ameters: ameters pepth Depth Monitor Depth (100 2 Stationary Dye Time (s):	26-50% 76-100% Profiling: Secch Secch Secch Secch Section Se
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Deployed Water Level Monitor Deployed Flow Measurement: Ty Instrument ID: Stream Velocity Monitor De Velocity Estimated: Right Descending B Mid Stri Left Descending B	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor II Continuous Monitor II Instrument ID: Progue of Measurement: Wading Caployed Instrument ID: Drogue Estimate: Sank Distance (ft): Lank Distance (ft): Lank Distance (ft):	1-25% 75%	26-50% 76-100% Profiling: Secch
Time: Temp.(°C) D.O.: D.O. % InSitu Probe ID: Continuous Monitor Deployed Continuous Monitor Retrieved Water Level Monitor Deployed Flow Measurement: Ty Instrument ID: Stream Velocity Monitor Deployed Velocity Estimated: Right Descending B Mid Stream	Water Quality Field Para Water Quality Field Para Water Quality Field Para pH: Salinity: Continuous Monitor II Continuous Monitor II Instrument ID: Progue of Measurement: Wading Caployed Instrument ID: Drogue Estimate: Sank Distance (ft): Lank Distance (ft): Lank Distance (ft):	1-25% 75%	26-50% 76-100% Profiling: Ccm): (m): Secch Secch Moving Boat

 $^{^{\}dagger}$ All work is done within 100 yard radius of Site

			Site 3665 Date	6-16-08
	62			12:45
Photos Taken:	Р	icture File #s:		
T				
Tapedown Establishe				
Benchmark Establisher Survey Equipment User	d: []	Benchmark Location: _		
Time of Travel Measur Amount of Dye		Type of Site: Injecti	on Collection	
Stream Dry/Inte Stream Bottom: Sand/5i Control Structur Type: M. Land Use: Agric	de Waterbody: rmittent: Sandy Cla It Roi e Present: Loc an Made Dam rulture Forestr	y Gravel Gravel Color Gravel Silt Color Color Gravel Silt Color Color Gravel Silt Color Color Gravel	Hard Clay S Concrete S evice Beaver Dam S strial Field/Pasture W	Log Jam []
Percent Tree Ca	anopy Cover 0-25	5% [] 26-50% []	51-75% 76-100%	<u> </u>
Recon Information:	curement: Wad	ing 🗆 Root 🗆	Stream Depth (ft):	
Discharge wea			Compared the Section Commission of the Property of the Commission	
	Continuous M	onitor Deployment: Fi	xed: Bouy: L	
		Bridge Height:		
-	~ /20	Profiling Measurem	ents:	
D.O.:	Temp.(°C): D.O. %:	Salinity:	Spcond(μhmos/cm Depth (m):):
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm Depth (m):):
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm Depth (m):):
Comments:				
		-		
References				
Convert Feet to Meters	Convert Celsius			
0.5 ft ≅ 0.15 m	20 ≅ 68	25 ≘ 77		
1.0 fc ≈ 0.30 m	21 ≈ 69.8	26 ≅ 78.8		
1.5 ft ≈ 0.45 m	22 ≡ 71.6	27 ≅ 80.6		
2.0 ft ≅ 0.60 m	23 ≅ 73.4	28 ≡ 82.4		
$2.5 \text{ ft} \cong 0.75 \text{ m}$	24 ≅ 75.2	29 ≅ 84.2		

Site Information
Site #: 3605 Subsegment: 040903 Date: 6 17 68 Time: 1000 hrs
Walesbody: BAYON CANE
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Site Location! At top Boat Site
Personnel: Jones, Hicks, Keith
Type of Work. Recon Data Collection
Weather Conditions: Temperature (°F): Wind (msh): Wind Direction: Clear □ Hot >85° □ <1 □
0 - 10% 11 - 40% 1 41 - 70% 71 - 100% 1
Stream Characteristics:
Waterbody Type: Stream T Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Wind Influence Direction: Upstream Downstream
Walerbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1.25% 26-50% 51-75% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID: 200 25
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed:Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
instrument IO:
Stream Velocity Monitor DeployedInstrument ID:
Velocity Estimated: Drogue Estimate: Dye Estimate: 7
Right Descending Bank Distance (II): Time (s):
Mid Stream Distance (II): Time (s):
Left Descending Bank Distance (It): Time (s):
Cross Section Measurement: Type of Measurement Manual: Falhometer
Fathometer IU:
GPS Measurement: Site GPS: Cross Section GPS:

			Site 3665	Date: 6/17/08
Photos Taken:	F	ficture File #s:		10:00
Tapedown Establishe				
Benchmark Establishe Survey Equipment Use		Benchmark Locatio	n:	
Time of Travel Measu Amount of Dye		Type of Site: In	ection Collection	
Physical Site Charact			an Altered Walerbody:	
Cusam Daylata	de Waterbody:			
Stream Bottom: Sand/S	Sandy Cla	ay☑ Gravel☐ ck/Gravel/Silt ☐	Haid Clay Concrete	Soli Sili 🖫
Control Structur	re Present: [] Lo	calion:	Device Beaver (Dam Dam Log Jam 🗹
Land Use: Agric Percent Tree C	culture Forest anopy Cover 0-2	ry Municipal 1 tr 5% 26-50%	ndusicial Field/Pasiu	re Welland 6-100%
Recon Information:				
Discharge Mea	isurement: Wad	ting [_] Boat [_]	Stream Depth (II	1):
	Continuous M	ionitor Deployment:	Fixed: Bouy: C]
		Bridge Height:		
	T (10)	Profiling Measur	ements:	
Time:	Temp.(°C):	pH: Salinity:	Spcond(µhm Depth (m):
				
Time:	Temp.(°C):	pH:	Spcond(µhm Depth (nos/cm):
Time:	Temp.(°C):	pH:	Spcond(μhm Depth (nos/cm):
	5.0. %.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Comments:				
References	C	a Palamakai		
Convert Feet to Meters				
0.5 ti ± 0.15 m	20 ≅ 68	25 = 77		
1 0 fi ≡ 0.30 m	21 = 69 8	26 ≡ 78 8		
1.5 (i = 0.45 m	22 = 71.6	27 ≡ \$0.6		
2 0 ft ≘ 0.60 in	?3 ± 73 4	28 ≡ 82.4		
2 5 ft = 0.75 m	24 = 75 2	29 ≘ 84 2		

Site Information				
Site # 3665 Subsegment: 040923 Date: 6/18/08 Time: 0915hrs				
Waserbody: BAYOU CANE				
Tapedown 1: Stall Gauge 1: Gauge Height 1:				
Site Location 1: Top Boat Site				
Personnel: Jones, Hicks, Keith				
Type of Work. Recon Data Collection				
Weather Conditions: Temperature (°F): Wind Imph): Wind Direction: Clear				
Stream Characteristics:				
Waterbody Type: Stream Flowing: ☐ Measurable Flow: ☐ Flow Direction Upstream ☐ Downstream ☐ Tidally Influenced: ☑ Wind Influence: ☐ Wind Influence Direction: Upstream ☐ Downstream ☐				
Waterbody Type: Lake Wind Influence: Tidally Influenced:				
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 76-100%				
Water Quality Samples Taken W Water Quality Field Parameters: Proliting:				
Water Quality Field Parameters				
Time: 0915 Temp.(°C): 27.42 pH: 6.82 SpCond(μhmos/cm): 1777.8 D.O.: 652 D.O. %: 6.5 Salinity: 58 Depth (m): 1 Secchi (in): 10 μ				
Continuous Monitor Deployed: Continuous Monitor ID:				
Continuous Monitor Retrieved: Continuous Monitor Depth (rn):				
Water Level Monitor Deployed:Instrument ID:				
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID:				
Velocity Estimated: Drogue Estimate Dye Estimate:				
Aight Descending Bank Distance (II): Time (s):				
Mid Stream Distance (II): Time (s):				
Left Descending Bank Distance (ft): Time (s):				
Cross Section Measurement: Type of Measurement Manual: Fathometer				
Fathometer IU:				
GPS Measurement: Site GPS: Cross Section GPS:				
All work is done within 100 yard radius of Site				

			Sile 3665 Date: 6/18/08
Photos Taken:	P	cture File #s:	
Tapedown Establishe			
Benchmark Establishe Survey Equipment Use	d: [_] d: [_]	Benchmark Location:	
Time of Travel Measu Amount of Dye	rement: [] Injected (ml);	Type of Site: Injec	tion [] Collection[]
Physical Site Charact			Altered Waterbody:
Curan Daylate	de Waterbody: 🗌 rmittent: 🗍		
Stream Bollom: Sand/S	Sandy Cla	y Gravel Gravel C	Hard Clay Soft Silt Concrete
Control Structur	e Present: LLoc	alion:	Device Beaver Dam Log Jam
Land Use: Agric	culture Forestr	y Municipal Indu	sstrial Field/Pasture Wetland S1-75% 76-100%
Recon Information:			Constant to
Discharge Mea		ing Boat D	
	Continuous M	onitor Deployment: F	ixed: Bouy: C
Bridge 🗌 Br		Bridge Height:	
		Profiling Measurer	nents:
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm): Depth (m):
Time: D.O.:	Temp.(°C):	pH:	Spcond(µhmos/cm): Depth (m):
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm): Depth (m):
D.O.:	D.O. %:	Salinity:	Depth (m):
Comments:			
References			
Convert Feet to Meters	Convert Celsius	to Fahrenbeit	
0.5 ft = 0.15 m	20 ≈ 68	25 ≡ 77	
1 0 fr ≥ 0.30 m	21 = 69 8	26 ≡ 78 8	
1.5 ft = 0.45 m	22 = 71.6	27 ≅ 80 6	
2.0 ft = 0.60 m	23 ≡ 73 d	28 ≡ 82.4	
2 5 (i ≥ 0.75 m	24 ≘ 75.2	29 ± 84.2	

Site Information
Site # 3665 Subsegment 040903 Date: 6/18/08 Time: 1145
Waterbody: Bayor (and
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Sile Location 1:
Personnei: Brand Meben
Type of Work: Recon Data Collection
Weather Conditions: Temperature (°E) Wind (mph): Wind Direction Clear ☐ Hot >85° ☐ <1 ☐
Cloud Cover: 0 - 10%
Waterbody Characteristics: Waterbody Type: Stream
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence:
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed:Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID: RC30 B
Velocity Monitor Deployed ☐ Instrument ID:
Velocity Estimated: ☐ Drogue Estimate: ☐ Dye Estimate: ☐
Right Descending Bank Distance (ft): Time (s):
Mid Stream Distance (ft): Time (s):
Lell Descending Bank Distance (ft): Time (s)
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer ID:
GPS Measurement: Site GPS: Cross Section GPS:
Photos Taken: Picture File #s:

			Site 3665 Date	6/18/08
				11:45
Tapedown Established	d: 🗀	Tapedown Location:		
Benchmark Established Survey Equipment Used	f: 🔲 f	Benchmark Location:		
Time of Travel Measur Amount of Dye Is		Type of Site: Inject	ion Callection	
Physical Site Characte Man-Mac Waterbody Dry/l	le Waterbody:		Altered Waterbody:	
Waterbody Bolto Sand/Sil	m: Sandy[]	k/Gravel/Silt	vel Hard Clay Concrete	Soft Silt
Land Use: Agric	in Made Dam ulture Forestry nopy Cover 0-25	/ Municipal Indu	evice Beaver Dam Strial Field/Pasture V 51-75% 76-100%	Velland 🗍
Recon Information: Discharge Mea	surement: Wadi	ng 🗌 Boat 🗌	Siream Depth (ft):	
	Continuous Mo	onitor Deployment: F	ixed: 🗌 Bouy: 🗍	
Boat Accessibl Bridge [] Bri	e: Nearest La dge Safe:	unch: Bridge Height:		
		Profiling Measurer		
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cn Depth (m):	n):
Time: D.O.:	Temp.(°C): D.O. %:		Spcond(μhmos/cn Depth (m):	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cr Depth (m):	n):
Comments: Flo	w was ta	Ken in repl	esentative cr	ess Section
References				
Convert Feet to Meters	Convert Celsius	to Fahrenbeit		
$0.5 \text{ ft} \ge 0.15 \text{ m}$	20 ≅ 68	25 ≅ 77		
$1.0 \text{ ft} \approx 0.30 \text{ m}$	21 ≥ 69.8	26 ± 78.8		
1.5 ft = 0.45 m	22 ≥ 71.6	27 ≅ 80.6		
2.0 ft = 0.60 m	23 ≘ 73.4	28 ≈ 82.4		
$2.5 \text{ ft} \approx 0.75 \text{ m}$	24 ≥ 75.2	29 ≥ 84.2		

Site Information
Sile #: 3665 Subsegment: 040903 Date: 619108 Time 1005 hrs
Walerbody: BAYON CANE
Tapedown 1: Stall Gauge 1: Gauge Height 1:
Sile Location 1: Abov Top Boat Site
Personnel: Jones, Hicks, Kerth
Type of Work. Recon Dala Collection 🖳
Weather Conditions Temperature (°F): Wind looph): Wind Direction: Clear □ Hot >85° □ <1 □
Stream Characteristics:
Waterbody Type: Stream Fow Direction Upstream Downstream Tidally Influenced: Wind Influence: Wind Influence: Downstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID: LDO 25
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID:
Velocity Estimated: Drogue Estimate: Dye Estimate:
Right Descending Bank Distance (II): Time (s):
Mid Stream Distance (II): Time (s):
Left Descending Bank Distance (ft): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer IU:
GPS Measurement: Site GPS: Cross Section GPS:
All work is done within 100 yard radius of Site

			Site 31665 0	10:05
Photos Taken:	P	cture File #s:		7-10-
~		-		
Tapedown Establishe				
Benchmark Establishe Survey Equipment Use	a: []	Benchmark Location:		
Time of Travel Measu Amount of Dye		Type of Site: Injec	tion Collection	
Physical Site Charact	eristics: Natural de Waterbody:		Allered Walerbody:	
Sugar Daylor	emilloon []		orania sinomon na	2007 - 10 - 3200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 2
Stream Bottom: Sand/S	Sandy Cla	y Gravel Gravel	Hard Clay Concrete	Soft Silt [
Type: M	e Present: Loc an Made Dam	Flow Regulation (Device Beaver Dam	Log Jam [
Land Use: Agric	culture 🗌 Forestr	y 🗌 Municipal 🔲 Indi	ustrial Field/Pasture [] 51-75% 76-10] Welland []
Recon Information: Discharge Mea	surement: Wad	ing Boat	Stream Depth (II):	
	Continuous Ma	onitor Deployment: - f	Fixed: Bouy: D	
Bridge 🗌 Br		Bridge Height:		
	~	Profiling Measurer	ments:	
Time: D.O.:	remp.(°C):	Salinity:	Spcond(µhmos Depth (m):	(cm):
				Carl
Time: D.O.:	Temp.(°C):	pH:	Spcond(µhmos. Depth (m):	/cm):
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos Depih (m):	(cm):
Comments:				
References Convert Feet to Meters	Convert Celsius	to Fabrenheit		
0.5 ft = 0.15 m	20 ≅ 68	25 ≘ 77		
1.0 fi = 0.30 m	21 = 69.8	26 ≡ 78 8		
1.5 ft = 0.45 m	22 = 71.6	27 ∈ 80 6		
2.0 ft ± 0.60 m	23 ≥ 73.4	28 = 82.0		
2.5 fr = 0.75 m	24 ≡ 75 2	29 ≡ S4 ?		

Payou Care Surry	Site Information
Site #: 3665 (BX 03)	Subsegment: <u>04090</u> Date: <u>6/20/08</u> Time: <u>0945/m</u>
Waterbody: Reyou Can	£
Tapedown 1:	Staff Gauge 1: Gauge Height 1:
Site Location 1: Top	P.o.t Site
Personnel: Garner 5	mith
Type of Work: Recon	Data Collection 🔀
Weather Conditions:	Temperature (°F): Wind (mph): Wind Direction:
Clear 🔯 Overcasi 🗆	Hot >85° 🔼 <1 🔼 NW 🗌 N 🗎 NE 🗍 Warm > 75° 📗 1-5 🗍 SW 🗍 S 🗍 SE 🗍
Drizzle/Light Rain	Mild > 65° 6.10 E W
Showers	Cool > 60° 11-15 Variable Cold < 60° > 16
Cloud Cover. 0 −10% 💢 11 − 4	40% _ 41 - 70% _ 71 - 100% _
Stream Characteristics: Waterbody Type: Stream X	7 Flow Direction Upstream Downstream Tidally Influenced:
	d Influence Direction: Upstream Downstream
Waterbody Type: Lake	Wind Influence: Tidally Influenced:
	Sedimentation/Turbidity Present in Water Column % Surface Coverage: <1 1-25% 26-50% 51-75% 76-100%
Water Quality Samples Taken:	Water Quality Field Parameters: Profiling:
	Water Quality Field Parameters
Time: Temp.(°C):	pH: SpCond(µhmos/cm):
D.O.: D.O. %:	
InSitu Probe ID:	
Continuous Monitor Deployed:	Continuous Monitor ID:
Continuous Monitor Retrieved:	Continuous Monitor Depth (m):
Water Level Monitor Deployed: X	Instrument ID: Station 2
	of Measurement: Wading Stationary Moving Boat
Instrument ID:	
Stream Velocity Monitor Deplo	yed [] Instrument ID:
Velocity Estimated:	Drogue Estimate: Dye Estimate:
Right Descending Bank	Distance (ft): Time (s):
Mid Stream	Distance (It): Time (s):
Left Descending Bank	Distance (II): Time (s):
Cross Section Measurement:	Type of Measurement Manual: Fathometer
Fathometer ID:	
GPS Measurement:	Site GPS: Cross Section GPS:
All work is done within 100 yard radius of Site	

			Site 3665 D	ate: 6-20-08
				09:45
Photos Taken:	Pi	cture File #s:		
	_			
Tapedown Establish				
Benchmark Establish Survey Equipment Use	ed: [_] ed: [_]	Benchmark Location:		
Time of Travel Measu Amount of Dye		Type of Site: Inje	ction Callection	
Man-Mi Stream Dry/Int Stream Bottom Sand/S Control Structu Type: N Land Use: Agr	ade Waterbody: ermittent: :: Sandy	y Gravel Gravel Fix/Gravel/Silt Filow Regulation: Flow Regulation	Hard Clay Concrete Beaver Dam ustrial Field/Pasture 51-75% 76-10	Wetland 🗍
Recon Information:	saurament, Wadi	na 🗆 Root 🗆	Stream Depth (It):	
Discharge Me			Fixed: Bouy:	
Bridge 🗌 🛭 B	ole: Nearest La ridge Safe:	unch: Bridge Height:		
	~	Profiling Measure	ments:	
D.O.:	lemp.(°C):	Salinity:	Spcond(µhmos/ Depth (m):	cm):
Time:	Temp.(°C):	pH:	Spcond(µhmos/	cm):
D.O.:	D.O. %:	Salinity:	Spcond(µhmos/ Depth (m):	
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/ Depth (m):	cm):
Comments:				
References				
Convert Feet to Meters	Convert Celsius	to Fahrenheit		
0.5 ft = 0.15 m	20 ≘ 68	25 ≡ 77		
1.0 $h \equiv 0.30 \text{ m}$	21 ≡ 69.8	26 ≘ 78.8		
$1.5 \text{ ft} \equiv 0.45 \text{ m}$	22 = 71.6	27 ≥ \$0.6		
$2.0 \text{ fi} \equiv 0.60 \text{ m}$	23 ≡ 73.4	2S ≡ S2.4		
$2.5 \text{ ft} \equiv 0.75 \text{ m}$	24 ≤ 75.2	29 ≘ 84.2		

Site Information
Site #: 3752 Subsegment: 040903 Date: 617 06 Time: 1020 Mrs
Walerbody: BAYON CANE
Tapedown 1: Stall Gauge 1: Gauge Height 1:
Site Location! Above Hwy 190
Personnel: Jones, Hicks, Keith
Type of Work. Recon Data Collection 🔟
Weather Conditions: Temperature (°F): Wind (orbh): Wind Direction: Clear S Hol >85 °
Stream Characteristics: Waterbody Type: Stream
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Wind Influence Direction: Upstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID: 43550
Continuous Monitor Retrieved: Continuous Monitor Depth (rn): 1 H
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Stream Velocity Monitor Deployed
Velocity Estimated: Drogue Estimate: Dye Estimate: D
Right Descending Bank Distance (It): Time (s):
Mid Stream Distance (II) Time (s):
Left Descending Bank Distance (it) Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer IU: 5N 080
GPS Measurement: Cross Section GPS: Cross Section G

¹ All work is done within 100 yard ractius of Silc

			Site 3752 Date:	4/17/08
				10:20
Photos Taken:	Pi	cture File #s:		
T		Ŧ		
Tapedown Establishe	sa. □ (rapedown Location:		
Benchmark Establishe Survey Equipment Use	d: []	sencrimark Location:		
Time of Travel Measu Amount of Dye		Type of Sile: Injectio	n Callection	
Man-Ma Stream Dry/Inte Stream Bottom: Sand/S Control Structor	de Waterbody: rmittent: Sandy Clay ill Soc re Present: Loc	Gravel Gravel Gravel Gravel/Sili Gravel/Sili Gravel/Sili Gravel/Sili Gravel Gra	, —	II SiII 🗹 — Log Jam 🗍
Recon Information:			Stream Depth (II):	
,		nitor Deployment: Fix		
	idge Sale: 🗌	unch:Bridge Height: Profiling Measureme		
Time:	Temp.(°C):	pH:	nts: Spcond(µhmos/cm)	
D.O.:	D.O. %:	pH; Salinity:	Depth (m):	
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm)	1 1
D.O.:	D.O. %:	Salinity:	Spcond(μhmos/cm) Depth (m):	
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm)	
D.O.:	D.O. %:	Salinity:	Spcond(μhmos/cm) Depth (m):	
Comments:				
References Convert Feet to Meters	Convert Celsins	a Enbrenheit		
0.5 fr = 0.15 m	20 = 68	25 a 77		
0.5 H ± 0.15 m 1 0 h ≘ 0.30 m	20 ≘ 69.8	25 ± 78 8		
1.5 (c ± 0.45 m	21 ± 69.5	27 ± 50 6		
2.0 ft ≥ 0.60 m	23 € 73.4	28 = 82.4		
	23 € 73.4	29 ± 8-1 ?		
2.5 (i = 0.75 m	:4 € 73.2	13 = 9.1 1		

Site Information
Site #: 3752 Subsegment: 040903 Date: 6/18/08 Time: 1000hrs
Walerbody: 13AYM CANE
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Site Location 1: Just above Hwy 190
Personnel: Junes, Hicks Keith
Type of Work. Recon Data Collection
Weather Conditions: Temperature (F): Wind Direction: Clear ☐ Hot >85° ☐ <1 ☐
0 - 10%
Stream Characteristics: Walerbody Type: Stream [V]
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence:
Waterbody Type: Lake Wind Influence: Tidally Influenced: Wind Influence: Wind Influenced: Wind Inf
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: 1000hrs Temp.(°C): 28.44 pH: 7.45 SpCond(μhmos/cm): 466, 3 D.O.: 1.91 D.O. %: 24.7 Salinity: 23 Depth (m): 1μ Secchi (in): InSitu Probe ID: 43538
Continuous Monitar Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (rn):
Water Level Monitor Deployed:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID:
Velocity Estimated: Drogue Estimate: Dye Estimate: D
Right Descending Bank Distance (II): Time (s):
Mid Stream Distance (II): Time (s):
Left Descending Bank Distance (it): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer D
GPS Measurement: Site GPS: Cross Section GPS:
I all york is done within 100 yard radius of Site

			Site 375 2 Date: 611	8/08
			10:	00
Photos Taken:	P	cture File #s:		
T		Tanadawa Luasiisaa		
Tapedown Establishe				
Benchmark Establishe Survey Equipment Use	d: []	Benchmark Location: _		
Time of Travel Measu Amount of Dye		Type of Site: Injection	on Callection	
Stream Dry/Inte Stream Bottom: Sand/Si Control Structur Type: M	de Waterbody: [ermittent:] Sandy	y Gravel Gravel ation De	* 1 TO 1 T	on Jam 🖂
Percent Tree C	anopy Cover 0-25	% [] 26-50%[]	51-75% 76-100%	
Boat Accessib	Continuous Mo	unch:		
Bridge [] Br		Bridge Height:		
~	7 (40)	Profiling Measureme	ents:	
D.O.:	D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):	
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm): Depth (m):	
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm):	
D.O.:	D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):	
Comments:				
References				
	Convert Celsins	to Fahrenheit		
	Convert Celsins 20 ≈ 68	to Fahrenheit 25 g 77		
References Convert Feet to Meters 0.5 fr = 0.15 m 1.0 fr = 0.30 m				
Convert Feet to Meters 0.5 ft ≈ 0.15 m	20 ≥ 68	25 = 77		
Convert Feet to Meters 0.5 fi = 0.15 m 1.0 fi = 0.30 m	20 ≥ 68 21 ≥ 69 8	25 ≅ 77 26 ≅ 78.8		

Site Information
Site #: 3752 Subsegment: 040963 Date: 6/19/08 Time: 1025 hrs
Walerbody: BAYON Cane
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Site Location 1: Just above Hay. 190
Personnel: Janes, With, Hicks
Type of Work. Recon Data Collection
Weather Conditions: Temperature (*F): Wind (mph): Wind Direction: Clear Hot >85° <1 NW N NE
Stream Characteristics:
Waterbody Type: Stream Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence:
Walerbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1-25% 26-50% 51-75% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: PH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID: 43550
Continuous Monitor Retrieved: Continuous Monitor Depth (rn) 1,0 m
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Stream Velocity Monitor Deployed 🗌 Instrument ID.
Velocity Estimated: Drogue Estimate: Dye Estimate:
Right Descending Bank Distance (II): Time (s):
Mid Stream Distance (II): Time (s):
Left Descending Bank Distance (ii): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Falhomeler IU:
GPS Measurement: [Site GPS: [Cross Section GPS- [
All work is clone within 100 yard ractius of Sirc

			Site 3752 Date: 4 19/08
Photos Taken:	Pie	cture File #s:	
Tapedown Establishe Benchmark Establishe	2010/01/2010 00:0000000		
Survey Equipment Use	d: []	senchinals Location:	
Time of Travel Measu Amount of Dye		Type of Site: Inject	ion Collection
Stream Dry/Inte Stream Bottom: Sand/S Control Structur Type: M	de Walerbody: crmittent: Sandy Clay iii Soc e Present: Loc an Made Dam	/ Gravel Gravel alion: Flow Regulation D	
			51-75% 76-100%
Recon Information: Discharge Mea	surement: Wadi	ng 🗌 Boat 🗍	Stream Depth (ft):
	Continuous Mo	initor Deployment: F	ixed: Bouy: D
		Bridge Height:	
Time:	Tomp / 901:	Profiling Measuren	Second/uhmestem)
D.O.:	D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Time:	Temp (°C):	nH·	Spendlubmostem)
D.O.:	D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm): Depth (m):
Comments:			
0.0			
References Convert Feet to Meters	Convert Celsius	o Fahrenheit	
0.5 ft = 0.15 m	20 ≅ 68	25 a 77	
1.0 ft ± 0.30 m	21 ≈ 69.8	26 ≘ 78 8	
1.5 ft = 0.45 m	22 ≅ 71.6	27 = SU.6	
2.0 ft ≥ 0.60 m	23 ∈ 73.4	28 ≥ \$2 4	
2.5 ft ≥ 0.75 m	24 ≡ 75.2	29 = \$4 2	

Cane Boyou Survey Site Information
Site #: 375 (BC OV) Subsegment: 040904 Date: 6/16/02 Time: 1240/h
Waterbody: Cant Layou
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Site Location 1: Lelow Hwy 190
Personnel: Gerner, Alleman
Type of Work: Recon Data Collection
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction:
Clear ☑ Hot >85 ° ☑ <1 ☐ NW ☐ N ☐ NE ☐ Overoast ☐ Warm > 75 ° ☐ 1-5 ☐ SW ☐ S Ø SE ☐
Orizzle/Light Rain ☐ Mild > 65° ☐ 6-10 ☒ E ☐ W ☐
Clear
Cloud Cover. 0 −10% 🔯 11 − 40% 🔲 41 − 70% 🔲 71 − 100% 🗍
Stream Characteristics: Waterbody Type: Stream 🔼
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Wind Influence Direction: Upstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50%
51-75% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: PH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
mond Process.
Continuous Monitor Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: A Instrument ID: Station
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Stream Velocity Monitor Deployed Instrument ID:
Stream velocity Monitor Deployed Tristroment ID.
Velocity Estimated: ☐ Drogue Estimate: ☐ Dye Estimate: ☐
Right Descending Bank Distance (ft): Time (s):
Mid Stream Distance (It): Time (s):
Left Descending Bank Distance (It): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Falhometer ID:
GPS Measurement: Site GPS: Cross Section GPS:
All work is done within 160 yard radius of Site

			Site 3753 Da	te: 6-16-08
Photos Taken:	Pic	cture File #s:		13:40
Tapedown Establishe	d: []	Tanedown Location:		
Benchmark Established				
Survey Equipment Used				
Time of Travel Measur Amount of Dye		Type of Site: Inject	ion Collection	
Stream Dry/Inte Stream Bottom: Sand/Si Control Structur Type: Mt Land Use: Agric	de Waterbody: rmittent: Sandy Clay It Roc e Present: Loca an Made Dam ulture Forestry	Gravel Gravel/Silt ation: Flow Regulation D Municipal Indu	. —	Wetland [
Recon Information: Discharge Mea	surement: Wadi	ng 🗌 Boat 🗍	Stream Depth (ft):	
	Continuous Mo	nitor Deployment: F	ixed: Bouy: D	
	A STATE OF THE SECOND PROPERTY.	Bridge Height:		
		Profiling Measurem	nents:	
D.O.:	lemp.(°C): D.O. %:	PH: Salinity:	Spcond(µhmos/c Depth (m):	m):
Time: D.O.:	Temp.(°C):	pH: Salinity:	Spcond(μhmos/c Depth (m):	m):
Time:	Temp.(°C): D.O. %:	pH:Salinity:	Spcond(µhmos/c Depth (m):	m):
Comments:				
References				
Convert Feet to Meters	Convert Celsius 1	o Fahrenheit		
0.5 ft = 0.15 m	20 ≡ 68	25 ≡ 77		
1.0 fc $\equiv 0.30$ m	21 = 69 8	26 ≥ 78.8		
1.5 ft ≈ 0.45 m	22 ≅ 71.6	27 ≡ S0.6		
2.0 ft = 0.60 m	23 ≘ 73.4	28 ≈ 82.4		
2.5 ft = 0.75 m	24 = 75.2	29 ≈ \$4.2		

Site Information	
Site #: 3753 Subsegment: 040904 Date: 4 17 08 Time: 1105 h.	S
Walerbody: Bayon Came	
Tapedown 1: Stall Gauge 1: Gauge Height 1:	
Site Location 1: Below Hwy 190	
Personnel: Janes, Hicks, Keith	
Type of Work: Recon Data Collection	
Wealther Conditions: Temperature F): Wind (meth): Wind Direction: Clear P Hot >85° P <1 P	
· · ·	
Stream Characteristics: Waterbody Type: Stream Y Flowing: Measurable Flow: Y Flow Direction Upstream Downstream Tidally Influenced: Wind Influence: Wind Influence Direction: Upstream Downstream Do	8
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1/2 1-25% 26-50% 76-100%	
Water Quality Samples Taken: Water Quality Field Parameters: Proliting:	
Water Quality Field Parameters	
Time: Temp.(°C): pH: SpCond(μhmos/cm):	
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):	
InSitu Probe ID:	
42544	
Continuous Monitor Deployed: Continuous Monitor ID: 43544	
Continuous Monitor Retrieved. Continuous Monitor Depth (m):	
Water Level Monitor Deployed: Instrument ID:	=
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat	
Instrument ID:	
Stream Velocity Monitor DeployedInstrument ID;	
Velocity Estimated: Drogue Estimate: Dye Estimate:	_
Right Descending Bank Distance (II): Time (s):	
Mid Stream Distance (II): Time (s):	
Left Descending Bank Distance (it): Time (s):	
Cross Section Measurement: Type of Measurement Manual: Fathometer	Marie .
Falhometer IÜ:	
GPS Measurement: Site GPS: Cross Section GPS:	

¹ All work is done within 100 yard radius of Site

			Site 3753 Date:	6/17/08
Photos Taken: 🔲	9	Picture File #s:		11:05
Tanadana Calabiah		Tanada us Lagadian		
Tapedown Establishe	_			
Benchmark Establishe Survey Equipment Use		Reuchmark Focation.		
Time of Travel Measu Amount of Dye		Type of Site: Inject	ion Collection	
Man-Ma Stream Dry/Inte Stream Bottom Sand/S Control Structu Type: M Land Use: Agric	ide Walerbody: [prmillent: [] : Sendy[] Cl ilit [] Ro re Present: [] Lo lan Made Dam[culture [] Forest	ay Gravel Gravel Gravel Gravel Gravel/Silt Gravel/Silt Gravelion: Flow Regulation D ry Municipal Gradu		lland 🕡
Recon Information: Discharge Mea	asurement: Wa	ding Boal	Stream Depth (II):	_
		Monitor Deployment: F	2000	
		aunch: Bridge Height:		
Ti	Toma (eC)	Profiling Measurem	rents.	
Time: D.O.:	D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):	
Time:	Temp.(°C)	: Hq	Spcond(µhmos/cm):	*
0.0.:	D.O. %:	Salinity:	Spcond(μhmos/cm): Depth (m):	
Time:	Temp.(°C)	: pH:	Spcond(uhmos/cm):	
D.O.:	D.O. %:	Salinity:	Spcond(µhmas/cm): Depth (m):	
Comments:				
References Convert Feet to Meters	Convert Celsio	s to Fahrenheit		
0.5 ft = 0.15 m	20 ≈ 68	?5 ≘ 77		
1.0 ft = 0.30 in	21 = 69 \$	26 a 78 8		
1.5 ft ≥ 0.45 m	22 = 71.6	27 = SU.6		
2.0 ft = 0.60 m	23 = 73.4	28 ± 82,4		
2.5 ft ≡ 0.75 m	24 ≘ 75 2	29 ≅ 84.2		
2.3 H & 0.73 m	-7 = 12 =	* 3 E 911.2		

Site Information
Site #: 3753 Subsegment: 040904 Date: 6/18/08 Time: 1020 hrs
Walerbody: BAYIN Cane
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Sile Location 1: Just Below Hwy 190
Personnel: Joves, Hicks, Keith
Type of Work. Recon Data Collection 🖸
Weather Conditions: Temperature (F): Wind (men): Wind Direction: Clear ☐ Hol >85° ☐ <1 ☐
Stream Characteristics:
Waterbedy Type: Stream Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Direction: Upstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: 1820 Temp.(°C): $29/65$ pH: 4.89 SpCond(μ hmos/cm): 1745 D.O.: 2.16 D.O. %: 29.9 Salinity: 93 Depth (m): 18 Secchi (in): 18 InSitu Probe ID: 18
Continuous Monitor Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor DeployedInstrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID
Velocity Estimated: Drogue Estimate: Dye
Right Descending Bank Distance (II): Time (s):
Mid Stream Distance (II): Time (s):
Left Descending Bank Distance (ft): Time (s):
Cross Section Measurement. Type of Measurement Manual: Fathometer
Fathometer IU:
GPS Measurement: Site GPS: Cross Section GPS:
Last mark is done within 100 yard radius of Site

				Sile 3753	Date: 6/18/08
	-				10:20
Photos Taken:	r 	icture File #s:			
Tapedown Establishe	od: 🗇	Tanedown Local	ion:		
Benchmark Establishe					
Survey Equipment Use	d: 🗍				
Time of Travel Measu Amount of Dye	rement: Injected (ml):	Type of Site:	Injection [Collection	
Physical Site Charact			Man Allere	ed Waterbody: [
Stream Drullnte	de Waterbody: [_ rmittent: []				
Stream Bottom: Sand/S	Sandy Cla	grave CNGraveNSill	ri□ H C	ard Clay 🔲 oncrete 🔲	Soft Sin [
COMIO STUCIO	e mesent. Littor	-au011			am D Log Jam D
Land Use: Agric	culture T Forestr	y Municipal 5% 26-50	Industrial	Field/Pasture	e Welland
Recon Information:					
Discharge Mea	surement: Wad	ling 🗌 🛮 Boat (□ s	iream Depih (II)	:
	Continuous M	onitor Deploymen	t: Fixed:	☐ Bouy: ☐	
		aunch: Bridge Heigh			
		Profiling Meas	urements		
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity	/:	Spcond(µhm Depth (n	os/cm):
Time:	Temp.(°C): D.O. %:	pH: Salinity	r:	Spcond(µhm Depth (n	os/cm):
Time:	Temp.(°C): D.O. %:	pH: Salinity	/:	Spcond(µhm Depth (n	os/cm):
Comments: Fland	MARASURWA	ent taken	6) <	ile is r	representative
X-5ect.					tepresent-estic
N. 3001.					
			-		
References					
Convert Feet to Meters	Convert Celsius	to Fahrenheit			
0.5 fr = 0.15 m	20 ≡ 68	25 ≅ 77			
1.0 ft ≤ 0.30 m	21 ≥ 69 8	26 = 78 S			
1.5 ft ≡ 0.45 m	22 ± 71.6	27 = 80 6			
2.0 ft = 0.60 m	23 = 73 a	28 m 82.4			
2.5 (c = 0.75 m	24 ≥ 75 2	30 € 84 3			

Site Information
Site #: 3753 Subsegment: 040904 Date: 6/19/08 Time: 1030 hrs
Waierbody: Bayon Cane
Tapedown 1: Staff Gauge 1: Gauge Height 1:
Sie Location1: Personnel: Beard Tieben
Type of Work: Recon Data Collection
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction Clear ☐ Hot >85° ☐ <1 ☐
Cloud Cover. 0 -10%
Waterbody Characteristics: Waterbody Type: Stream
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Direction: Upstream Downstream
Waterbody Type: Lake ☐ Wind Influence: ☐ Tidally Influenced: ☐
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm): D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: RC368 Velocity Monitor Deployed Instrument ID:
Velocity Estimated: ☐ Drogue Estimate: ☐ Dye Estimate: ☐
Right Descending Bank Distance (II): Time (s)
Mid Stream Distance (It): Time (s):
Left Descending Bank Distance (ft): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer Fathometer ID:
GPS Measurement: ☐ Site GPS: ☐ Cross Section GPS: ☐
Photos Taken: Picture File #s:
All work is done within 100 yard radius of Sue

			Site 3763 Date: 6 18 06
			10:30
Tapedown Established Benchmark Established Survey Equipment Used	: 🔲		
Time of Travel Measure Amount of Dye In		Type of Site: Injec	tion Collection
Waterbody Dry/Ir Waterbody Bottol Sand/Sill Control Structure Type: Ma Land Use: Agricu	e Waterbody: Intermittent: Intermi	Clay☐ Gri k/Gravel/Silt ☐ ation: Flow Regulation I r ☐ Municipal ☐ Ind	avel Hard Clay Solt Silt Concrete Device Beaver Dam Log Jam ustrial Field/Pasture Wetland 51-75% 76-100%
Boat Accessible	Continuous Mo	onitor Deployment:	Siream Depth (ft):
Bridge Brid		Bridge Height:	
Time:	Temp.(°C):	Profiling Measure pH: Salinity:	Spcond(uhmos/cm):
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm): Depth (m):
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm): Depth (m):
Comments: Flow Sect	was ta	Ken in re	presentative cross
References			
Convert Feet to Meters	Convert Celsius	to Fahrenbeit	
0.5 ft \(\pi \)0.15 m	20 ≅ 68	25 ≅ 77	
$1.0 \text{ ft} \approx 0.30 \text{ m}$	21 ≈ 69.8	26 ≘ 78.8	
$1.5 \text{ fi} \approx 0.45 \text{ m}$	22 = 71.6	27 ≅ 80.6	
$2.0 \text{ ft} \approx 0.60 \text{ m}$	23 = 73.4	28 ± 82.4	

Site Information
Site #: 3753 Subsegment: 040904 Date: 6 19 108 Time 1105 hts
Walerbody: BAYOU CANC
Tapedown 1: Staff Gauge 11 Gauge Height 1:
Sile Location ! Trist below they 190
Personnel: Jone 5, Hicks, Keith
Type of Work Recon Dala Collection
Wealher Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear ✓ Hot > 85° <1
Cloud Cover. 0 - 10% 11 - 40% 141 - 70% 71 - 100% 1
Stream Characteristics: Waterbody Type: Stream Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced: Wind Influence: Downstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present ☐ Sedimentation/Turbidity Present in Water Column ☐ Floating/Aquatic Vegetation % Surface Coverage: <1 ☑ 1-25% ☐ 26-50% ☐ 51-75% ☐ 76-100% ☐
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Stream Velocity Monitor Deployed
Velocity Estimate: Drogue Estimate: Dye Estimate: Dye Estimate:
Right Descending Bank Distance (II): Time (s):
Mid Stream Distance (II): Time (s):
Left Descending Bank Distance (ii): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer D
GPS Measurement:

			Site 3753 Date: 6/19/0
Photos Taken: 🗌	Pi	cture File #s:	11;05
Tapedown Establishe	ed: 🗌	Tapedown Location:	
Benchmark Establishe Survey Equipment Use	ed: [] ed: []	Benchmark Location: _	
Time of Travel Measu Amount of Dye		Type of Site: Injection	on Collection
Physical Site Charact			Allered Waterbody:
C	ide Waterbody:		
Stream Boltom:	: Sandy Cla	y Gravel Gravel	Hard Clay Solt Sill Concrete
Land Use: Agric	culture 🗌 Forestr	y 🗌 Municipal 🔲 Indus	evice Beaver Dam Log Jam strial Field/Pasture Wetland 5 51-75% 76-100%
Recon Information:			
Discharge Mea	esurement: Wad	ng Boat	Stream Depth (II)
	Continuous Mo	onitor Deployment: Fit	ked: Bouy: C
	idge Sale: 🗌	unch: Bridge Height:	
		Profiling Measurem	ents:
D.O.:	lemp.(°C): D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Time:	Temp.(°C):	pH;	Spcond(µhmos/cm):
D.O.:	0.0. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Time:	Temp.(°C):	pH:	Spcond(uhmos/cm):
D.O.:	D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Comments:			
D 6			
Referênces Convert Feet to Meters	Convert Celsius	to Fahrenheit	
0.5 ft = 0.15 m	20 ≡ 68	25 ≘ 77	
1 () It = 0.30 m	21 = 69.8	26 = 78 8	
1.5 ft = 0.45 m	22 = 71.6	27 = 80 6	
2.0 ft = 0.60 m		2S = \$2,4	
2.5 lt = 0.75 m	24 = 75.2	29 = \$0.2	

State Location State Sta	TE # JOSECULA	Subsegment: <u>D4D9D4</u> Date: <u>6/20/08</u> Time: <u>D920</u>
Stell Location Stell May 90		e
pe of Work: Recon Data Collection Data Colle	apedown 1:	Staff Gauge 1: Gauge Height 1:
Data Collection Data Colle	Site Location : Below	Hwy 190
Pather Conditions: Temperature (°F): Wind (mph): Wind Direction:	ersonnel: Gurner, S	mith
Clear	pe of Work. Recon	Data Collection 🔀
11 - 40%	Pather Conditions: Clear X Overchat Drizzle/Light Rain Showers	Hot 85°
Waterbody Type: Stream		40% _ 41 - 70% _ 71 - 100% _
Iowing:	Waterhorly Type: Stream	7
Waterbody Type: Lake Wind Influence: Tidally Influenced: Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: c1 1-25% 26-50% 51-75% 76-100% Other Quality Samples Taken: Water Quality Field Parameters: Profiling: Water Quality Field Parameters Time: Temp.(°C): pH: SpCond(µhmos/cm): D.O.: D.O. %: Salinity: Depth (m): Secchi (in): InSitu Probe ID: Continuous Monitor ID: Ye Monitor Period (in): Continuous Monitor Retrieved: Continuous Monitor Depth (m): Instrument ID: Instrument ID: Stationary Moving Boat Instrument ID: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (II): Time (s): Mid Stream Distance (II): Time (s):	lowing: 7 Measurable Flow! [Flow Direction Upstream Downstream Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1		
Floating/Aquatic Vegetation % Surface Coverage: <1		
Water Quality Field Parameters Time: Temp.(°C): pH: SpCond(µhmos/cm): D.O.: D.O. %: Salinity: Depth (m): Secchi (in): InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor ID: Dye Menifor Fix Continuous Monitor Retrieved: Continuous Monitor Depth (m): Valer Level Monitor Continuous Monitor Depth (m): Velocity Estimated: Type of Measurement: Wading Stalionary Moving Boat Instrument ID: Velocity Estimated: Drogue Estimale: Dye Estimate: Right Descending Bank Distance (II): Time (s): Left Descending Bank Distance (II): Time (s): Left Descending Bank Distance (II): Time (s):	Floating/Aquatic Vegetation	% Surface Coverage: <1
Water Quality Field Parameters Time: Temp.(°C): pH: SpCond(µhmos/cm): D.O.: D.O. %: Salinity: Depth (m): Secchi (in): InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor ID: Dye Menifor Fix Continuous Monitor Retrieved: Continuous Monitor Depth (m): Valer Level Monitor Continuous Monitor Depth (m): Velocity Estimated: Type of Measurement: Wading Stalionary Moving Boat Instrument ID: Velocity Estimated: Drogue Estimale: Dye Estimate: Right Descending Bank Distance (II): Time (s): Left Descending Bank Distance (II): Time (s): Left Descending Bank Distance (II): Time (s):	ater Quality Samples Taken:	Water Quality Field Parameters: Profiling:
Time: Temp.(°C): pH: SpCond(µhmos/cm): D.O.: D.O. %: Salinity: Depth (m): Secchi (in): InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor ID: Monitor Depth (m): Continuous Monitor Retrieved: Continuous Monitor Depth (m): Continuou		
D.O.: D.O. %: Salinity: Depth (m): Secchi (in): InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor ID: Depth (m): Continuous Monitor Retrieved: Continuous Monitor Depth (m): Vater Level Monitor Section Continuous Monitor Depth (m): Vater Level Monitor Section Continuous Monitor Depth (m): Valer Level Monitor Depth (m): Secchi (in): Instrument ID: Stationary Moving Boat Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	Time: Tomp / 9Cl:	No alphanet describence (in the control of the cont
Continuous Monitor Deployed: Continuous Monitor ID: Continuous Monitor Depth (m): Continuous Monitor Retrieved: Continuous Monitor Depth (m): Continuous Monitor Deployed: Continuous Monitor Depth (m): Continuous Mo	rime remp.(-c): _	
Continuous Monitor Deployed: Continuous Monitor ID: Deployed Continuous Monitor Depth (m): Continuous Monitor Beatlewed: Continuous Monitor Depth (m): Co		pennuly pennulli secontum:
Continuous Monitor Retrieved: Continuous Monitor Depth (m): /ater Level Monitor Deplayed Instrument ID: Dow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	D.O.: D.O. %; _	
Continuous Monitor Retrieved: Continuous Monitor Depth (m): /ater Level Monitor Deplayed Instrument ID: Dow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Stream Velocity Monitor Deployed Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	D.O.: D.O. %:	
Instrument ID: Stream Velocity Monitor Deployed Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	D.O.: D.O. %:	Continuous Monitor ID: Dye Monitor - Fix
Instrument ID: Stream Velocity Monitor Deployed Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	D.O. %;	Continuous Monitor ID: Dye Monitor - Fix (Continuous Monitor Depth (m):
Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Mid Stream Distance (It): Time (s): Left Descending Bank Distance (It): Time (s):	D.O. %;	Continuous Monitor ID: Dye Monitor - Fix (Continuous Monitor Depth (m):
Velocity Estimated: Drogue Estimate: Dye Estimate: Right Descending Bank Distance (It): Time (s): Mid Stream Distance (It): Time (s): Left Descending Bank Distance (It): Time (s):	D.O.; D.O. %; InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor Retrieved: Xater Level Monitor Bankanda X	Continuous Monitor ID: Dye Monitor - Fix (Continuous Monitor Depth (m): Instrument ID: Station
Right Descending Bank Distance (It): Time (s): Mid Stream Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	D.O.; D.O. %;	Continuous Monitor ID: Dye Monitor - Fix (Continuous Monitor Depth (m): Instrument ID: Station
Right Descending Bank Distance (It): Time (s): Mid Stream Distance (It): Time (s): Lett Descending Bank Distance (It): Time (s):	D.O.; D.O. %;	Continuous Monitor ID: Dye Monitor - Fix Continuous Monitor Depth (m): Instrument ID: Station / of Measurement: Wading Stationary Moving Boat
Mid Stream Distance (ft): Time (s): Time (s): Time (s):	D.O.; D.O. %;	Continuous Monitor ID: Dye Monitor - Fix Continuous Monitor Depth (m): Instrument ID: Station / of Measurement: Wading Stationary Moving Boat
Mid Stream Distance (ft): Time (s): Time (s): Time (s):	D.O.; D.O. %;	Continuous Monitor ID:
Lett Descending Bank Distance (It): Time (s):	D.O.: D.O. %;	Continuous Monitor ID:
	D.O.; D.O. %;	Continuous Monitor ID: Dye Monitor - Fix Continuous Monitor Depth (m): Instrument ID: Station of Measurement: Wading Stationary Moving Boat nyed Instrument ID: Drogue Estimate: Dye Estimate: C Distance (II): Time (s):
	D.O.: D.O. %:	Continuous Monitor ID:
Fathometer ID:	D.O.: D.O. %; InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor Retrieved: Cater Level Monitor Bealayed X ow Measurement: Type Instrument ID: Stream Velocity Monitor Deplo Velocity Estimated: Right Descending Bank Mid Stream Left Descending Bank	Continuous Monitor ID: Dye Monitor — Fix Continuous Monitor Depth (m): Instrument ID: Station of Measurement: Wading Stationary Moving Boat nyed Instrument ID: Drogue Estimate: Dye Estimate: C Distance (II): Time (s): C Distance (III): Time (s): C Distance (III): Time (s):

[†] All work is done within 100 yard radius of Site

			Site 3753 Date: 6-20-08
		× 6,	9120
Photos Taken:	Pi	clure File #s:	1.20
Tapedown Establishe		Tapedown Location:	13.4. 13.1.2.4
Benchmark Established Survey Equipment Used		Benchmark Location: _	
Time of Travel Measur Amount of Dye I		Type of Site: Injecti	ion Collection
Physical Site Characte			Allered Waterbody:
Man-Mac Stream Dry/Inter	de Waterbody:		
Stream Bottom:	Sandy☐ Clay	y Gravel Ck/Gravel/Silt	Hard Clay Solt Silt S
	IL∐ Roc e Present: □Loc		Concrete [
Type: Ma Land Use: Agric	an Made Dam ulture Forestr	Flow Regulation De	evice Beaver Dam Log Jam Strial Field/Pasture Wetland 51-75% 76-100%
	mopy Cover 0-23	26-30%[]	
Recon Information: Discharge Mea	surement: Wadi	ing Boat D	Stream Depth (II):
Siconary o mos		onitor Deployment: Fi	
		1970-1970-1970-1970-1970-1970-1970-1970-	xed. [
	e:	Bridge Height:	
		Profiling Measurem	ents:
Time: D.O.:	Temp.(°C):	pH: Salinity:	Spcond(µhmos/cm): Depth (m):
Time: D.O.:	Temp.(°C):	pH:	Spcond(µhmos/cm): Depth (m):
D.O			
Time:	Temp.(°C):	pH: Salinity:	Spcond(μhmos/cm): Depth (m):
D.O.:	D.O. 76.	Saminy.	Deptir (iii).
Comments:			
	,) ,	1	
	, , ,	*	The same state of the same sta
References			
Convert Feet to Meters	Convert Celsius	to Fahrenheit	
0.5 fr = 0.15 m	20 ≅ 68	25 ≅ 77	
1 0 fc = 0.30 m	21 ≥ 69.8	26 ≘ 78.8	
1.5 ft = 0.45 m	22 ≅ 71.6	27 ≡ 80 6	
2.0 ft ≥ 0.60 m	23 ≅ 73.4	28 ≘ 82.4	
2.5 ft = 0.25 m	24 = 75 2	20 = 84 2	

Bayon C. e Survey

Site information Subsequent 040904 Date 6-17-08 Time 0930 Visierosos Bayon Cane Tabedowr !: _____ Staft Sauge 1. ____ Sauge Height !: _____ SHE LOZAMON Bayon Cane North of Lake Pontchartrain Personnel Earles, Yoes, Borne Type of Work: Recon Data Collection Wind Direction.

NW N N NE SW SE SE SE SE W Temperature (°F): Wind (mph): Weather Conditions: Clear Hot >85° \(\)
Warm > 75° \(\) Overcast [Warm > /5 ` ☐ Mild > 65 ° ☐ Cool > 60 ° ☐ Cold < 60 ° ☐ Drizzle/Light Rain Showers [Variable 🗗 >16 🗌 Cloud Cover. 11 - 40% [41 - 70% [71 - 100% [0 -10% Waterbody Characteristics: Waterbody Type: Stream
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced: Wind Influence Direction: Upstream

Downstream Wind Influence: Waterbody Type: Lake Wind Influence: Tidally Influenced: Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 2 1-25% 26-50% 76-100% Water Quality Samples Taken: Water Quality Field Parameters: Profiling: Water Quality Field Parameters Time: _____ PH: ____ SpCond(μhmos/cm): ____ D.O.: _____ D.O. %: ____ Salinity: ____ Depth (m): _____ Secchi (in): ____ InSitu Probe ID: Continuous Monitor Deployed: Continuous Monitor ID: 43532 Continuous Monitor Depth (m): _______5 m__ Continuous Monitor Retrieved: Water Level Monitor Deployed: Instrument ID: Flow Measurement: Type of Measurement: Wading Stationary Moving Boat Instrument ID: Velocity Monitor Deployed Instrument ID: Velocity Estimated: Drogue Estimate: Dye Estimate: D Right Descending Bank Distance (ft): ______ Time (s): _____ Mid Stream Distance (ft): _____ Time (s): _____ Left Descending Bank Distance (It): _____ Time (s): _____ Cross Section Measurement Type of Measurement Manual Fathometer Fathometer ID: Site GPS: Cross Section GPS: GPS Measurement: Photos Taken: Picture File #s:

Ah work is done within 100 yard radius of Site

			Site 37. Date:	6-17-08
			3755	09:30
Tapedown Established:				
Benchmark Established: Survey Equipment Used:		enchmark Location: _		
Time of Travel Measurer Amount of Dye Inj		Type of Site: Injecti	on Callection	
Physical Site Character	stics: Natural V	Vaterbody: Man	Altered Waterbody:	
Man-Made Waterbody Dry/Int	Waterbody:			10
Waterbody Botton	n: Sandy	Clay Grav	vel Hard Clay	Soft Silt
Sand/Silt Control Structure		d/Gravel/Silt 🗌	Concrete	
Type: Man	Made Dam	Flow Regulation De	evice Beaver Dam	Log Jam
Land Use: Agricul Percent Tree Can	ture Forestry opy Cover 0-25°	☐ Municipal ☐ Indu: % ☐ 26-50%☐	strial Field/Pasture We 51-75% 76-100%	lland 🗾
Recon Information:				
Discharge Meas	urement: Wadir	ng 📗 Boat 🗔	Stream Depth (ft):	
	Continuous Mo	nitor Deployment: F	ixed: Bouy: D	
Boat Accessible			-	
Bridge 🔲 Brid	ge Safe: [_]	Bridge Height:		
		Profiling Measurem		
Time:	Temp.(°C): D.O. %:		Spcond(μhmos/cm): Depth (m):	500000000000000000000000000000000000000
5.6	_ 2.0. %.			
Time:	_ Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm)	:
b.o	D.O. /6.	Salimy	Depth (m):	
Time:	Temp.(°C):	pH: Salinity:	Spcond(µhmos/cm)	:
D.O.:	D.O. %:	Sainity:	Depth (m):	
Comments:				
				-
References				
Convert Feet to Meters	Convert Celsius	to Fahrenheit		
$0.5 \text{ ft} \equiv 0.15 \text{ m}$	20 ≅ 68	25 ≘ 77		
$1.0 \text{ ft} \ge 0.30 \text{ m}$	21 ≈ 69.8	26 = 78.8		
$1.5 \text{ ft} \equiv 0.45 \text{ m}$	22 = 71.6	27 = 80.6		
$2.0 \text{ h} \approx 0.60 \text{ m}$	23 ≅ 73.4	28 ≅ 82.4		
$2.5 \text{ ft} \approx 0.75 \text{ m}$	24 ≥ 75.2	29 = 84.2		

P you Cane Survey

Site Information
Ste # 3755 Subsegment 040904 Date, 6-18-08 Time. 10/0hrs
Waterbody: Bayou Canc
Tapedown 1: Staff Gauge 1: Gauge Height 1:
SHE Location 1: North of Lake
Tapedown 1: Staff Gauge 1: Gauge Height 1: She Location T: North of Lake Personnel: J. Garles, D. Borne, 1 Yoes
Type of Work: Recon ☐ Data Collection ☐
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear Hot >85° <1 □
Cloud Cover. 0 −10%
Waterbody Characteristics: Waterbody Type: Stream Flowing Measurable Flow Direction Upstream Downstream Tidally Influenced: Wind Influence: Wind Influence Direction: Upstream Downstream
Waterbody Type: Lake ☐ Wind Influence: ☐ Tidally Influenced: ☐
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 51-75% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
O 10 hr s Time: 29.83 pH: 6.86 SpCond(μhmos/cm): 305 7 D.O.: 1.17 D.O. %: 15.7 Salinity: 1.66 Depth (m): 1μ Secchi (in): N/4 InSitu Probe ID: 43549 IBA IBV 7.5
Continuous Monitor Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boal
Instrument ID: Instrument ID:
velocity Mormor Deployed [] Instrument 10.
Velocity Estimated: ☐ Drogue Estimate: ☐ Dye Estimate: ☐
Right Descending Bank Distance (ft): Time (s):
Mid Stream Distance (ft): Time (s):
Left Descending Bank Distance (ft): Time (s):
Cross Section Measurement Type of Measurement Manual: Fathometer
Fathometer ID. O80
GPS Measurement: ☐ Site GPS ☐ Cross Section GPS: ☐
Photos Taken: Picture File #s.
1 All work is done within 100 yard radius of Site

				Site 37.	Date:	6/18/08
				3755		10:10
Tapedown Established Benchmark Established Survey Equipment Used	: E	Tapedown Loca Benchmark Loca				
Time of Travel Measure Amount of Dye In		Type of Site:	Injection [Collection		
Waterbody Dry/Ir	e Waterbody: ntermittent:					
Control Structure Type: Ma Land Use: Agricu	Present: Local Loc	k/Gravel/Silt ation: Flow Regula (Municipal (tion Device Industrial	Beaver I	Dam [] re [] Wella	Log Jam 🗌
Percent Tree Ca.	nopy Cover 0-25	% 26-5	0% 51	·75% 7	6-100%	
Recon Information: Discharge Meas	surement: Wadi	ng Boat	□ St	ream Depth (f	t):	_
	Continuous Mo	nitor Deployme	ni: Fixed:	Bouy:]	
Boat Accessible Bridge Bridge	e: Nearest La dge Safe:	unch: Bridge Heigl	nt:	_		
	T (40)	Profiling Mea	surements			
Time: D.O.:	Temp.(°C): D.O. %:	Salinit	y:	Spcond(µhr Depth		
Time:	Temp.(°C): D.O. %:	pH: Salinit	y:	Spcond(µhr Depth		
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salini	ty:	Spcond(µhi Depth	mos/cm): (m):	
Comments:						Đ
References						
Convert Feet to Meters	Convert Celsius	to Fahrenheit				
0.5 ft ≥ 0.15 m	20 ≅ 68	25 ≅ 77				
$1.0 \text{ ft} \cong 0.30 \text{ m}$		26 ≅ 78.8				
1.5 ft $\approx 0.45 \text{ m}$	22 = 71.6	27 = 80.6				
$2.0 \text{ ft} \approx 0.60 \text{ m}$	23 ≅ 73.4	28 ≅ 82.4				

Field Site Survey.doc Revision 4.2 Revised 06/27/2007

2.5 ft \(0.75 \) in \(24 \) \(75.2 \) \(29 \) \(84.2 \)

Ba, u Cane Survey

Site Information				
Site # 375 - Subsequent 040904 Date 6-19-08 Time 1015				
Waterbody: Bayer Cari C				
Tapedowr 1: Staff Gauge 1: Gauge Height 1.				
Sile Location 1: North of Lake				
Personnel T Yoes J Garles				
Type of Work: Recon ☐ Data Collection ☑				
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear				
0 -10%				
Waterbody Characteristics: Waterbody Type: Stream ☑				
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced: D				
Wind Influence: Wind Influence Direction: Upstream Downstream				
Waterbody Type: Lake Wind Influence: Tidally Influenced:				
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 26-50% 76-100%				
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:				
Water Quality Field Parameters				
Berneder in State Color (1997				
Time: Temp.(°C): pH: SpCond(μhmos/cm):				
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):				
InSitu Probe ID:				
Continuous Monitor Deployed: Continuous Monitor ID: 43532				
Continuous Monitor Retrieved: Continuous Monitor Depth (m): 5 m				
Water Level Monitor Deployed: Instrument ID:				
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat				
Instrument ID:				
Velocity Monitor Deployed Instrument ID:				
Velocity Estimated: Drogue Estimate: Dye Estimate: D				
Right Descending Bank Distance (ft): Time (s):				
Mid Stream Distance (II): Time (s):				
Left Descending Bank Distance (ft): Time (s):				
Cross Section Measurement: Type of Measurement Manual: Fathometer				
Fathometer ID:				
GPS Measurement: ☐ Site GPS: ☐ Cross Section GPS: ☐				
Photos Taken: Picture File #s:				
All work is done within 100 yard radius of Site				
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

			Site 375 Date: _	10:15
Tapedown Established	1: 🗆	apedown Location:		
Benchmark Established Survey Equipment Used	: В	enchmark Location: _		
Time of Travel Measure Amount of Dye In		Type of Site: Injecti	on Collection	
Waterbody Dry/ir Waterbody Botto Sand/Sill Control Structure Type: Ma Land Use: Agricu	e Waterbody: htermittent: m: Sandy	Clay Gravel/Silt Intion:	vel Hard Clay Concrete Service Beaver Dam Strial Field/Pasture Well	
Recon Information:	surement: Wadir		Stream Depth (ft):	
Discharge Meas		nitor Deployment: F		—
Boat Accessibl Bridge Bri	e: Nearest Lau dge Safe:	unch: Bridge Height:		
Time:	Temp.(°C): D.O. %:	Profiling Measuren pH: Salinity:		
Time: D.O.:	Temp.(°C): D.O. %:		Spcond(μhmos/cm): Depth (m):	
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Comments:				
References				
Convert Feet to Meters	Convert Celsius	to Fahrenheit		
$0.5 \text{ ft} \ge 0.15 \text{ m}$	20 ≥ 68	25 ≅ 77		
$1.0 \text{ ft} \ge 0.30 \text{ m}$	21 ≡ 69.8	26 ± 78.8		
$1.5 \text{ ft} \equiv 0.45 \text{ m}$	22 ≅ 71.6	27 g 80.6		
$2.0 \text{ ft} \cong 0.60 \text{ m}$ $2.5 \text{ ft} \approx 0.75 \text{ m}$	23 ≅ 73.4 24 ≅ 75.2	28 ≅ 82.4 29 ≅ 84.2		
E 11 & U . 1 J 111	64 = 1.1 L	# 7 % O'1. C		

Cont Eclos Sur y Site Information	
Site #: 3666 (RC 08) Subsegment: 040904 Date: 4/6/09 Time: 14/2	15 kg
Waterbody: Cane Koye J Tapedown 1: Staff Gauge 1: Gauge Height 1:	
Site Location! : Latter Site on Easer Core	
Personnel: Goiner. Allamon	
Type of Work: Recon ☐ Data Collection ☑	
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear ☐ Hot >85° ☐ <1 ☐	
Cloud Cover. 0 −10%	
Stream Characteristics: Waterbody Type: Stream Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influence Wind Influence: Wind Influence Direction: Upstream Downstream	ced: D
Waterbody Type: Lake Wind Influence: Tidally Influenced:	
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1.25% 26-50% 76-100%	
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:	-
Water Quality Field Parameters	
Time: Temp.(°C): pH: SpCond(μhmos/cm):	
D.O.: D.O. %: Salinity: Depth (m): Secchi (i	n):
InSitu Probe ID:	,.
Continuous Monitor Deployed: Continuous Monitor ID:	
Continuous Monitor Retrieved: Continuous Monitor Depth (m):	
Water Level Monitor Deployed: Instrument ID: Station 4	
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat	
Instrument ID:	
Stream Velocity Monitor Deployed [] Instrument ID:	
Velocity Estimated: Drogue Estimate: Dye Estimate:	
Right Descending Bank Distance (It): Time (s):	
Mid Stream Distance (It): Time (s):	
Left Descending Bank Distance (II): Time (s):	
Cross Section Measurement: Type of Measurement Manual: Fathometer	
Fathometer ID:	
GPS Measurement: Site GPS: Cross Section GPS:	1
1 All work is done within 100 yard radius of Site	

			Site 3666 Date: 6-16-08
Photos Taken:	D	icture File #s:	14:15
-notos raken.		ictore rite #5.	
Tapedown Establishe	ed: 🗍	Tapedown Location:	
Benchmark Establishe	ed: 🗌		
Survey Equipment Use	d: 🗌		
Time of Travel Measu Arnount of Dye		Type of Site: Injection	on [] Collection[]
		Waterbody: Man A	ltered Waterbody:
Man-Ma Stream Dry/Inte	de Waterbody: [_ ermittent: []	1	
Stream Bottom: Sand/S	: Sandy Cla ilt Roc	y Gravel Gravel	Hard Clay Solt Silt Concrete
Common Structur	e i resein. Licoc	anon	
Land Use: Agric	culture 🗌 Forestr	y 🗌 Municipal 🗌 Indus	vice Beaver Dam Log Jam [] trial Field/Pasture Wetland 51-75% 76-100%
Recon Information:			
Discharge Mea	asurement: Wad	ing Boat D	Stream Depth (II):
	Continuous Mo	onitor Deployment: Fix	ed: Bouy: D
		unch: Bridge Height:	
	~ /.0	Profiling Measureme	ents:
D.O.:	lemp.(°C): D.O. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm):
D.O.:	0.0. %:	Salinity:	Spcond(µhmos/cm): Depth (m):
Time:	Temp.(°C):	pH:	Spcond(µhmos/cm): Depth (m):
D.O.;	D.O. %:	Salinity:	Depth (m):
Comments:			
References			
Convert Feet to Meters	Convert Celsius	to Fahrenheit	
$0.5 \text{ ft} \cong 0.15 \text{ m}$	20 ≥ 68	25 ≅ 77	
$1.0~\mathrm{fi} \cong 0.30~\mathrm{m}$	21 ≈ 69 8	26 ≅ 78.8	
1.5 $ft \equiv 0.45 \text{ m}$	22 ≤ 71.6	27 ≥ 80.6	
2.0 ft = 0.60 m	23 ≅ 73.4	28 ≘ 82.4	
$2.5 \text{ ft} \equiv 0.75 \text{ m}$	24 ≘ 75.2	29 ≅ 84.2	

Bayon Cane Survey Site Information
Site # 3666 Subsequent 040904 Date 6-17-08 Time 09051
Waterpody: Bayou Cane Tapedown 1: Siat: Gauge 1: Gauge meight 1: Site Location T: Bottom site on Bayou Cane (Just upstream of La Personnel: J. Earls, Ty Yors, D. Borne Pontchart
SHE LOCAHORT: Bottom site on Boyou Come (Just unstream of Lo
Parsonnell T Garle Tu York D Branc Pontchart
Type of Work: Recon ☐ Data Collection ☑
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear Hot >85° <1
Clear Hot >85° <1
Showers Cool > 60° 11-15 Variable
Cold < 60° ☐ >16 ☐
0 -10%
Waterbody Characteristics: Waterbody Type: Stream
Waterbody Type: Stream Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Direction: Upstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column
Floating/Aquatic Vegetation % Surface Coverage: <1 1-25% 26-50% 51-75% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
4 1
Continuous Monitor Deployed: Continuous Monitor ID: 43534
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Velocity Monitor Deployed [Instrument ID:
Velocity Estimated: Drogue Estimate: Dye Estimate:
Right Descending Bank Distance (It): Time (s):
Mid Stream Distance (ft): Time (s):
Left Descending Bank Distance (ft): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer ID:
GPS Measurement: ☐ Site GPS ☐ Cross Section GPS ☐
Photos Taken: Picture File #s:
All work is done within 100 yard radius of Site
All work is done within 100 yard radius of Site

Site 3666	Date:	6/17/08
		09:05

Tapedown Established Benchmark Established Survey Equipment Used	: <u></u> Be			
Time of Travel Measur Amount of Dye In		Type of Site: Injection	on Collection	
Waterbody Dry/l Waterbody Botto Sand/Sil Control Structure Type: Ma Land Use: Agrici	le Waterbody: Intermittent: Im: Sandy Rock/ E Rock/ E Present: Location Made Dam Inture Forestry Inture Clay☐ Grav Gravel/Silt ☐ on: Flow Regulation De ☐ Mynicipal ☐ Indus	el Hard Clay Concrete Seaver Dam Stried Held Pasture Well 51-75% 76-100%	Soft Sitt Log Jam _	
Boat Accessibl	Continuous Mon	tor Deployment: Fi	Stream Depth (ft):	_
Time:		Profiling Measurem		
Time: D.O.:	Temp.(°C): _ D.O. %: _	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(µhmos/cm): Depth (m):	
Comments:				
References				
Convert Feet to Meters	Convert Celsius to	Fahrenheit		
$0.5~\mathrm{ft} \equiv 0.15~\mathrm{m}$	20 ≅ 68	25 ≡ 77		
$1.0 \text{ ft} \equiv 0.30 \text{ m}$	21 = 69.8	26 ≈ 78.8		
$1.5~\mathrm{ft} \cong 0.45~\mathrm{m}$	22 ≅ 71.6	27 ≈ 80.6		
$2.0~{\rm ft} \cong 0.60~{\rm m}$	23 ≅ 73.4	28 ≅ 82.4		
$2.5 \text{ ft} \cong 0.75 \text{ m}$	24 ≘ 75.2	29 ≘ 84.2		

	Site Information
Sne #: 3666	Subsegment 040904 Date: 6/18/08 Time: 091
Waterbody: Bayou	Cane
Tapedown 1:	Staff Gauge 1: Gauge Height 1:
Site Location :	
Personnei: Beard	Tichen
Type of Work: Recon [Data Collection
Weather Conditions: Clear Overcast Drizzle/Light Rain	Temperature (°F): Wind (mph): Wind Direction: Hot >85° □ <1 □
Showers [Cool > 60 ° ☐ 11-15 ☐ Variable ☐ Cold < 60 ° ☐ > 16 ☐
Cloud Cover. 0 −10% ☐ 11	- 40% ☐ 41 - 70% ☐ 71 - 100% ☐
Waterbody Characteristics:	
Waterhody Tyne: Stream	v: Flow Direction Upstream Downstream Tidally Influenced:
	Vind Influence Direction: Upstream Downstream
Waterbody Type: Lake	
	Sedimentation/Turbidity Present in Water Column ☐ ion % Surface Coverage: <1 ☐ 1-25% ☐ 26-50% ☐ 51-75% ☐ 76-100% ☐
Water Quality Samples Taken:	☐ Water Quality Field Parameters: ☐ Profiling: ☐
	Water Quality Field Parameters
T (00)	
	pH: SpCond(μhmos/cm):
D.O. %:	
InSitu Probe ID:	
Continuous Monitor Deployed:	Continuous Monitor ID:
Continuous Monitor Retrieved:	Continuous Monitor Depth (m):
Water Level Monitor Deployed:	Instrument ID:
	pe of Measurement: Wading Stationary Moving Boat
Instrument ID: RCZ	
	Instrument ID:
· · · · · · · · · · · · · · · · · · ·	J. Material II.
Velocity Estimated:	Drogue Estimate: Dye Estimate:
Right Descending Ba	ank Distance (ft): Time (s):
Mid Strea	am Distance (ft): Time (s):
Lett Descending Ba	ank Distance (ft): Time (s):
Cross Section Measurement:	Type of Measurement Manual: Fathometer
Fathometer ID:	
GPS Measurement:	Site GPS: Cross Section GPS:
Photos Taken:	Picture File #s:
[†] All work is done within 100 yard radius of Si	
	50E

²⁹⁹

			Site 3 666_ Date	6/18/08
				09:15
Tapedown Established	l: 🔲	Tapedown Location	11:	
Benchmark Established Survey Equipment Used			1:	
Time of Travel Measure Amount of Dye In		Type of Site: Inje	ection Callection	
Man-Mad Waterbody Dry/Ir Waterbody Botto Sand/Silt Control Structure Type: Ma Land Use: Agricu	e Waterbody: ntermittent: m: Sandy Ro Present:Loo n Made Dam ulture Forestr	Clay G ck/Gravel/Silt C cation: Flow Regulation ry Municipal In	an Altered Waterbody: Siravel Hard Clay Concrete Device Beaver Dam dustrial Field/Pasture W 51-75% 76-100%	Log Jam U
Recon Information: Discharge Meas	urement: Wad	ding Boat	Stream Depth (ft):	
	e: Nearest L	nonitor Deployment: aunch: Bridge Height:_	Fixed: Bouy: S	
		Profiling Measur		
Time: D.O.:	Temp.(°C): D.O. %:	: pH: Salinity:	Spcond(μhmos/cm Depth (m):	n):
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm Depth (m):	n):
Time: D.O.:	_ Temp.(°C) D.O. %:		Spcond(μhmos/cm Depth (m):	n):
Cros.	Flow s section	was take.	n in represent	lative
D. C				
References Convert Feet to Meters	Convert Catalog	s to Fahrenbeit		
$0.5 \text{ ft} \equiv 0.15 \text{ m}$	20 ≅ 68	25 ≡ 77		
1.0 ft \approx 0.30 m	(7),5),7,(7),7)	26 ≈ 78.8		
1.5 ft ≅ 0.45 m	22 ≡ 71.6	27 ≅ 80.6		
$2.0 \text{ ft} \equiv 0.60 \text{ m}$	23 ≘ 73 4	28 ≅ 82.4		

Field Site Survey.doc Revision 4 2 Revised 06/27/2007

 $29 \ge 84.2$

 $2.5 \text{ ft} \cong 0.75 \text{ m}$

24 ≈ 75.2

26	/ Site Information
	Subsegment 040904 Date: 6-15-08 Time 0945
Waterbook: Bayon Co	sane Staff Gauge 1: Gauge Height 1: Site on Bayou Cane (Just upstream Joke Pontchart.
Carlanning P 44	Side danger Standarder in Just upstream
Personnel J 6 ales	s, TYOES, D Borne
	Data Collection
Weather Conditions: Clear () Overcast () Drizzle/Light Rain () Showers ()	Temperature (°F): Wind (mph): Wind Direction: Ho! >85°
Jour Caver	Cold < 60° \(\bigcap \) >16 \(\bigcap \) - 40% \(\bigcap \) \(\text{71} - 100% \(\bigcap \)
	Flow Direction Upstream Downstream Tidally Influenced.
Waterbody Type: Lake	Wind Influence: Tidally Influenced:
Algae Present	
Water Quality Samples Taken	Water Quality Field Parameters:
	Water Quality Field Parameters
D.O.: 2.39 D.O. %:	79.97 pH: 6.97 SpCond(μhmos/cm): 3.464 3.2.0 Salinity: 1.68 Depth (m): 15τη Secchi (in):
D.O.: 2.39 D.O. %: 3	29.97 pH: 6.97 SpCond(μhmos/cm): <u>3 464</u> 32.0 Salinity: <u>1.66</u> Depth (m): <u>15m</u> Secchi (in): .
D.O.: 2.39 D.O. %: InSitu Probe ID: 4354 Continuous Monitor Deployed:	29.97 pH: 6.97 SpCond(μhmos/cm): <u>3</u> 464 32.0 Salinity: <u>1.66</u> Depth (m): <u>1670</u> Secchi (in): <u>1</u>
D.O.: 2.39 D.O. %: InSitu Probe ID: 4354 Continuous Monitor Deployed: Continuous Monitor Retrieved: Continuo Monitor Retrieved: Continuo Monitor Retrieved: Continuo Monitor Retrieved: C	29.97 pH: 6.91 SpCond(μhmos/cm): <u>3 464</u> 32.0 Salinity: <u>1.68</u> Depth (m): <u>5 π</u> Secchi (in): <u>1.69</u> Continuous Monitor ID:
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: [Continuous Monitor Retrieved: [Water Level Monitor Deployed: [29.97 pH: 6.97 SpCond(μhmos/cm): 3.464 3.2.0 Salinity: 1.68 Depth (m): 15m Secchi (in): 2.9 Continuous Monitor ID:
D.O.: 2.39 D.O. %: InSitu Probe ID: 4354 Continuous Monitor Deployed: Continuous Monitor Retrieved: Water Level Monitor Deployed: Type	29.97 pH: 6.91 SpCond(μhmos/cm): <u>3 464</u> 32.0 Salinity: <u>1.68</u> Depth (m): <u>5 π</u> Secchi (in): <u>1.69</u> Continuous Monitor ID:
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: Continuous Monitor Retrieved: Water Level Monitor Deployed: Continuous Monitor	29.97 pH: 6.97 SpCond(μhmos/cm): 3 464 32.0 Salinity: 1.66 Depth (m): 5m Secchi (in): . Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: e of Measurement: Wading Stationary Moving Boat
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: [Continuous Monitor Retrieved: [Water Level Monitor Deployed: [Type Instrument ID: Velocity Monitor Deployed [29.97 pH: 6.97 SpCond(μhmos/cm): 3464 32.0 Salinity: 1.66 Depth (m): 5m Secchi (in): . Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: e of Measurement: Wading Stationary Moving Boat
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: Continuous Monitor Retrieved: Water Level Monitor Deployed: Now Measurement: Type Instrument ID: Velocity Monitor Deployed Colority Estimated: Colority Estimated: Colority Monitor Deployed Colority Estimated: Colority Statement: Colority Estimated: Colo	29.97 pH: 6.97 SpCond(μhmos/cm): 3.464 3.2.0 Salinity: 1.66 Depth (m): 15m Secchi (in): 1.9 Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: Instrument ID: Instrument ID: Instrument ID:
D.O.: 2.39 D.O. %: InSitu Probe ID: 4354 Continuous Monitor Deployed: Continuous Monitor Retrieved: Water Level Monitor Deployed: Instrument ID: Velocity Monitor Deployed Continuous Monitor Monitor Deployed Continuous Monitor Monito	29.97 pH: 6.97 SpCond(μhmos/cm): 3.464 32.0 Salinity: 1.66 Depth (m): 5m Secchi (in): Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: Moving Boat Instrument ID: Drogue Estimate: Dye Estimate: Dye Estimate: Dye Estimate:
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: [Continuous Monitor Retrieved: [Water Level Monitor Deployed: [Type Instrument ID: Velocity Monitor Deployed [Right Descending Ban Mid Stream	29.97 pH: 6.97 SpCond(μhmos/cm): 3.464 32.0 Salinity: 1.66 Depth (m): 5 Secchi (in): . Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: of Measurement: Wading Stationary Moving Boat Instrument ID: Drogue Estimate: Dye Estimate: Time (s):
D.O.: 2.39 D.O. %: InSitu Probe ID: 4354 Continuous Monitor Deployed: Continuous Monitor Retrieved: Water Level Monitor Deployed: Velocity Monitor Deployed Strument ID: Velocity Monitor Deployed Strument ID: Right Descending Ban Mid Stream Left Descending Ban	29.97 pH: 6.97 SpCond(μhmos/cm): 3.464 32.0 Salinity: 1.66 Depth (m): 5m Secchi (in): Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: of Measurement: Wading Stationary Moving Boat III Instrument ID: Drogue Estimate: Dye Estimate: III Time (s): m Distance (ft): Time (s): mk Distance (ft): Time (s): Time (s): Time (s): Time (s):
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: [Continuous Monitor Retrieved: [Water Level Monitor Deployed: [Flow Measurement: Type Instrument ID: Velocity Monitor Deployed Welocity Estimated: Mid Stream Left Descending Ban Cross Section Measurement:	29.97 pH: 6.97 SpCond(μhmos/cm): 3.464 32.0 Salinity: 1.68 Depth (m): 5m Secchi (in): Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: of Measurement: Wading Stationary Moving Boat III Instrument ID: Drogue Estimate: Dye Estimate: III Time (s): m Distance (ft): Time (s): mk Distance (ft): Time (s): Time (s): Time (s): Time (s):
D.O.: 2.39 D.O. %: 3 InSitu Probe ID: 4354 Continuous Monitor Deployed: [Continuous Monitor Retrieved: [Water Level Monitor Deployed: [Flow Measurement:	29.97 pH: 6.97 SpCond(μhmos/cm): 3 464 32.0 Salinity: 1.66 Depth (m): 5 Secchi (in): . Continuous Monitor ID: Continuous Monitor Depth (m): Instrument ID: Instrument ID: Drogue Estimate: Dye Estimate: Time (s): m Distance (ft): Time (s): Type of Measurement Manual: Type of Measurement Manual: Type of Measurement Manual: Table Distance (ft): Type of Measurement Manual:

Site	3666	Date:	6/18/08
			09:45

Tapedown Established	I: 🔲 T	apedown Location:		
Benchmark Established Survey Equipment Used	: 🗌 B			
Fime of Travel Measure Amount of Dye In		Type of Site: Injectio	n Callection	
Waterbody Dry/lr Waterbody Botto Sand/Sill Control Structure Type: Ma Land Use: Agricu	e Waterbody: ntermittent: m: Sandy Rock Present: Loca n Made Dam utture Forestry	Clay Grave /Gravel/Silt Flow Regulation Det Municipal Indust	el Hard Clay Concrete Beaver Dam rial Field/Pasture Wet 51-75% 76-100%	land []
Recon Information:				
Discharge Meas	surement: Wadir		Stream Depth (ft):	
	Continuous Moi	nitor Deployment: Fix	ed: Bouy: 🗌	
	e:			
T.	T / 00)	Profiling Measureme	ents:	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
~ - 11		w measurem	ent was repre	esentativ
References				
Convert Feet to Meters	Convert Celsius	o Fahrenheit		
$0.5 \text{ ft} \approx 0.15 \text{ m}$	20 ≅ 68	25 ≅ 77		
$1.0 \text{ ft} \equiv 0.30 \text{ m}$	$21 \equiv 69.8$	26 ± 78.8		
$1.5~\mathrm{ft} \approxeq 0.45~\mathrm{m}$	22 ≥ 71.6	27 = 80.6		
$2.0 \text{ ft} \approx 0.60 \text{ m}$	23 ≅ 73.4	28 ≅ 82.4		
2.5.6 = 0.75 m	24 = 752	20 = 84 2		

R		(
Bayon	Cane	Survey

Site	Information
Site # 3666 Subsequent: (040984 Date 6-19-09 Time 0955
Waterbody Bayer Cane	
,	Display of the Control of the Contro
Site Location 1: Buttum 5 te	un Bayou cone Just wastream
Personnel: T Yves, J Ear	un Bayou cane otlake landhart.
Type of Work: Recon Data Collection	Ø
Weather Conditions: Temperature (Clear ✓ Hot >85 ° ✓ Overcast □ Warm > 75 ° □ Drizzle/Light Rain □ Mild > 65 ° □	°F): Wind (mph): Wind Direction.
Clear Hot >85° Z	NW NE N
Overcast Warm > 75° Drizzle/Light Rain Mild > 65° Mild > 65°	1.5 SW S SE SE
Showers Cool > 60°C	11-15 Variable
Drizzle/Light Rain Mild > 65° Showers Cool > 60° Cold < 60°	>16 []
Cloud Cover.	
0 –10% 2 11 – 40% 1 4	11 – 70% 🗌 71 – 100% 🗍
Waterbody Characteristics:	
Waterbody Type: Stream Flowing: Measurable Flow: Flow Direction	on Upstream Downstream Tidally Influenced:
Wind Influence: Wind Influence Direction	
Waterbody Type: Lake Wind Influe	nce: Tidally Influenced:
Algae Present Sedimentation/T Floating/Aquatic Vegetation % Surface Coveri	age: 1 1.25% 26.50%
Proating/Aquatic vegetation % Surface Covers	51-75% 76-100%
Nater Quality Samples Taken: ☐ Water Quality F	Field Parameters:
*	/ Field Parameters
Time: Temp.(°C): pH: _	
D.O.:	Depth (m): Secchi (in):
InSitu Probe ID:	
Continuous Monitor Deployed: ☐ Continuous M	Monitor ID: 43534
Continuous Monitor Retrieved Co	
Water Level Monitor Deployed: Instrument ID:	
Flow Measurement: Type of Measurement: N	Wading Stationary Moving Boat
Instrument ID:	
Velocity Monitor Deployed Instrume	ent ID:
/elocity Estimated: ☐ Drogue Estimate	e. Dye Estimate:
Right Descending Bank Distance (ft):	
Mid Stream Distance (ft):	
Left Descending Bank Distance (ft):	
cross Section Measurement: Type of Measure	ement Manual: Fathometer
Fathometer ID:	
GPS Measurement:	Site GPS: ☐ Cross Section GPS: ☐
hotos Taken: Picture File #s	
All work is done within 100 yard radius of Site	

Site 3466	Date:	6/19/08
		09:55

Tapedown Established Benchmark Established Survey Equipment Used	: Ber			
Time of Travel Measure Amount of Dye In		Type of Site: Injectio	n Collection	· · · · · · · · · · · · · · · · · · ·
Waterbody Dry/lr Waterbody Botto Sand/Sill Control Structure Type: Ma Land Use: Agricu	e Waterbody: Intermittent: Intermi	Clay Grave Gravel/Silt Grave Flow Regulation Dec	Itered Waterbody: Hard Clay Concrete Vice Beaver Dam Trial Field/Pasture Wetle 51-75% 76-100%	
Boat Accessible		tor Deployment: Fix	Stream Depth (ft):	
Time: D.O.:	Temp.(°C):	Profiling Measureme pH: Salinity:	Spcond(µhmos/cm):	
Time:	Temp.(°C):	pH; Salinity:	Spcond(μhmos/cm): Depth (m):	
Time: D.O.;	Temp.(°C); D.O. %:	pH: Salinity:	Spcond(µhmos/cm): Depth (m):	
Comments:				
References Convert Feet to Meters	Convert Celsius to	Fahrenheit		
0.5 ft ≅ 0.15 m	20 ≘ 68	25 ≅ 77		
1.0 ft \u22030 m	21 = 69.8	26 ± 78.8		
$1.5 \text{ ft} \cong 0.45 \text{ m}$	22 = 71.6	27 ≅ 80.6		
2.0 $ft \approx 0.60 \text{ m}$	23 ≈ 73.4	28 ≅ 82.4		
2.5 ft ≡ 0.75 m	24 ≅ 75.2	29 ≈ 84.2	x	

Sile #: 3666 BC08	Subsequent 14090	4 0010 1/20/08	Time: 0850
Waterbody: Bayon	//	7 Care. 42908	Time. DOOD
Tapedown 1:	Staff Gauge 1:	Gauge Height 1	:
Site Location !: Botton	· Site - # C		
Personnel: Garner,	mith		
Type of Work: Recon	•		
Weather Conditions:	Temperature (°F): Win	d (mph): Wind D	rection:
Clear	Hot >85° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NW D	N NE U
Orizzle/Light Bain	Mild > 65° ☐ 6-10		3 1 3 1
Showers	Cool > 60° ☐ 11-1 Cold < 60° ☐ >16	5 Variable	
Cloud Cover	Cold < 60° ->16	J	
0 -10% (50)	- 40% [] 41 - 70% [71 – 100% 🗌	
Stream Characteristics:			
Waterbody Type: Stream Flowing: Measurable Flow	() 2 Flow Direction Unctree	m Downstroom D	Fidally Influenced:
•			ridally Mildericeo.
Wind Influence: W	ind Influence Direction: Upstrea	m [] Downstream []	
Waterbody Type: Lake	Wind Influence:	Tidally Influenced:	
	Sedimentation/Turbidity Pr on % Surface Coverage: <1 ☐ 51-7		
Water Quality Samples Taken:	Water Quality Field Parar	neters: Profiling	
	Water Quality Field Para	meters	

D.O.:	D.O. %:	Salinity:	Dep	oth (m):	Secchi (in):	
InSitu Probe ID	:						
Continuous Monito	or Deployed:	Continuous Monitor IE Continuous Instrument ID:	Monitor Dept	Monitor h (m): /p	1-F	ixDye	O O
Flow Measurement	Retrieved	Measurement: Wading	Stationary	√∏ Movino B	oal 🗍		
	, , , , , , , , , , , , , , , , ,		_ otalionor,	,g D	VO, [
		dInstrument ID:					
Velocity Est	imated: 🗌	Drogue Estimate:	□ D)	ve Estimate: [)		
Right De	scending Bank D	istance (It):	Time (s)				
	Mid Stream D	istance (It):	Time (s)	:			
Left De	scending Bank D	istance (II):	Time (s)	:			
Cross Section Mea	surement:	Type of Measurement Ma	anual:	Fathomet	er 🗌	- 44	
Fathomet	er ID:						
GPS Measurement		Sil	e GPS:	Cross Sect	ion GPS·		

1 All work is done within 100 yard radius of Site

	Photos Taken:	p _i	cture File #s:	Site <u>3666</u> D	08:50
	Tapedown Establishe Benchmark Establishe Survey Equipment Use	d: 🛄	Tapedown Location: _	· · · · · · · · · · · · · · · · · · ·	
	Time of Travel Measu Amount of Dye		Type of Site: Injecti	ion Collection	
	Stream Dry/Inte Stream Bottom: Sand/S Control Structur Type: M Land Use: Agric	de Waterbody: rmittent: Sandy Clai it Roc e Present: Loc an Made Dam culture Forestry	y Gravel Gravel de/Gravel/Silt dation: Flow Regulation De	Hard Clay Concrete evice Beaver Dam strial Field/Pasture	Soft Sift Log Jam Wetland 10%
	Recon Information: Discharge Mea		ng Boat Deployment: Fi	Stream Depth (it):_ixed: Bouy: [i
		le:	unch: Bridge Height:		
	Time: D.O.:	Temp.(°C): D.O. %:	Profiling Measurem pH: Salinity:		
	Time: D.O.:	Temp.(°C): D.O. %;	pH: Salinity:	Spcond(µhmos Depth (m):	/cm):
	Time:	Temp.(°C): D.O. %:	pH:Salinity:	Spcond(µhmos/ Depth (m):	
A	Comments:				
13.1	191 191 1	13 38	*		
			· \$ *		
i g					
	D. 6				
	References Convert Feet to Meters	Convert Celsius	to Fahrenheit		
	0.5 ft = 0.15 m	20 ≘ 68	25 ≅ 77		
	$1.0 \text{ ft} \equiv 0.30 \text{ m}$	21 ≥ 69 8	26 ≥ 78.8		
	$1.5 \text{ ft} \equiv 0.45 \text{ m}$	22 ≅ 71.6	27 ≡ 80.6		
	2.0 ft ≅ 0.60 m	23 ≅ 73.4	28 \(\epsilon\) \$2.4		
	2.5 ft = 0.75 m	24 ≡ 75.2	29 ≈ 84.2		

Bayou Lane Survey

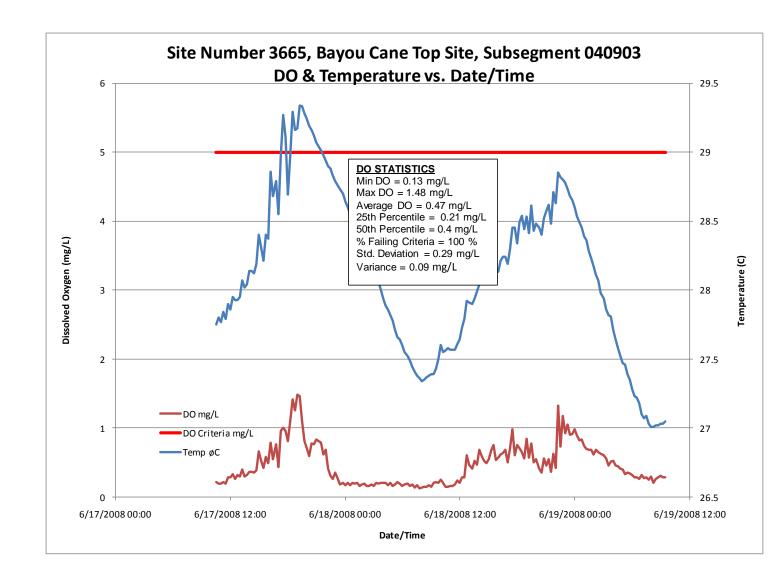
Site information
Site # 37 56 Subsegment 040904 Date 6-17-09 Time 09 10
Waserbody: De Lake Pontchartrain
Tapedowr 1. Staff Gauge 1: Gauge Height 1:
Sile Location 1: Just out from mouth of B. Cane
Personnei: J Earls Ty Yoes, DBorne
Type of Work: Recon Data Collection
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear Hot >85° <1
Cloud Cover. 0 −10%
Waterbody Characteristics: Waterbody Type: Stream
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence: Wind Influence Direction: Upstream Downstream
Waterbody Type: Lake Wind Influence: Tidally Influenced
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:
Continuous Monitor Deployed: Continuous Monitor ID: 43535
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: Instrument ID.
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Velocity Monitor Deployed [
Velocity Estimated: Drogue Estimate: Dye Estimate:
Right Descending Bank Distance (ft): Time (s):
Mid Stream Distance (ft): Time (s):
Left Descending Bank Distance (ft): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer ID:
GPS Measurement: ☐ Site GPS: ☐ Cross Section GPS: ☐
Photos Taken: Picture File #s:
All work is done within 100 yard radius of Site

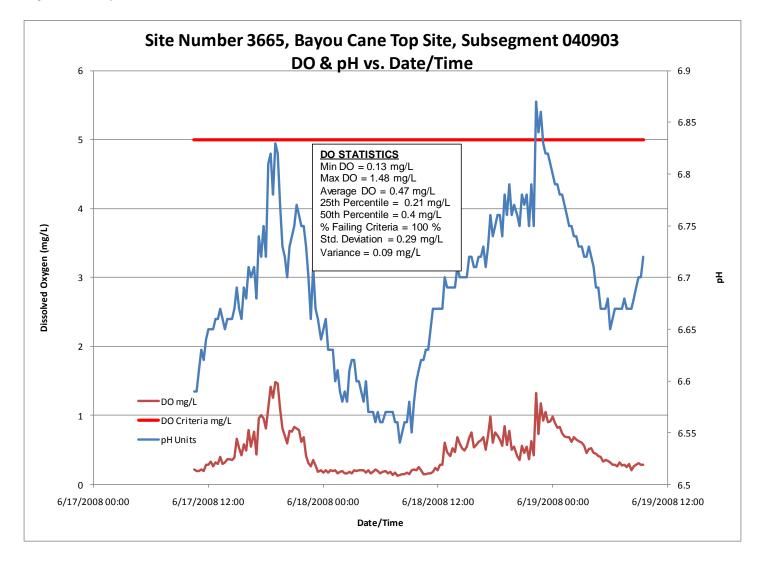
			Site 3: 6 Date: _	1117/18
			3756	200
			,,	04:10
Tapedown Established	d: 🔲 T	apedown Location:		
Benchmark Established	I: □ B	enchmark Location:		
Survey Equipment Used	. L			
Time of Travel Measure Amount of Dye In	-	Type of Site: Injection	Collection	
Physical Site Characte		Vaterbody: 🖊 Man All	ered Waterbody:	
Man-Mad Waterbody Dry/li	le Waterbody:			
Waterbody Botto Sand/Sil	om: Sandy□ I□ Rock	/Gravel/Silt [I□ Hard Clay Ø Concrete □	Soft Sill
Type: Ma Land Use: Agrici	e Present: DLoca in Made Dam ulture DForestry inopy Cover 0-259	Flow Regulation Devi	ice Beaver Dam IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Log Jam 🗌
Recon Information:		<u> </u>		
	surement: Wadir	g Boat D	Stream Depth (ft):	
	Continuous Mor	nitor Deployment: Fixe	ed: 🗌 Bouy: 🗌	
Boat Accessibl	e: Nearest Lau	inch:	_	
Bridge 🗌 Bri		Bridge Height:		
		Profiling Measuremen	nts:	
Time:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time:	Temp.(°C):	pH: Salinity:	Spcond(μhmos/cm):	
D.O.:	D.O. %:	Salinity:	Depth (m):	
	Temp.(°C):	pH:	Spcond(µhmos/cm):	
D.O.:	D.O. %:	Salinity:	Depth (m):	
Comments:				
References		No. of the second		
Convert Feet to Meters	Convert Celsius	to Fahrenheit		
0.5 ft = 0.15 m	20 ≅ 68	25 ≅ 77		
1.0 ft ≅ 0.30 m	21 = 69.8	26 ≘ 78.8		
$1.5 \text{ ft} \equiv 0.45 \text{ m}$	22 = 71.6	27 ≅ 80.6		
2 0 ft ≈ 0.60 m	23 ≅ 73.4	28 ≈ 82.4		
$2.5 \text{ ft} \approx 0.75 \text{ m}$	24 ≅ 75.2	29 ≅ 84.2		

Barry Cane Survey

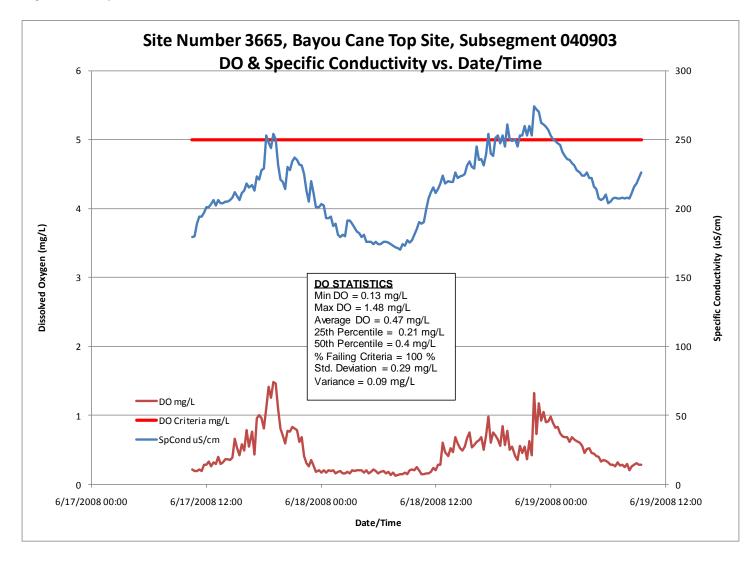
Site Information
Sile # 3756 Subsegment 040904 Date 6-18-08 Time 0915hrs
Waterbook Lake Pontchartrain
Tapedown 1: Staff Gauge 1: Gauge Height 1:
SHE LOCAHONT: Mooth of Bayou Cane
Personnel: J. Earles, T. Yoes, D. Borne.
Type of Work: Recon Data Collection
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear Hot >85° <1
0-10% 11-40% 1 41-70% 71-100%
Waterbody Characteristics: Waterbody Type: Stream Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence:
Waterbody Type: Lake Wind Influence: Tidally Influenced:
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters Time: <u>0915</u> Temp.(°C): <u>29.25</u> pH: <u>7.32</u> SpCond(μhmos/cm): <u>3 < 1</u> 6
D.O.: 4.72 D.O. %: 62.2 Salinity: 1-97 Depth (m): 30m Secchi (in): N/A InSitu Probe ID: 43549 IBV 7.4 IBA 10.6
Continuous Monitor Deployed: Continuous Monitor ID:
Continuous Monitor Retrieved: Continuous Monitor Depth (m):
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Velocity Monitor Deployed Instrument ID:
Velocity Estimated: Drogue Estimate: Dye Estimate:
Right Descending Bank Distance (ft): Time (s):
Mid Stream Distance (ft): Time (s):
Left Descending Bank Distance (ft): Time (s)
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer tD:
GPS Measurement. Site GPS: Cross Section GPS:
Photos Taken: Picture File #s:

		4	Site 37. Date: 1	1/18/08
			2/36	09:15
Tapedown Established	1: 🗌 т	apedown Location:		
Benchmark Established Survey Equipment Used	:	enchmark Location:		
Time of Travel Measure Amount of Dye in		Type of Site: Injecti	ion Collection	
Waterbody Dry/Ir	e Waterbody: ntermillent:			0.4.03.
Waterbody Botto Sand/Silt	Rock	/Gravel/Silt [vel Hard Clay C Concrete C	Soft Silt
Type: Ma Land Use: Agricu	Present: Local n Made Dam ulture Forestry nopy Cover 0-25%	Flow Regulation D	evice Beaver Dam Strial Field/Pasture Wella 51-75% 76-100%	Log Jam 🗍
Recon Information: Discharge Meas	surement: Wadin	g 📗 Boat 🗍	Stream Depth (ft):	
	Continuous Mor	nitor Deployment: F	ixed: Bouy: 🗌	
Boat Accessibl Bridge Bri	e: Nearest Laudge Safe:	nch: Bridge Height:		
T:	T (20)	Profiling Measurem	_	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Time: D.O.:	Temp.(°C): D.O. %:	pH: Salinity:	Spcond(μhmos/cm): Depth (m):	
Comments:			9	
				· · · · · · · · · · · · · · · · · · ·
References				
Convert Feet to Meters	Convert Celsius t	o Fahrenheit		
$0.5 \text{ ft} \equiv 0.15 \text{ m}$	20 ≘ 68	25 ≘ 77		
$1.0 \text{ ft} \approx 0.30 \text{ m}$	21 ≈ 69.8	26 m 78.8		
$1.5~\Omega \cong 0.45~\text{m}$	32 ∉ 71.6	27 ≅ 80 6		
$2.0~\mathrm{ft} \equiv 0.60~\mathrm{m}$	23 ≈ 73.4	28 ≡ 82.4		
2.5 ft ≈ 0.75 m	24 ≅ 75.2	29 ≥ 84.2		


Bayou Cane Survey Site Information


Site # 3756 Subsequent: 040904 Date. 6/19/06 Time. 0945
Waterpody. Lake Pontchartrain Tapedown 1: Staff Gauge 1: Gauge Height 1:
Tapesown 1: Staff Gauge 1: Gauge Height 1:
SHE LOCATION! Cul From the Mouth of D. Cane
Personnei: Lailes, Yees
Type of Work: Recon Data Collection
Weather Conditions: Temperature (°F): Wind (mph): Wind Direction: Clear □ Hot >85° □ <1 □
Cloud Cover: 0 – 10% 🔲 11 – 40% 🗍 41 – 70% 🗍 71 – 100% 🗍
Waterbody Characteristics: Waterbody Type: Stream □
Flowing: Measurable Flow: Flow Direction Upstream Downstream Tidally Influenced:
Wind Influence:
Waterbody Type: Lake ☑ Wind Influence: ☐ Tidally Influenced: ☑
Algae Present Sedimentation/Turbidity Present in Water Column Floating/Aquatic Vegetation % Surface Coverage: <1 1 1-25% 26-50% 76-100%
Water Quality Samples Taken: Water Quality Field Parameters: Profiling:
Water Quality Field Parameters
Time: Temp.(°C): pH: SpCond(μhmos/cm):
D.O.: D.O. %: Salinity: Depth (m): Secchi (in):
InSitu Probe ID:

Continuous Monitor Deployed: Continuous Monitor ID: 43535
Continuous Monitor Depth (m): 1.0 m
Water Level Monitor Deployed: Instrument ID:
Flow Measurement: Type of Measurement: Wading Stationary Moving Boat
Instrument ID:
Velocity Monitor Deployed Instrument ID:
Velocity Estimated: ☐ Drogue Estimate: ☐ Dye Estimate: ☐
Right Descending Bank Distance (ft): Time (s):
Mid Stream Distance (ft): Time (s):
Left Descending Bank Distance (It): Time (s):
Cross Section Measurement: Type of Measurement Manual: Fathometer
Fathometer ID:
GPS Measurement: Site GPS: Cross Section GPS:
Photos Taken: Picture File #s:
All work is doon within 100 yard require at Sun

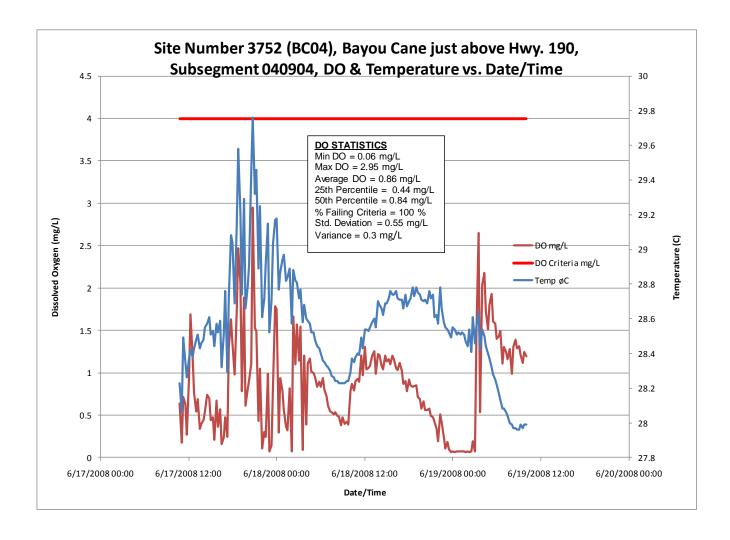

			Site 37., Date:	6/19/08
			Site 37. Date:	come
				04:45
Tapedown Established				
Benchmark Established Survey Equipment Used	: D Ben	chmark Location:		
Time of Travel Measure Amount of Dye in		Type of Site: Injectio	n Collection	
Physical Site Characte		erbody: Man A	Itered Waterbody:	
Man-Mad Waterbody Dry/li	e Waterbody:			
Waterbody Botto Sand/Silt	m: Sandy Rock/G	ravel/Silt [el Hard Clay Concrete	Soft Sift
Type: Ma	Present: Location Made Dam Iture Forestry	Flow Regulation Dev	vice Beaver Dam I	Log Jam 🗌
		26-50%		and L
Recon Information:				
Discharge Meas	surement: Wading	☐ Boat ☐	Stream Depth (ft):	_
	Continuous Monito	or Deployment: Fix	ed: Bouy: 🗌	
	e: Nearest Laund dge Safe:	h: Bridge Height:	_	
	P	rofiling Measureme	ents:	
Time:				
D.O.:	D.O. %:	Salinity:	Depth (m):	
Time:	Temp.(°C):	pH:	Spcond(μhmos/cm): Depth (m):	
D.Q.:	D.O. %;	Salinity:	Depth (m):	
Time:	Temp.(°C):	pH:	Spcond(μhmos/cm): Depth (m):	
D.O.:	D.O. %:	Salinity:	Depth (m):	
Comments:				
		-		
References				
Convert Feet to Meters	Convert Celsius to I	Fahrenbeit		
$0.5 \text{ ft} \equiv 0.15 \text{ m}$	20 ≡ 68	25 ≘ 77		
1.0 ft = 0.30 m	21 ≈ 69.8	26 m 78.8		
1.5 ft ≅ 0.45 m	22 = 71.6	27 ± 80.6		
2.0 ft = 0.60 m	23 ≈ 73.4	28 ≈ 82.4		
$2.5 \text{ ft} \equiv 0.75 \text{ m}$	24 ≅ 75.2	29 ≥ 84.2		

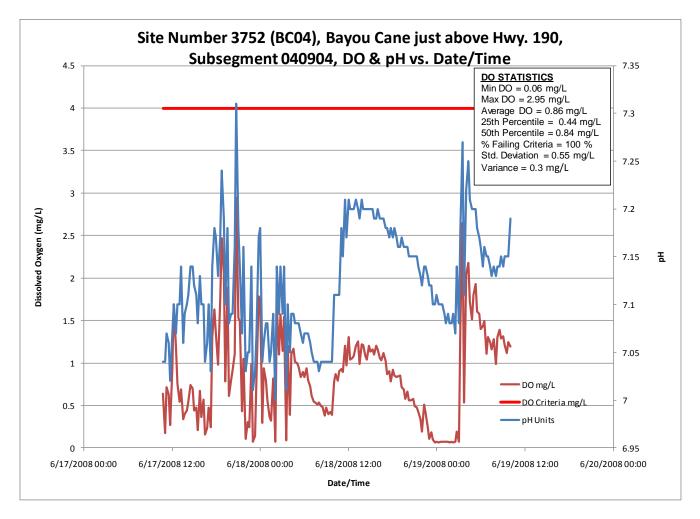
Appendix F4 – Continuous Monitor

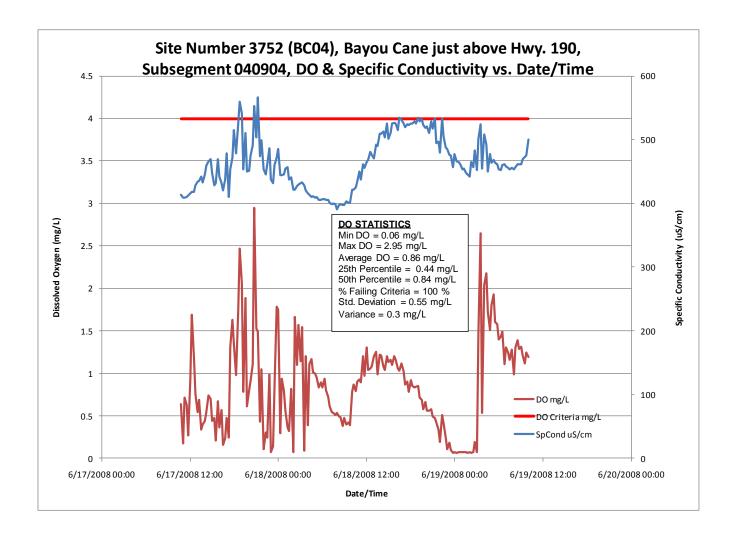
	Bayou Cane - Continuous Monitor Data Summary										
Site		Temp (C)	pH (units)	SpCond (umhos/cm)	DO % Sat	DO (mg/L)	Salinity (ppt)	DO Min + 1			
	Average	28.13	6.69	215.380	6.03	0.47	0.10				
3665	Minimum	27.01	6.54	170.000	1.60	0.13	0.08	1.13			
	Maximum	29.34	6.87	274.000	19.30	1.48	0.13				
	Average	28.57	7.12	463.470	11.06	0.86	0.23				
3752-BC04	Minimum	27.96	7.00	391.000	0.80	0.06	0.19	1.06			
	Maximum	29.76	7.31	567.000	38.90	2.95	0.29				
	Average	29.98	6.88	2143.820	23.84	1.79	1.15				
3753-BC05	Minimum	28.89	6.81	1568.000	2.60	0.20	0.83	1.20			
	Maximum	31.27	6.98	2750.000	54.00	3.98	1.48				
	Average	30.51	6.97	2695.790	36.185	2.655	1.454				
3754-BC06*	Minimum	29.01	6.79	2197.500	1.550	0.120	1.175	1.12			
	Maximum	32.20	7.65	3206.500	97.250	7.030	1.735				
	Average	31.04	7.06	3247.760	48.53	3.52	1.76				
3755-BC07	Minimum	29.13	6.76	2827.000	0.50	0.04	1.52	1.04			
	Maximum	33.13	8.31	3663.000	140.50	10.08	1.99				
	Average	31.59	7.67	3638.030	84.86	6.12	1.98				
3666	Minimum	29.33	6.79	3374.000	2.20	0.16	1.83	1.16			
	Maximum	33.80	8.90	3831.000	180.30	12.73	2.08				
	Average	31.18	7.90	3724.940	90.77	6.61	2.03				
3756-BC09	Minimum	28.59	6.84	3459.000	11.20	0.84	1.88	1.84			
	Maximum	33.55	8.85	3862.000	157.90	11.13	2.10				
*Average of BC0	05 and BC07										

Site Number:	3665	Site Name:	Bayou Cane Top	Site	
Subsegment #:	040903				
	Temp deg C	pН	SpCond uS/cm	DO % sat	DO mg/L
Minimum	27.01	6.54	170.00	1.60	0.13
Maximum	29.34	6.87	274.00	19.30	1.48
Average	28.13	6.69	215.38	6.03	0.47
Geometric Mean	28.12	6.69	#NUM!	4.96	0.39
25th Percentile	27.64	6.63	197.00	2.70	0.21
30th Percentile	27.79	6.65	203.40	3.10	0.25
40th Percentile	27.95	6.67	207.00	3.80	0.30
50th Percentile	28.13	6.69	214.00	5.10	0.40
Standard Deviation	0.59	0.07	25.86	3.85	0.29
Variance	0.35	0.01	668.51	14.82	0.09
Data Row Count		189			
Total Values					
Failing DO Criteria		189			
Percent failing DO					
Criteria		100.00	%		

Bayou Cane, Site 3665, Continuous Monitoring Data


Date_	Time	Temp	рН	SpCond	DO PERCENT	DO	SALINITY	Is DO < Criteria	DO Criteria
MMDDYY	HHMM	øС	Units	uS/cm	Sat	mg/L	ppt	5	mg/L
6/17/2008	10:30	27.75	6.59	179	2.8	0.22	0.08	1	5
6/17/2008	10:35	27.73	6.59	180	2.4	0.19	0.08	1	5
6/17/2008	11:00	27.77	6.61	189	2.5	0.19	0.09	1	5
6/17/2008	11:15	27.84	6.63	194	2.8	0.22	0.09	1	5
6/17/2008	11:30	27.79	6.62	194	2.4	0.19	0.09	1	5
6/17/2008	11:45	27.9	6.64	197	3.6	0.29	0.09	1	5
6/17/2008	12:00	27.86	6.65	201	3.6	0.29	0.09	1	5
6/17/2008	12:15	27.95	6.65	201	4.2	0.33	0.09	1	5
6/17/2008	12:30	27.93	6.65	203	3.4	0.26	0.09	1	5
6/17/2008	12:45	27.93	6.66	206	4.1	0.32	0.09	1	5
6/17/2008	13:00	27.95	6.66	202	3.8	0.3	0.09	1	5
6/17/2008	13:15	28.07	6.67	206	5.1	0.4	0.1	1	5
6/17/2008	13:30	28.02	6.66	204	3.9	0.3	0.09	1	5
6/17/2008	13:45	28.04	6.65	204	4.1	0.32	0.09	1	5
6/17/2008	14:00	28.14	6.66	205	4.6	0.36	0.09	1	5
6/17/2008	14:15	28.14	6.66	205	4.8	0.37	0.09	1	5
6/17/2008	14:30	28.12	6.66	206	4.4	0.35	0.09	1	5
6/17/2008	14:45	28.19	6.67	208	5.1	0.39	0.1	1	5
6/17/2008	15:00	28.4	6.69	212	8.5	0.66	0.1	1	5
6/17/2008	15:15	28.31	6.67	209	6.7	0.52	0.1	1	5
6/17/2008	15:30	28.21	6.66	206	5.4	0.42	0.1	1	5
6/17/2008	15:45	28.4	6.69	211	7.5	0.58	0.1	1	5
6/17/2008	16:00	28.37	6.68	213	6.3	0.49	0.1	1	5
6/17/2008	16:15	28.86	6.71	218	10.2	0.79	0.1	1	5
6/17/2008	16:30	28.68	6.7	215	7.1	0.55	0.1	1	5
6/17/2008	16:45	28.79	6.71	217	9.8	0.76	0.1	1	5
6/17/2008	17:00	28.55	6.68	213	5.6	0.43	0.1	1	5
6/17/2008	17:15	28.98	6.74	223	12.4	0.96	0.1	1	5
6/17/2008	17:30	29.27	6.72	221	13	1	0.1	1	5
6/17/2008	17:45	29.11	6.75	228	12.5	0.96	0.11	1	5
6/17/2008	18:00	28.69	6.72	229	10.5	0.81	0.11	1	5
6/17/2008	18:15	28.98	6.81	253	14.4	1.11	0.12	1	5
6/17/2008	18:30	29.29	6.82	248	18.5	1.41	0.12	1	5
6/17/2008	18:45	29.16	6.78	244	16.5	1.26	0.12	1	5
6/17/2008	19:00	29.17	6.83	254	19.3	1.48	0.12	1	5
6/17/2008	19:15	29.34	6.82	250	19.2	1.46	0.12	1	5
6/17/2008	19:30	29.33	6.77	232	14.3	1.09	0.11	1	5
6/17/2008	19:45	29.28	6.73	221	10.6	0.81	0.1	1	5
6/17/2008	20:00	29.24	6.72	219	9.3	0.71	0.1	1	5 5
6/17/2008	20:15	29.19	6.7	214	7.7	0.59	0.1	1	5 5
6/17/2008	20:30	29.16	6.73	230	10.2	0.78	0.11	1	5 5
6/17/2008	20:45	29.12	6.74	228	9.9 10.8	0.76	0.11	1	5 5
6/17/2008	21:00	29.07	6.75	234	10.8	0.83	0.11	1	5 5
6/17/2008	21:15	29.04	6.77	237	10.6	0.81	0.11	1	5


6/17/2008	21:30	29.01	6.76	235	10.2	0.79	0.11	1	5
6/17/2008	21:45	28.98	6.75	232	8	0.62	0.11	1	5
6/17/2008	22:00	28.94	6.75	231	8.8	0.68	0.11	1	5
6/17/2008	22:15	28.9	6.73	225	5.3	0.41	0.1	1	5
6/17/2008	22:30	28.88	6.7	213	4.1	0.31	0.1	1	5
6/17/2008	22:45	28.83	6.66	205	3.4	0.26	0.09	1	5
6/17/2008	23:00	28.79	6.71	220	4.6	0.35	0.1	1	5
6/17/2008	23:15	28.76	6.67	211	3.5	0.27	0.1	1	5
6/17/2008	23:30	28.73	6.66	201	2.3	0.18	0.09	1	5
6/17/2008	23:45	28.7	6.64	201	2.7	0.21	0.09	1	5
6/18/2008	0:00	28.64	6.65	203	2.2	0.17	0.09	1	5
6/18/2008	0:15	28.6	6.66	202	2.8	0.21	0.09	1	5
6/18/2008	0:30	28.55	6.63	193	2.2	0.17	0.09	1	5
6/18/2008	0:45	28.5	6.63	193	2.7	0.21	0.09	1	5
6/18/2008	1:00	28.44	6.63	194	2.5	0.19	0.09	1	5
6/18/2008	1:15	28.42	6.6	187	2.8	0.21	0.08	1	5
6/18/2008	1:30	28.37	6.61	189	2	0.16	0.09	1	5
6/18/2008	1:45	28.33	6.59	181	2.3	0.18	0.08	1	5
6/18/2008	2:00	28.31	6.58	179	2.4	0.10	0.08	1	5
6/18/2008	2:15	28.27	6.59	181	2.1	0.19	0.08	1	5
6/18/2008	2:30	28.25	6.58	180	2	0.16	0.08	1	5
6/18/2008	2:45	28.22	6.61	191	2.3	0.18	0.09	1	5
6/18/2008	3:00	28.18	6.62	191	2.3	0.16	0.09	1	5
		28.12			2.5	0.16	0.09	1	5 5
6/18/2008	3:15		6.62	189				1	5 5
6/18/2008	3:30	28.06	6.6	186	2.4	0.19	0.08	1	
6/18/2008	3:45	28	6.6	183	2.6	0.2	0.08	1	5
6/18/2008	4:00	27.94	6.59	182	2.7	0.21	80.0	1	5
6/18/2008	4:15	27.89	6.58	179	2.5	0.2	80.0	1	5
6/18/2008	4:30	27.86	6.6	181	2.1	0.17	80.0	1	5
6/18/2008	4:45	27.82	6.57	176	2.6	0.2	80.0	1	5
6/18/2008	5:00	27.78	6.57	176	2.1	0.16	0.08	1	5
6/18/2008	5:15	27.71	6.57	176	2.3	0.18	80.0	1	5
6/18/2008	5:30	27.66	6.56	174	2.8	0.22	0.08	1	5
6/18/2008	5:45	27.64	6.57	176	2.4	0.19	0.08	1	5
6/18/2008	6:00	27.6	6.56	174	2.1	0.16	0.08	1	5
6/18/2008	6:15	27.55	6.56	174	2.3	0.18	0.08	1	5
6/18/2008	6:30	27.52	6.57	176	2.4	0.19	0.08	1	5
6/18/2008	6:45	27.49	6.57	176	2	0.16	0.08	1	5
6/18/2008	7:00	27.44	6.57	175	2.3	0.18	0.08	1	5
6/18/2008	7:15	27.41	6.57	174	1.8	0.14	0.08	1	5
6/18/2008	7:30	27.38	6.56	173	2.2	0.17	0.08	1	5
6/18/2008	7:45	27.36	6.56	172	1.6	0.13	0.08	1	5
6/18/2008	8:00	27.34	6.54	171	1.8	0.14	0.08	1	5
6/18/2008	8:15	27.35	6.55	170	1.8	0.15	0.08	1	5
6/18/2008	8:30	27.37	6.56	174	1.9	0.15	0.08	1	5
6/18/2008	8:45	27.38	6.56	173	2.2	0.17	0.08	1	5
6/18/2008	9:00	27.39	6.58	177	1.9	0.15	0.08	1	5
6/18/2008	9:15	27.39	6.55	175	2.5	0.2	0.08	1	5
6/18/2008	9:30	27.43	6.58	177	2.7	0.22	0.08	1	5
6/18/2008	9:45	27.5	6.6	181	2.6	0.21	0.08	1	5

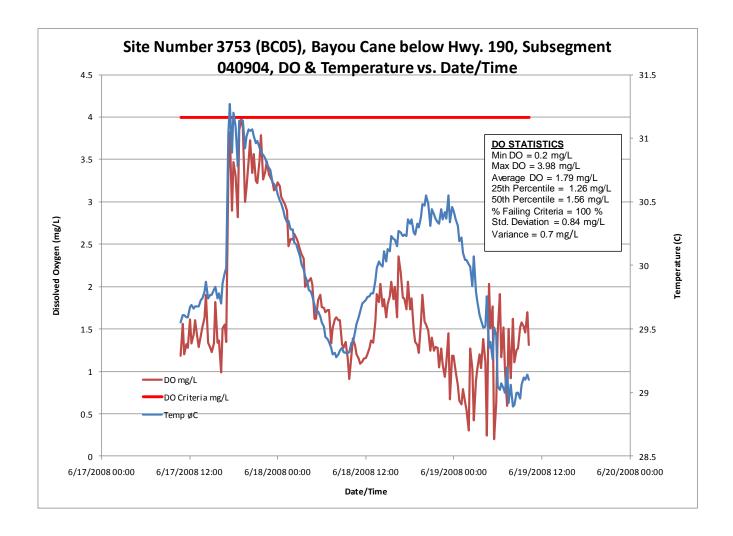

6/18/2008	10:00	27.6	6.61	185	3.1	0.25	0.08	1	5
6/18/2008	10:15	27.55	6.62	190	2.6	0.21	0.09	1	5
6/18/2008	10:30	27.56	6.62	189	2	0.15	0.09	1	5
6/18/2008	10:45	27.58	6.63	190	1.9	0.15	0.09	1	5
6/18/2008	11:00	27.57	6.63	199	2.1	0.16	0.09	1	5
6/18/2008	11:15	27.57	6.65	207	2.1	0.16	0.1	1	5
6/18/2008	11:30	27.57	6.67	212	2.3	0.18	0.1	1	5
6/18/2008	11:45	27.61	6.67	215	3	0.24	0.1	1	5
6/18/2008	12:00	27.64	6.67	211	2.7	0.21	0.1	1	5
6/18/2008	12:15	27.73	6.67	214	3.5	0.28	0.1	1	5
6/18/2008	12:30	27.79	6.67	218	3.7	0.29	0.1	1	5
6/18/2008	12:45	27.92	6.7	224	7.7	0.6	0.1	1	5
6/18/2008	13:00	27.91	6.69	218	6	0.47	0.1	1	5
6/18/2008	13:15	27.9	6.69	220	5.2	0.41	0.1	1	5
6/18/2008	13:30	27.9 27.94	6.69	219	6.8	0.41	0.1	1	5
6/18/2008	13:45	27.94 27.99	6.69	219	6	0.33	0.1	1	5 5
			6.71	219			0.1	1	5
6/18/2008	14:00	28.04			8.7	0.68		·	
6/18/2008	14:15	28.08	6.7	222	7.5	0.59	0.1	1	5
6/18/2008	14:30	28.06	6.7	223	6.7	0.53	0.1	1	5
6/18/2008	14:45	28.06	6.7	224	6.3	0.49	0.1	1	5
6/18/2008	15:00	28.07	6.7	225	7.1	0.55	0.11	1	5
6/18/2008	15:15	28.09	6.72	231	8.6	0.67	0.11	1	5
6/18/2008	15:30	28.16	6.72	234	9.6	0.75	0.11	1	5
6/18/2008	15:45	28.14	6.71	230	7	0.54	0.11	1	5
6/18/2008	16:00	28.13	6.71	229	7.3	0.57	0.11	1	5
6/18/2008	16:15	28.21	6.72	245	8	0.62	0.12	1	5
6/18/2008	16:30	28.24	6.72	235	8.2	0.64	0.11	1	5
6/18/2008	16:45	28.24	6.73	236	8.8	0.68	0.11	1	5
6/18/2008	17:00	28.19	6.71	231	6.4	0.5	0.11	1	5
6/18/2008	17:15	28.3	6.73	239	9.2	0.71	0.11	1	5
6/18/2008	17:30	28.45	6.76	254	12.7	0.98	0.12	1	5
6/18/2008	17:45	28.45	6.74	240	7.9	0.61	0.11	1	5
6/18/2008	18:00	28.34	6.75	238	9.6	0.75	0.11	1	5
6/18/2008	18:15	28.49	6.76	251	9.1	0.71	0.12	1	5
6/18/2008	18:30	28.54	6.76	253	8.4	0.65	0.12	1	5
6/18/2008	18:45	28.44	6.74	247	7.2	0.56	0.12	1	5
6/18/2008	19:00	28.53	6.78	253	10.9	0.84	0.12	1	5
6/18/2008	19:15	28.41	6.76	245	7.3	0.57	0.12	1	5
6/18/2008	19:30	28.61	6.79	261	10.1	0.78	0.12	1	5
6/18/2008	19:45	28.43	6.76	250	6.5	0.5	0.12	1	5
6/18/2008	20:00	28.48	6.77	249	7.1	0.55	0.12	1	5
6/18/2008	20:15	28.45	6.76	250	5.3	0.41	0.12	1	5
6/18/2008	20:30	28.4	6.75	245	4.6	0.35	0.12	1	5
6/18/2008	20:45	28.52	6.78	253	7.2	0.56	0.12	1	5
6/18/2008	21:00	28.57	6.77	253	5.9	0.46	0.12	1	5
6/18/2008	21:15	28.62	6.78	260	7.1	0.55	0.12	1	5
6/18/2008	21:30	28.48	6.75	253	4.6	0.36	0.12	1	5
6/18/2008	21:45	28.71	6.79	260	8.2	0.63	0.12	1	5
6/18/2008	22:00	28.63	6.75	253	5.4	0.42	0.12	1	5
6/18/2008	22:15	28.85	6.87	274	17.1	1.32	0.12	1	5
0/10/2000	22.10	20.00	0.07	214	17.1	1.32	0.13	I	5

6/18/2008	22:30	28.82	6.84	272	9.4	0.73	0.13	1	5
6/18/2008	22:45	28.8	6.86	270	15.1	1.17	0.13	1	5
6/18/2008	23:00	28.78	6.83	262	12	0.92	0.12	1	5
6/18/2008	23:15	28.73	6.82	261	13.6	1.05	0.12	1	5
6/18/2008	23:30	28.68	6.82	259	11.7	0.9	0.12	1	5
6/18/2008	23:45	28.65	6.81	257	11.7	0.91	0.12	1	5
6/19/2008	0:00	28.6	6.8	253	12.6	0.98	0.12	1	5
6/19/2008	0:15	28.53	6.79	250	11.5	0.89	0.12	1	5
6/19/2008	0:30	28.49	6.79	249	10.6	0.82	0.12	1	5
6/19/2008	0:45	28.45	6.78	247	10.6	0.83	0.12	1	5
6/19/2008	1:00	28.39	6.78	246	9.5	0.74	0.12	1	5
6/19/2008	1:15	28.36	6.77	241	9	0.7	0.11	1	5
6/19/2008	1:30	28.28	6.76	238	8.9	0.69	0.11	1	5
6/19/2008	1:45	28.23	6.75	236	8.8	0.68	0.11	1	5
6/19/2008	2:00	28.17	6.75	235	7.9	0.62	0.11	1	5
6/19/2008	2:15	28.11	6.74	233	8.7	0.68	0.11	1	5
6/19/2008	2:30	28.07	6.74	231	8.3	0.65	0.11	1	5
6/19/2008	2:45	27.98	6.73	228	8.1	0.63	0.11	1	5
6/19/2008	3:00	27.94	6.73	226	7.8	0.61	0.11	1	5
6/19/2008	3:15	27.86	6.72	224	7.1	0.56	0.1	1	5
6/19/2008	3:30	27.82	6.72	224	5.8	0.46	0.1	1	5
6/19/2008	3:45	27.81	6.73	226	6.5	0.51	0.11	1	5
6/19/2008	4:00	27.71	6.72	222	6.8	0.53	0.1	1	5
6/19/2008	4:15	27.64	6.71	222	5.8	0.46	0.1	1	5
6/19/2008	4:30	27.58	6.69	216	5.6	0.44	0.1	1	5
6/19/2008	4:45	27.52	6.69	214	5.3	0.41	0.1	1	5
6/19/2008	5:00	27.47	6.67	207	5.1	0.4	0.1	1	5
6/19/2008	5:15	27.46	6.67	206	4.1	0.33	0.1	1	5
6/19/2008	5:30	27.39	6.67	207	4.5	0.35	0.1	1	5
6/19/2008	5:45	27.35	6.68	210	4.3	0.34	0.1	1	5
6/19/2008	6:00	27.28	6.65	204	4	0.32	0.09	1	5
6/19/2008	6:15	27.23	6.66	205	3.6	0.29	0.09	1	5
6/19/2008	6:30	27.22	6.67	207	3.5	0.28	0.1	1	5
6/19/2008	6:45	27.18	6.67	208	3.3	0.26	0.1	1	5
6/19/2008	7:00	27.1	6.67	207	4.1	0.32	0.1	1	5
6/19/2008	7:15	27.07	6.67	207	3.4	0.27	0.1	1	5
6/19/2008	7:30	27.09	6.68	208	3.7	0.29	0.1	1	5
6/19/2008	7:45	27.03	6.67	207	3.1	0.25	0.1	1	5
6/19/2008	8:00	27.01	6.67	208	3.8	0.3	0.1	1	5
6/19/2008	8:15	27.01	6.67	207	2.6	0.21	0.1	1	5
6/19/2008	8:30	27.02	6.68	211	3.3	0.26	0.1	1	5
6/19/2008	8:45	27.02	6.69	216	3.6	0.29	0.1	1	5
6/19/2008	9:00	27.03	6.7	218	3.8	0.31	0.1	1	5
6/19/2008	9:15	27.03	6.7	222	3.5	0.28	0.1	1	5
6/19/2008	9:30	27.05	6.72	226	3.5	0.28	0.11	1	5
				-	-	-			

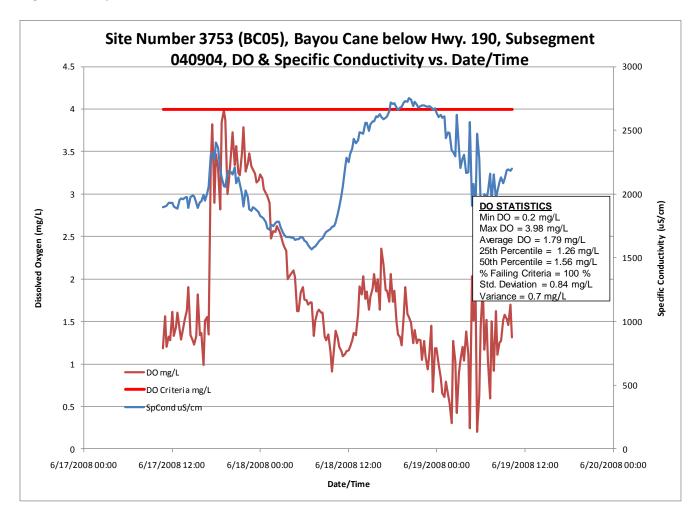
avg= 0.100265 min= 0.08 max= 0.13

Site Number:	3752 (BC04)	3752 (BC04) Site Name: Bayou Cane just above Hv				
Subsegment #:	040904					
	Temp deg C	pН	SpCond uS/cm	DO %	DO mg/L	
Minimum	27.96	7.00	391.00	0.80	0.06	
Maximum	29.76	7.31	567.00	38.90	2.95	
Average	28.57	7.12	463.47	11.06	0.86	
Geometric Mean	28.56	7.12	#NUM!	8.13	0.63	
25th Percentile	28.38	7.08	432.00	5.63	0.44	
30th Percentile	28.43	7.09	437.70	6.60	0.51	
40th Percentile	28.51	7.10	452.60	8.78	0.68	
50th Percentile	28.55	7.13	459.50	10.80	0.84	
Standard Deviation	0.31	0.06	41.41	7.11	0.55	
Variance	0.10	0.00	1714.80	50.50	0.30	
Data Row Count		190				
Total Values Failing						
DO Criteria		190				
Percent failing DO						
Criteria		100.00	%			

Bayou Cane, Site 3752, Continuous Monitoring Data


					DO		_	Is DO <	DO
Date_	Time	Temp	pН	SpCond	PERCENT	DO	SALINITY	Criteria	Criteria
MMDDYY	HHMM	øС	Units	uS/cm	Sat	mg/L	ppt	4	mg/L
6/17/2008	10:45	28.23	7.04	414	8.2	0.64	0.21	1	4
6/17/2008	11:00	28.06	7.04	409	2.2	0.17	0.2	1	4
6/17/2008	11:15	28.49	7.07	409	9.2	0.71	0.2	1	4 4
6/17/2008	11:30	28.35	7.06	410	8.1	0.63	0.2	1	
6/17/2008 6/17/2008	11:45 12:00	28.26 28.37	7.02 7.07	412 416	3.5 12.1	0.27 0.94	0.21 0.21	1 1	4 4
6/17/2008	12:00	28.42	7.07 7.1	418	21.8	1.69	0.21	1	4
6/17/2008	12:13	28.38	7.1	418	15.3	1.18	0.21	1	4
6/17/2008	12:45	28.43	7.07	428	9.8	0.76	0.21	1	4
6/17/2008	13:00	28.48	7.1	434	7	0.70	0.21	1	4
6/17/2008	13:15	28.51	7.14	435	8.9	0.69	0.22	1	4
6/17/2008	13:30	28.43	7.06	442	4.4	0.34	0.22	1	4
6/17/2008	13:45	28.46	7.09	433	5.2	0.4	0.22	1	4
6/17/2008	14:00	28.48	7.1	445	5.6	0.44	0.22	1	4
6/17/2008	14:15	28.55	7.11	459	7	0.54	0.23	1	4
6/17/2008	14:30	28.57	7.14	466	9.6	0.74	0.23	1	4
6/17/2008	14:45	28.61	7.14	469	9.1	0.7	0.24	1	4
6/17/2008	15:00	28.51	7.12	448	5.7	0.44	0.23	1	4
6/17/2008	15:15	28.53	7.11	428	6	0.47	0.21	1	4
6/17/2008	15:30	28.44	7.08	432	2.7	0.21	0.22	1	4
6/17/2008	15:45	28.57	7.13	470	8.6	0.67	0.24	1	4
6/17/2008	16:00	28.52	7.1	442	4.6	0.36	0.22	1	4
6/17/2008	16:15	28.59	7.1	432	7.3	0.57	0.22	1	4
6/17/2008	16:30	28.32	7.04	420	2	0.16	0.21	1	4
6/17/2008	16:45	28.51	7.06	438	3	0.23	0.22	1	4
6/17/2008	17:00	28.76	7.1	479	6	0.47	0.24	1	4
6/17/2008	17:15	28.29	7.03	410	3.1	0.24	0.2	1	4
6/17/2008	17:30	28.73	7.14	453	16.8	1.3	0.23	1	4
6/17/2008	17:45	29.08	7.18	472	21.3	1.63	0.24	1	4
6/17/2008	18:00	29.04	7.17	515	17.6	1.35	0.26	1	4
6/17/2008	18:15	28.69	7.13	479	12.7	0.98	0.24	1	4
6/17/2008	18:30	29.15	7.17	525	22.8	1.74	0.27	1	4
6/17/2008	18:45	29.58	7.24	560	32.5	2.47	0.29	1	4
6/17/2008	19:00	29.21	7.19	541	26.9	2.06	0.28	1	4
6/17/2008	19:15	28.74	7.1	454	10.1	0.78	0.23	1	4
6/17/2008	19:30	29.29	7.18	510	24.8	1.89	0.26	1	4
6/17/2008	19:45	28.66	7.08	450	7.9	0.61	0.23	1	4
6/17/2008	20:00	28.78	7.09	451	10.4	0.8	0.23	1	4
6/17/2008	20:15	28.91	7.09	475	11.9	0.91	0.24	1	4
6/17/2008	20:30	29.45	7.16	491	14.6	1.11	0.25	1	4
6/17/2008	20:45	29.76	7.31	553	38.9	2.95	0.28	1	4
6/17/2008	21:00	29.32	7.18	504	20.1	1.53	0.26	1	4
6/17/2008	21:15	29.46	7.14	567	19.5	1.49	0.29	1	4
6/17/2008	21:30	28.89	7.07	474	5.5	0.43	0.24	1	4

6/17/2008	21:45	29.25	7.16	499	13.7	1.05	0.25	1	4
6/17/2008	22:00	28.61	7.03	453	1.4	0.11	0.23	1	4
6/17/2008	22:15	28.72	7.05	445	3.8	0.3	0.22	1	4
6/17/2008	22:30	28.92	7.05	461	3.1	0.24	0.23	1	4
6/17/2008	22:45	29.15	7.14	487	12.9	0.99	0.25	1	4
6/17/2008	23:00	28.52	7.01	437	0.9	0.07	0.22	1	4
6/17/2008	23:15	28.71	7.03	432	1.8	0.14	0.22	1	4
6/17/2008	23:30	29.03	7.07	460	11	0.84	0.23	1	4
6/17/2008	23:45	29.17	7.17	472	23.2	1.78	0.24	1	4
6/18/2008	0:00	29.18	7.18	485	22.9	1.75	0.24	1	4
6/18/2008	0:15	28.77	7.04	444	3.8	0.29	0.22	1	4
6/18/2008	0:30	28.87	7.06	444	12.2	0.94	0.22	1	4
6/18/2008	0:45	28.94	7.08	445	10.2	0.79	0.22	1	4
6/18/2008	1:00	28.97	7.08	455	7.2	0.56	0.23	1	4
6/18/2008	1:15	28.82	7.04	457	4.6	0.36	0.23	1	4
6/18/2008	1:30	28.84	7.05	437	4.2	0.32	0.22	1	4
6/18/2008	1:45	28.89	7.09	441	10.7	0.82	0.22	1	4
6/18/2008	2:00	28.57	7	421	0.9	0.07	0.21	1	4
6/18/2008	2:15	28.88	7.14	422	21.5	1.66	0.21	1	4
6/18/2008	2:30	28.82	7.09	427	14.3	1.1	0.21	1	4
6/18/2008	2:45	28.81	7.14	429	20.3	1.57	0.21	1	4
6/18/2008	3:00	28.72	7.09	432	14.7	1.14	0.22	1	4
6/18/2008	3:15	28.77	7.14	433	20	1.54	0.22	1	4
6/18/2008	3:30	28.58	7.01	428	1.2	0.09	0.21	1	4
6/18/2008	3:45	28.68	7.1	420	15.6	1.2	0.21	1	4
6/18/2008	4:00	28.6	7.05	416	5	0.39	0.21	1	4
6/18/2008	4:15	28.59	7.09	414	14.3	1.11	0.21	1	4
6/18/2008	4:30	28.57	7.09	410	15.1	1.17	0.2	1	4
6/18/2008	4:45	28.52	7.08	411	13	1.01	0.2	1	4
6/18/2008	5:00	28.52	7.08	409	12.9	1	0.2	1	4
6/18/2008	5:15	28.48	7.08	410	12.3	0.95	0.2	1	4
6/18/2008	5:30	28.44	7.07	405	10.6	0.83	0.2	1	4
6/18/2008	5:45	28.43	7.06	405	11.5	0.89	0.2	1	4
6/18/2008	6:00	28.4	7.07	407	10.6	0.83	0.2	1	4
6/18/2008	6:15	28.36	7.07	407	12	0.94	0.2	1	4
6/18/2008	6:30	28.35	7.07	406	10.2	0.8	0.2	1	4
6/18/2008	6:45	28.33	7.06	406	9.3	0.72	0.2	1	4
6/18/2008	7:00	28.32	7.05	401	7.9	0.61	0.2	1	4
6/18/2008	7:15	28.3	7.04	399	7	0.54	0.2	1	4
6/18/2008	7:30	28.27	7.04	400	6.9	0.53	0.2	1	4
6/18/2008	7:45	28.26	7.04	399	6.6	0.51	0.2	1	4
6/18/2008	8:00	28.24	7.03	391	6.8	0.53	0.19	1	4
6/18/2008	8:15	28.24	7.04	398	6.3	0.49	0.2	1	4
6/18/2008	8:30	28.23	7.04	399	6.2	0.48	0.2	1	4
6/18/2008	8:45	28.23	7.04	398	4.9	0.38	0.2	1	4
6/18/2008	9:00	28.23	7.04	398	6	0.47	0.2	1	4
6/18/2008	9:15	28.23	7.04	403	5.1	0.4	0.2	1	4
6/18/2008	9:30	28.24	7.04	401	5.4	0.42	0.2	1	4
6/18/2008	9:45	28.24	7.04	401	5	0.39	0.2	1	4
6/18/2008	10:00	28.29	7.11	422	10	0.78	0.21	1	4
5, 15, 2000	. 5.50	_5.25		1		5 5	5.21	•	7

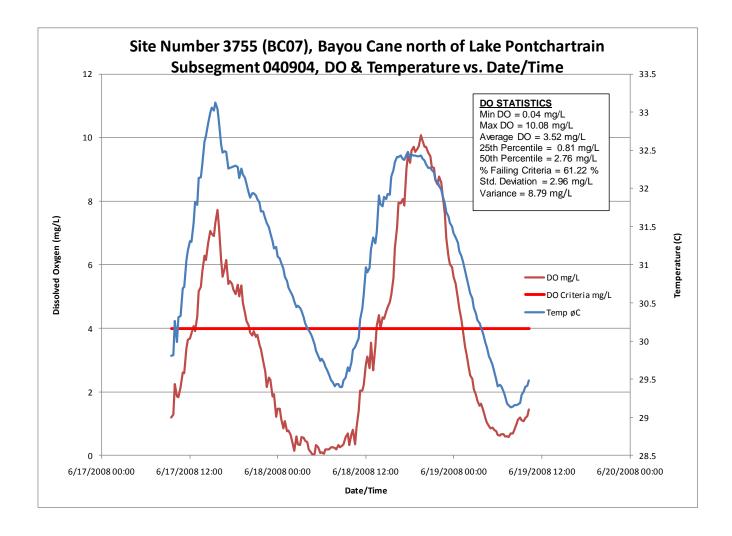

6/18/2008	10:15	28.37	7.11	421	11.3	0.87	0.21	1	4
6/18/2008	10:30	28.35	7.11	425	10.2	0.79	0.21	1	4
6/18/2008	10:45	28.38	7.11	434	11.6	0.9	0.22	1	4
6/18/2008	11:00	28.4	7.18	450	11.9	0.93	0.23	1	4
6/18/2008	11:15	28.39	7.15	437	11.4	0.89	0.22	1	4
6/18/2008	11:30	28.49	7.21	462	15.4	1.2	0.23	1	4
6/18/2008	11:45	28.43	7.17	456	12.5	0.97	0.23	1	4
6/18/2008	12:00	28.54	7.21	465	16.8	1.3	0.23	1	4
6/18/2008	12:15	28.54	7.2	468	13.4	1.04	0.24	1	4
6/18/2008	12:30	28.53	7.2	481	13.7	1.06	0.24	1	4
6/18/2008	12:45	28.55	7.2	476	14	1.08	0.24	1	4
6/18/2008	13:00	28.58	7.21	471	15.5	1.2	0.24	1	4
6/18/2008	13:15	28.6	7.2	492	16.1	1.25	0.25	1	4
6/18/2008	13:30	28.55	7.19	490	12.8	0.99	0.25	1	4
6/18/2008	13:45	28.7	7.21	509	15.8	1.22	0.26	1	4
6/18/2008	14:00	28.68	7.2	509	15.7	1.21	0.26	1	4
6/18/2008	14:15	28.66	7.2	513	14	1.08	0.26	1	4
6/18/2008	14:30	28.62	7.2	504	13.5	1.04	0.26	1	4
6/18/2008	14:45	28.69	7.2	525	15.5	1.2	0.27	1	4
6/18/2008	15:00	28.69	7.2	501	14.7	1.13	0.25	1	4
6/18/2008	15:15	28.72	7.2	511	15	1.16	0.26	1	4
6/18/2008	15:30	28.76	7.19	525	14.3	1.1	0.27	1	4
6/18/2008	15:45	28.74	7.19	527	15.5	1.2	0.27	1	4
6/18/2008	16:00	28.74	7.2	525	15	1.16	0.27	1	4
6/18/2008	16:15	28.76	7.19	515	13.7	1.06	0.26	1	4
6/18/2008	16:30	28.72	7.19	535	13.4	1.03	0.27	1	4
6/18/2008	16:45	28.71	7.19	531	14.6	1.12	0.27	1	4
6/18/2008	17:00	28.71	7.18	525	13.3	1.02	0.27	1	4
6/18/2008	17:15	28.66	7.18	520	11.3	0.87	0.26	1	4
6/18/2008	17:30	28.74	7.17	524	11.7	0.9	0.27	1	4
6/18/2008	17:45	28.67	7.18	523	10.1	0.78	0.27	1	4
6/18/2008	18:00	28.7	7.17	525	11.9	0.92	0.27	1	4
6/18/2008	18:15	28.72	7.18	525	11.1	0.85	0.27	1	4
6/18/2008	18:30	28.78	7.17	529	10.7	0.83	0.27	1	4
6/18/2008	18:45	28.73	7.16	525	10.9	0.84	0.27	1	4
6/18/2008	19:00	28.78	7.16	534	11	0.85	0.27	1	4
6/18/2008	19:15	28.75	7.17	529	9.2	0.71	0.27	1	4
6/18/2008	19:30	28.74	7.16	532	9	0.69	0.27	1	4
6/18/2008	19:45	28.71	7.16	523	7.5	0.58	0.27	1	4
6/18/2008	20:00	28.7	7.16	519	8.6	0.66	0.26	1	4
6/18/2008	20:15	28.71	7.15	521	7.2	0.56	0.26	1	4
6/18/2008	20:30	28.69	7.15	511	7.2	0.56	0.26	1	4
6/18/2008	20:45	28.76	7.15	529	7.5	0.58	0.27	1	4
6/18/2008	21:00	28.72	7.15	517	6.4	0.49	0.26	1	4
6/18/2008	21:15	28.74	7.15	533	6.1	0.47	0.27	1	4
6/18/2008	21:30	28.61	7.14	494	5.5	0.42	0.25	1	4
6/18/2008	21:45	28.62	7.13	497	4.4	0.34	0.25	1	4
6/18/2008	22:00	28.57	7.12	480	2.4	0.19	0.24	1	4
6/18/2008	22:15	28.78	7.14	533	6.6	0.51	0.27	1	4
6/18/2008	22:30	28.66	7.14	505	5.3	0.41	0.26	1	4

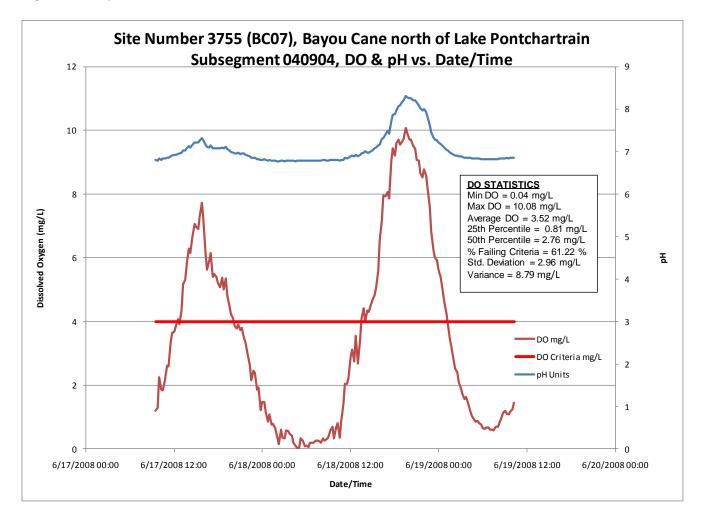
6/18/2008	22:45	28.58	7.13	488	3.1	0.24	0.25	1	4
6/18/2008	23:00	28.55	7.12	485	1.5	0.11	0.24	1	4
6/18/2008	23:15	28.54	7.12	476	2.4	0.18	0.24	1	4
6/18/2008	23:30	28.52	7.1	475	1.3	0.1	0.24	1	4
6/18/2008	23:45	28.49	7.1	457	8.0	0.06	0.23	1	4
6/19/2008	0:00	28.55	7.11	477	0.9	0.07	0.24	1	4
6/19/2008	0:15	28.54	7.1	466	8.0	0.06	0.23	1	4
6/19/2008	0:30	28.51	7.1	465	0.9	0.07	0.23	1	4
6/19/2008	0:45	28.52	7.1	461	0.9	0.07	0.23	1	4
6/19/2008	1:00	28.51	7.09	454	8.0	0.07	0.23	1	4
6/19/2008	1:15	28.52	7.08	455	8.0	0.07	0.23	1	4
6/19/2008	1:30	28.51	7.09	448	8.0	0.07	0.22	1	4
6/19/2008	1:45	28.47	7.08	445	8.0	0.06	0.22	1	4
6/19/2008	2:00	28.44	7.08	442	0.9	0.07	0.22	1	4
6/19/2008	2:15	28.54	7.09	465	8.0	0.06	0.23	1	4
6/19/2008	2:30	28.41	7.07	457	8.0	0.07	0.23	1	4
6/19/2008	2:45	28.61	7.14	483	2.4	0.19	0.24	1	4
6/19/2008	3:00	28.46	7.08	452	0.9	0.07	0.23	1	4
6/19/2008	3:15	28.56	7.18	501	18.9	1.46	0.25	1	4
6/19/2008	3:30	28.64	7.27	524	34.3	2.65	0.27	1	4
6/19/2008	3:45	28.42	7.11	455	6.9	0.53	0.23	1	4
6/19/2008	4:00	28.54	7.22	508	26.4	2.04	0.26	1	4
6/19/2008	4:15	28.5	7.25	492	28.1	2.18	0.25	1	4
6/19/2008	4:30	28.44	7.21	450	22.2	1.72	0.23	1	4
6/19/2008	4:45	28.4	7.2	477	19.4	1.51	0.24	1	4
6/19/2008	5:00	28.37	7.2	464	23.2	1.8	0.23	1	4
6/19/2008	5:15	28.32	7.2	468	24.9	1.93	0.24	1	4
6/19/2008	5:30	28.28	7.18	464	20.6	1.6	0.23	1	4
6/19/2008	5:45	28.25	7.17	462	20.3	1.58	0.23	1	4
6/19/2008	6:00	28.22	7.16	453	18	1.4	0.23	1	4
6/19/2008	6:15	28.17	7.14	452	18.4	1.43	0.23	1	4
6/19/2008	6:30	28.13	7.16	460	19.1	1.49	0.23	1	4
6/19/2008	6:45	28.08	7.15	461	14.3	1.11	0.23	1	4
6/19/2008	7:00	28.08	7.15	458	16.7	1.3	0.23	1	4
6/19/2008	7:15	28.06	7.14	456	15.9	1.24	0.23	1	4
6/19/2008	7:30	28.04	7.13	453	14.9	1.16	0.23	1	4
6/19/2008	7:45	28	7.14	456	16.4	1.28	0.23	1	4
6/19/2008	8:00	27.99	7.13	454	12.7	0.99	0.23	1	4
6/19/2008	8:15	27.97	7.14	457	16.6	1.3	0.23	1	4
6/19/2008	8:30	27.97	7.14	461	17.8	1.39	0.23	1	4
6/19/2008	8:45	27.96	7.15	461	16.4	1.29	0.23	1	4
6/19/2008	9:00	27.96	7.14	461	16.7	1.31	0.23	1	4
6/19/2008	9:15	27.99	7.15	470	15.5	1.21	0.24	1	4
6/19/2008	9:30	27.97	7.15	473	14.4	1.12	0.24	1	4
6/19/2008	9:45	27.99	7.15	475	15.8	1.24	0.24	1	4
6/19/2008	10:00	27.99	7.19	500	15.3	1.19	0.25	1	4
			-		-	-	-		

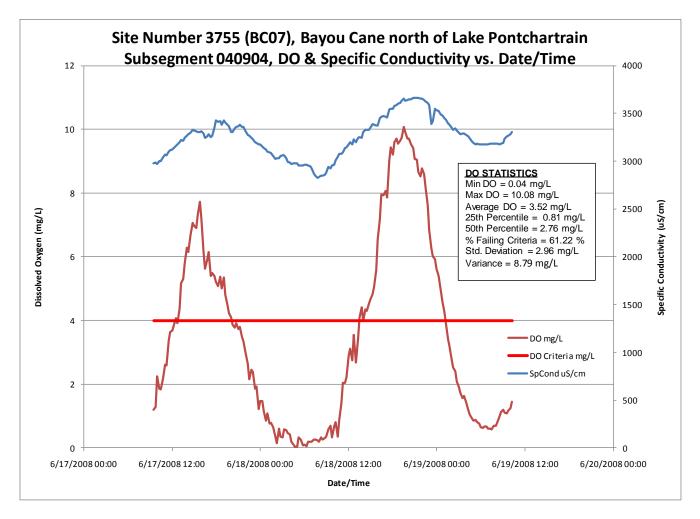
avg= 0.233421 min= 0.19 max= 0.29

Site Number:	3753 (BC05)	Site Name:	Bayou Cane be	low Hwy. 190			
Subsegment #:	040904						
	Temp deg C	pН	SpCond uS/cm	DO % sat	DO mg/L		
Minimum	28.89	6.81	1568.00	2.60	0.20		
Maximum	31.27	6.98	2750.00	54.00	3.98		
Average	29.98	6.88	2143.82	23.84	1.79		
Geometric Mean	29.97	6.88	#NUM!	21.25	1.60		
25th Percentile	29.59	6.84	1881.00	16.65	1.26		
30th Percentile	29.66	6.84	1905.00	17.20	1.29		
40th Percentile	29.76	6.86	1970.00	18.70	1.40		
50th Percentile	29.97	6.87	2081.00	20.70	1.56		
Standard Deviation	0.57	0.04	359.46	11.39	0.84		
Variance	0.33	0.00	129209.37	129.77	0.70		
Data Row Count		191					
Total Values							
Failing DO							
Criteria		191					
Percent failing DO Criteria		100.00	%				

Bayou Cane, Site 3753, Continuous Monitoring Data


Date_	Time	Temp	рН	SpCond	DO PERCENT	DO	SALINITY	Is DO < Criteria	DO Criteria
MMDDYY	HHMM	øС	Units	uS/cm	Sat	mg/L	ppt	4	mg/L
6/17/2008	10:45	29.55	6.83	1897	15.6	1.18	1.01	1	4
6/17/2008	11:00	29.61	6.84	1902	20.6	1.56	1.02	1	4
6/17/2008	11:15	29.61	6.84	1908	15.9	1.2	1.02	1	4
6/17/2008	11:30	29.59	6.83	1932	17.4	1.32	1.03	1	4
6/17/2008	11:45	29.59	6.83	1932	16.9	1.28	1.03	1	4
6/17/2008	12:00	29.67	6.84	1933	21.4	1.61	1.03	1	4
6/17/2008	12:15	29.69	6.84	1905	17.6	1.33	1.02	1	4
6/17/2008	12:30	29.66	6.84	1888	18.9	1.43	1.01	1	4
6/17/2008	12:45	29.68	6.84	1884	21.2	1.6	1.01	1	4
6/17/2008	13:00	29.68	6.83	1952	18.7	1.41	1.04	1	4
6/17/2008	13:15	29.68	6.83	1966	17	1.29	1.05	1	4
6/17/2008	13:30	29.73	6.83	1961	18.8	1.42	1.05	1	4
6/17/2008	13:45	29.74	6.83	1970	20.1	1.52	1.05	1	4
6/17/2008	14:00	29.79	6.84	1976	21.5	1.63	1.06	1	4
6/17/2008	14:15	29.87	6.86	1889	25.2	1.9	1.01	1	4
6/17/2008	14:30	29.74	6.82	1978	17.8	1.34	1.06	1	4
6/17/2008	14:45	29.77	6.83	1985	17	1.28	1.06	1	4
6/17/2008	15:00	29.77	6.82	1984	16.3	1.23	1.06	1	4
6/17/2008	15:15	29.81	6.83	1930	17.6	1.33	1.03	1	4
6/17/2008	15:30	29.83	6.85	1888	24.2	1.82	1.01	1	4
6/17/2008	15:45	29.74	6.82	1938	17.8	1.34	1.03	1	4
6/17/2008	16:00	29.78	6.83	1943	18	1.36	1.04	1	4
6/17/2008	16:15	29.7	6.81	1996	13.1	0.99	1.07	1	4
6/17/2008	16:30	29.86	6.83	1946	20	1.51	1.04	1	4
6/17/2008	16:45	29.94	6.83	2005	20.6	1.55	1.07	1	4
6/17/2008	17:00	29.98	6.82	2057	18	1.35	1.1	1	4
6/17/2008	17:15	31.04	6.9	2308	45.6	3.36	1.24	1	4
6/17/2008	17:30	31.27	6.93	2325	52	3.82	1.25	1	4
6/17/2008	17:45	30.89	6.89	2268	39.2	2.9	1.22	1	4
6/17/2008	18:00	31.2	6.92	2405	47.2	3.47	1.29	1	4
6/17/2008	18:15	31.09	6.91	2367	44.9	3.31	1.27	1	4
6/17/2008	18:30	30.78	6.89	2185	38	2.82	1.17	1	4
6/17/2008	18:45	31.14	6.97	2128	52.2	3.85	1.14	1	4
6/17/2008	19:00	31.14	6.98	2060	54	3.98	1.1	1	4
6/17/2008	19:15	31.14	6.97	2057	52.5	3.87	1.1	1	4
6/17/2008	19:30	30.92	6.9	2163	40.6	3	1.16	1	4
6/17/2008	19:45	31.01	6.91	2182	42.9	3.16	1.17	1	4
6/17/2008	20:00	31.07	6.93	2170	47.4	3.49	1.16	1	4
6/17/2008	20:15	31.06	6.95	2151	50.6	3.73	1.15	1	4
6/17/2008	20:30	31.07	6.92	2211	45.3	3.34	1.18	1	4
6/17/2008	20:45	31.02	6.95	2082	48.2	3.56	1.11	1	4
6/17/2008	21:00	30.96	6.93	2128	44	3.25	1.14	1	4
6/17/2008	21:15	30.98	6.93	2081	43.6	3.22	1.11	1	4
6/17/2008	21:30	30.93	6.95	1997	47.1	3.49	1.07	1	4
6/17/2008	21:45	30.89	6.98	1905	51.2	3.79	1.02	1	4


6/17/2008	22:00	30.87	6.94	2026	44.1	3.26	1.08	1	4
6/17/2008	22:15	30.84	6.95	1976	45.3	3.36	1.06	1	4
6/17/2008	22:30	30.8	6.97	1878	46.9	3.48	1	1	4
6/17/2008	22:45	30.77	6.96	1867	44.7	3.32	1	1	4
6/17/2008	23:00	30.75	6.95	1899	44.3	3.29	1.01	1	4
6/17/2008	23:15	30.65	6.95	1886	43.6	3.24	1.01	1	4
6/17/2008	23:30	30.64	6.95	1876	42.3	3.14	1	1	4
6/17/2008	23:45	30.61	6.95	1858	42.4	3.16	0.99	1	4
6/18/2008	0:00	30.56	6.96	1828	43.4	3.23	0.97	1	4
6/18/2008	0:15	30.51	6.96	1814	42.8	3.19	0.97	1	4
6/18/2008	0:30	30.49	6.95	1804	41.1	3.06	0.96	1	4
6/18/2008	0:45	30.43	6.95	1774	40.3	3.01	0.94	1	4
6/18/2008	1:00	30.38	6.95	1731	39.8	2.97	0.92	1	4
6/18/2008	1:15	30.34	6.95	1718	38.8	2.9	0.91	1	4
6/18/2008	1:30	30.35	6.92	1762	33.1	2.48	0.94	1	4
6/18/2008	1:45	30.28	6.93	1750	34.3	2.56	0.93	1	4
6/18/2008	2:00	30.28	6.93	1770	34.1	2.55	0.94	1	4
6/18/2008	2:15	30.18	6.93	1784	34.9	2.62	0.95	1	4
6/18/2008	2:30	30.16	6.93	1785	34.3	2.57	0.95	1	4
6/18/2008	2:45	30.12	6.93	1742	33.7	2.53	0.93	1	4
6/18/2008	3:00	30.07	6.93	1704	32.3	2.43	0.91	1	4
6/18/2008	3:15	30.01	6.93	1679	31.6	2.38	0.89	1	4
6/18/2008	3:30	29.97	6.93	1661	30.9	2.33	0.88	1	4
6/18/2008	3:45	29.92	6.92	1663	26.5	2	0.88	1	4
6/18/2008	4:00	29.87	6.92	1662	27.1	2.04	0.88	1	4
6/18/2008	4:15	29.81	6.92	1654	27.5	2.07	0.88	1	4
6/18/2008	4:30	29.79	6.92	1654	27.8	2.1	0.88	1	4
6/18/2008	4:45	29.76	6.92	1642	26.7	2.02	0.87	1	4
6/18/2008	5:00	29.69	6.91	1645	21.4	1.62	0.87	1	4
6/18/2008	5:15	29.63	6.91	1645	21.4	1.62	0.87	1	4
6/18/2008	5:30	29.64	6.91	1660	24.3	1.84	0.88	1	4
6/18/2008	5:45	29.6	6.91	1654	25	1.9	0.88	1	4
6/18/2008	6:00	29.55	6.91	1635	23.2	1.76	0.87	1	4
6/18/2008	6:15	29.52	6.91	1621	23.1	1.75	0.86	1	4
6/18/2008	6:30	29.44	6.91	1597	22.4	1.7	0.85	1	4
6/18/2008	6:45	29.42	6.92	1579	22.6	1.72	0.84	1	4
6/18/2008	7:00	29.4	6.91	1568	22.6	1.72	0.83	1	4
6/18/2008	7:15	29.35	6.9	1585	17.5	1.33	0.84	1	4
6/18/2008	7:30	29.3	6.91	1589	19.8	1.51	0.84	1	4
6/18/2008	7:45	29.31	6.91	1609	21.1	1.61	0.85	1	4
6/18/2008	8:00	29.28	6.91	1627	21.6	1.64	0.86	1	4
6/18/2008	8:15	29.3	6.91	1647	21.0	1.6	0.88	1	4
6/18/2008	8:30	29.33	6.9	1652	21	1.6	0.88	1	4
6/18/2008	8:45	29.35	6.89	1684	17.3	1.32	0.88	1	4
6/18/2008	9:00	29.33	6.89	1704	16.8	1.32	0.9	1	4
6/18/2008	9:00	29.32	6.89	1704	17.8	1.35	0.91	1	4
6/18/2008	9:30	29.31	6.88	1713	17.8	1.33	0.91	1	4
6/18/2008	9.30 9:45	29.31	6.88	1740	14.9	0.91	0.92	1	4
6/18/2008	9.45 10:00	29.32 29.39	6.88	1740	11.9 15.6	1.19	0.93	1	4
6/18/2008	10:15	29.39	6.88	1777	18.3	1.39	0.95	1	4


6/18/2008	10:30	29.48	6.87	1845	17.2	1.3	0.98	1	4
6/18/2008	10:45	29.54	6.87	1896	15.8	1.2	1.01	1	4
6/18/2008	11:00	29.59	6.85	1990	15.1	1.15	1.06	1	4
6/18/2008	11:15	29.64	6.85	2063	14.4	1.09	1.1	1	4
6/18/2008	11:30	29.7	6.84	2201	14.8	1.12	1.18	1	4
6/18/2008	11:45	29.71	6.84	2287	15.2	1.15	1.23	1	4
6/18/2008	12:00	29.73	6.84	2250	15.4	1.16	1.21	1	4
6/18/2008	12:15	29.75	6.84	2314	15.9	1.2	1.24	1	4
6/18/2008	12:30	29.76	6.85	2356	16.9	1.28	1.26	1	4
6/18/2008	12:45	29.78	6.85	2431	18	1.36	1.31	1	4
6/18/2008	13:00	29.78	6.85	2400	17.8	1.34	1.29	1	4
6/18/2008	13:15	29.88	6.86	2421	21.1	1.59	1.3	1	4
6/18/2008	13:30	29.98	6.87	2485	25.5	1.91	1.34	1	4
6/18/2008	13:45	30.03	6.87	2479	24.2	1.82	1.33	1	4
6/18/2008	14:00	30.01	6.87	2472	27	2.03	1.33	1	4
6/18/2008	14:15	29.99	6.86	2560	23.6	1.77	1.38	1	4
6/18/2008	14:30	30.11	6.87	2560	24.7	1.85	1.38	1	4
6/18/2008	14:45	30.03	6.86	2494	21.8	1.64	1.34	1	4
6/18/2008	15:00	30.13	6.86	2546	24	1.79	1.37	1	4
6/18/2008	15:15	30.11	6.87	2572	25.3	1.89	1.38	1	4
6/18/2008	15:30	30.23	6.87	2568	27.5	2.06	1.38	1	4
6/18/2008	15:45	30.21	6.87	2607	24.7	1.85	1.4	1	4
6/18/2008	16:00	30.2	6.87	2606	26.8	2	1.4	1	4
6/18/2008	16:15	30.15	6.86	2627	21.9	1.64	1.41	1	4
6/18/2008	16:30	30.27	6.89	2606	31.7	2.36	1.4	1	4
6/18/2008	16:45	30.26	6.87	2585	29.1	2.17	1.39	1	4
6/18/2008	17:00	30.23	6.87	2596	25	1.87	1.4	1	4
6/18/2008	17:15	30.24	6.85	2612	24.9	1.86	1.41	1	4
6/18/2008	17:30	30.23	6.85	2649	23.2	1.73	1.43	1	4
6/18/2008	17:45	30.36	6.87	2716	27.6	2.06	1.46	1	4
6/18/2008	18:00	30.33	6.86	2704	23.2	1.73	1.46	1	4
6/18/2008	18:15	30.36	6.86	2715	24.9	1.86	1.46	1	4
6/18/2008	18:30	30.26	6.85	2681	20	1.49	1.44	1	4
6/18/2008	18:45	30.24	6.84	2661	18.1	1.35	1.43	1	4
6/18/2008	19:00	30.33	6.84	2677	17.6	1.31	1.44	1	4
6/18/2008	19:15	30.3	6.84	2686	16.3	1.22	1.45	1	4
6/18/2008	19:30	30.38	6.85	2721	21.2	1.58	1.47	1	4
6/18/2008	19:45	30.48	6.86	2727	25.6	1.9	1.47	1	4
6/18/2008	20:00	30.47	6.85	2722	21.4	1.59	1.47	1	4
6/18/2008	20:15	30.55	6.85	2750	20.9	1.55	1.48	1	4
6/18/2008	20:30	30.49	6.84	2741	19.8	1.48	1.48	1	4
6/18/2008	20:45	30.31	6.84	2689	16.7	1.24	1.45	1	4
6/18/2008	21:00	30.44	6.84	2725	18.8	1.4	1.47	1	4
6/18/2008	21:15	30.4	6.83	2701	16.6	1.24	1.45	1	4
6/18/2008	21:30	30.37	6.84	2678	17.3	1.29	1.44	1	4
6/18/2008	21:45	30.34	6.84	2691	17.2	1.28	1.45	1	4
6/18/2008	22:00	30.33	6.83	2695	14.1	1.05	1.45	1	4
6/18/2008	22:15	30.44	6.84	2693	17.1	1.27	1.45	1	4
6/18/2008	22:30	30.36	6.83	2689	14.5	1.08	1.45	1	4
6/18/2008	22:45	30.42	6.83	2685	12.6	0.94	1.45	1	4

6/18/2008	23:00	30.37	6.84	2689	14.7	1.1	1.45	1	4
6/18/2008	23:15	30.55	6.85	2679	19.5	1.45	1.44	1	4
6/18/2008	23:30	30.34	6.82	2660	9	0.67	1.43	1	4
6/18/2008	23:45	30.46	6.84	2672	15.9	1.18	1.44	1	4
6/19/2008	0:00	30.43	6.84	2636	15.9	1.18	1.42	1	4
6/19/2008	0:15	30.36	6.83	2604	13.4	1	1.4	1	4
6/19/2008	0:30	30.31	6.82	2622	11.1	0.83	1.41	1	4
6/19/2008	0:45	30.19	6.81	2596	8.7	0.65	1.4	1	4
6/19/2008	1:00	30.22	6.81	2612	8.2	0.61	1.41	1	4
6/19/2008	1:15	30.1	6.83	2441	10.5	0.79	1.31	1	4
6/19/2008	1:30	30.04	6.82	2487	8.5	0.64	1.34	1	4
6/19/2008	1:45	30.04	6.82	2481	7.2	0.54	1.33	1	4
6/19/2008	2:00	30.01	6.82	2344	4	0.3	1.26	1	4
6/19/2008	2:15	29.99	6.84	2331	17	1.27	1.25	1	4
6/19/2008	2:30	29.84	6.84	2294	13.7	1.03	1.23	1	4
6/19/2008	2:45	30.07	6.81	2619	5.6	0.42	1.41	1	4
6/19/2008	3:00	29.79	6.87	2358	11.8	0.89	1.27	1	4
6/19/2008	3:15	29.71	6.86	2206	13.7	1.04	1.18	1	4
6/19/2008	3:30	29.61	6.85	2281	15.8	1.2	1.22	1	4
6/19/2008	3:45	29.57	6.85	2310	13.7	1.04	1.24	1	4
6/19/2008	4:00	29.51	6.86	2163	18.3	1.38	1.16	1	4
6/19/2008	4:15	29.52	6.85	2171	14.6	1.11	1.16	1	4
6/19/2008	4:30	29.76	6.82	2566	3.2	0.24	1.38	1	4
6/19/2008	4:45	29.35	6.93	1906	26.7	2.03	1.02	1	4
6/19/2008	5:00	29.4	6.9	2079	19.9	1.51	1.11	1	4
6/19/2008	5:15	29.26	6.91	1917	23.3	1.77	1.02	1	4
6/19/2008	5:30	29.51	6.81	2475	2.6	0.2	1.33	1	4
6/19/2008	5:45	29.45	6.84	2278	8.3	0.63	1.22	1	4
6/19/2008	6:00	29.05	6.93	1912	19	1.45	1.02	1	4
6/19/2008	6:15	29.02	6.93	1871	25	1.91	1.02	1	4
6/19/2008	6:30	29.02	6.87	2000	15.4	1.17	1.07	1	4
6/19/2008	6:45	29.07	6.91	1970	19.9	1.52	1.05	1	4
6/19/2008	7:00	29.03	6.88	2015	13.5	1.03	1.08	1	4
6/19/2008	7:00 7:15	29.2	6.83	2158	7.7	0.59	1.16	1	4
6/19/2008	7:13	28.92	6.9	1940	19.6	1.5	1.04	1	4
6/19/2008		29.06	6.86	2155	12.1		1.15	1	
6/19/2008	7:45 8:00	28.89	6.9	1963	21.1	0.92 1.62	1.15	1 1	4 4
				2020					
6/19/2008	8:15	28.9	6.88		14.5	1.11	1.08	1	4
6/19/2008	8:30	29	6.88	2098	16.4	1.25	1.12	1	4
6/19/2008	8:45	29 28.05	6.88	2131	16.6	1.27	1.14	1	4 4
6/19/2008	9:00	28.95	6.89	2086	19.9	1.52	1.12	1	
6/19/2008	9:15	29.06	6.9	2117	20.7	1.58	1.13	1	4
6/19/2008	9:30	29.12	6.88	2190	20.1	1.53	1.17	1	4
6/19/2008	9:45	29.1	6.88	2193	19.1	1.46	1.17	1	4
6/19/2008	10:00	29.14	6.89	2181	22.2	1.7	1.17	1	4
6/19/2008	10:15	29.1	6.87	2197	17.2	1.31	1.18	1	4

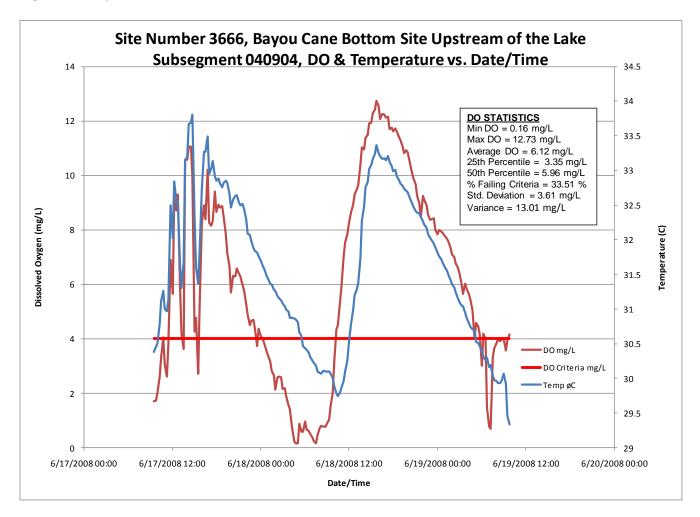
avg= 1.148115 min= 0.83 max= 1.48

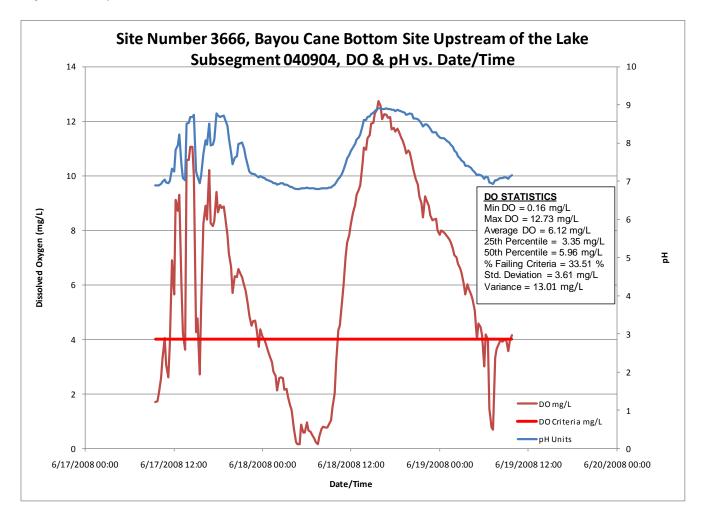
Site Number:	3755 (BC07) Site Name: Bayou Cane north of Lake Pontchartrain							
Subsegment #:	040904							
	Temp deg C	pН	SpCond uS/cm	DO % sat	DO mg/L			
Minimum	29.13	6.76	2827.00	0.50	0.04			
Maximum	33.13	8.31	3663.00	140.50	10.08			
Average	31.04	7.06	3247.76	48.53	3.52			
Geometric Mear	31.02	7.05	#NUM!	27.23	2.00			
25th Percentile	29.97	6.82	3098.50	10.78	0.81			
30th Percentile	30.21	6.82	3157.00	14.55	1.10			
40th Percentile	30.62	6.85	3182.00	24.90	1.86			
50th Percentile	31.15	6.90	3245.50	37.35	2.76			
Standard Deviat	1.15	0.39	209.10	41.40	2.96			
Variance	1.32	0.15	43721.50	1713.79	8.79			
Data Row Coun	t	196						
Total Values								
Failing DO								
Criteria		120						
Percent failing								
DO Criteria		61.22	%					

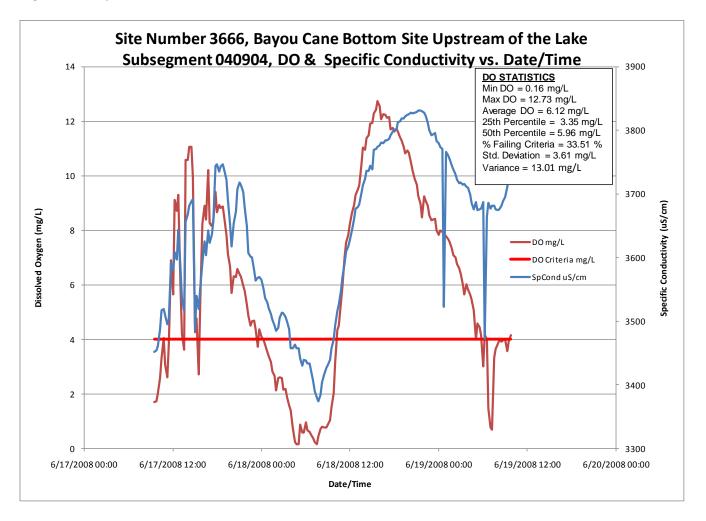
Bayou Cane, Site 3755, Continuous Monitoring Data

Date_	Time	Temp	рН	SpCond	DO PERCENT	DO	SALINITY	Is DO < Criteria	DO Criteria
MMDDYY	HHMM	øС	Units	uS/cm	Sat	mg/L	ppt	4	mg/L
6/17/2008	9:30	29.81	6.8	2979	16	1.2	1.61	1	4
6/17/2008	9:45	29.82	6.79	2985	17	1.28	1.61	1	4
6/17/2008	10:00	30.26	6.83	2972	30.1	2.24	1.61	1	4
6/17/2008	10:15	29.99	6.8	2998	24.9	1.86	1.62	1	4
6/17/2008	10:30	30.31	6.83	2998	24.7	1.84	1.62	1	4
6/17/2008	10:45	30.33	6.83	3042	29	2.16	1.64	1	4
6/17/2008	11:00	30.69	6.85	3067	35.1	2.6	1.66	1	4
6/17/2008	11:15	30.71	6.85	3065	34.8	2.58	1.66	1	4
6/17/2008	11:30	31.05	6.89	3103	45.8	3.37	1.68	1	4
6/17/2008	11:45	31.19	6.91	3114	49.6	3.64	1.68	1	4
6/17/2008	12:00	31.31	6.92	3125	50.2	3.68	1.69	1	4
6/17/2008	12:15	31.3	6.92	3134	52.4	3.84	1.69	1	4
6/17/2008	12:30	31.55	6.94	3162	55.7	4.06	1.71	0	4
6/17/2008	12:45	31.82	6.95	3176	53.8	3.91	1.72	1	4
6/17/2008	13:00	31.78	6.97	3195	60	4.36	1.73	0	4
6/17/2008	13:15	32.14	7.02	3222	71.6	5.17	1.75	0	4
6/17/2008	13:30	32.15	7.02	3211	73.5	5.31	1.74	0	4
6/17/2008	13:45	32.32	7.07	3242	80.5	5.79	1.75	0	4
6/17/2008	14:00	32.61	7.12	3267	87.9	6.29	1.77	0	4
6/17/2008	14:15	32.69	7.1	3282	85.9	6.15	1.78	0	4
6/17/2008	14:30	32.85	7.17	3294	93.6	6.68	1.78	0	4
6/17/2008	14:45	32.99	7.22	3331	99.2	7.06	1.8	0	4
6/17/2008	15:00	33.06	7.22	3321	97.9	6.96	1.8	0	4
6/17/2008	15:15	33.02	7.21	3312	97.1	6.9	1.8	0	4
6/17/2008	15:30	33.13	7.26	3308	102.9	7.31	1.79	0	4
6/17/2008	15:45	33.04	7.32	3301	108.7	7.72	1.79	0	4
6/17/2008	16:00	32.87	7.27	3310	101	7.2	1.79	0	4
6/17/2008	16:15	32.57	7.17	3286	85.7	6.14	1.78	0	4
6/17/2008	16:30	32.47	7.11	3245	78.3	5.62	1.76	0	4
6/17/2008	16:45	32.49	7.09	3259	82.1	5.89	1.76	0	4
6/17/2008	17:00	32.48	7.15	3281	85.5	6.14	1.78	0	4
6/17/2008	17:15	32.26	7.07	3254	75	5.4	1.76	0	4
6/17/2008	17:30	32.27	7.07	3263	76.1	5.48	1.77	0	4
6/17/2008	17:45	32.28	7.07	3352	74.8	5.39	1.82	0	4
6/17/2008	18:00	32.29	7.08	3425	72.5	5.22	1.86	0	4
6/17/2008	18:15	32.3	7.07	3413	70.5	5.07	1.85	0	4
6/17/2008	18:30	32.28	7.09	3420	74.7	5.37	1.85	0	4
6/17/2008	18:45	32.14	7.08	3380	69.3	5	1.83	0	4
6/17/2008	19:00	32.26	7.11	3429	74.3	5.35	1.86	0	4
6/17/2008	19:15	32.18	7.06	3407	66.7	4.81	1.85	0	4
6/17/2008	19:30	32.14	7.02	3382	62.3	4.49	1.83	0	4
6/17/2008	19:45	32.06	6.99	3366	58.5	4.22	1.82	0	4
6/17/2008	20:00	31.95	6.97	3301	56.5	4.09	1.79	0	4
6/17/2008	20:15	31.88	6.96	3304	53.2	3.86	1.79	1	4
6/17/2008	20:30	31.94	6.95	3346	52.1	3.77	1.81	1	4

6/17/2008	20:45	31.94	6.97	3358	54.1	3.92	1.82	1	4
6/17/2008	21:00	31.91	6.94	3362	51.5	3.73	1.82	1	4
6/17/2008	21:15	31.86	6.95	3378	52.4	3.8	1.83	1	4
6/17/2008	21:30	31.81	6.95	3359	48	3.48	1.82	1	4
6/17/2008	21:45	31.7	6.93	3356	45.8	3.33	1.82	1	4
6/17/2008	22:00	31.7	6.9	3314	41	2.98	1.8	1	4
6/17/2008	22:15	31.6	6.88	3274	36.2	2.63	1.77	1	4
6/17/2008	22:30	31.55	6.85	3267	29.7	2.16	1.77	1	4
6/17/2008	22:45	31.49	6.85	3242	33.5	2.45	1.76	1	4
6/17/2008	23:00	31.41	6.85	3228	32.5	2.38	1.75	1	4
6/17/2008	23:15	31.31	6.82	3200	25.4	1.86	1.73	1	4
6/17/2008	23:30	31.21	6.82	3188	26.2	1.92	1.73	1	4
6/17/2008	23:45	31.23	6.81	3176	16.5	1.21	1.72	1	4
6/18/2008	0:00	31.11	6.81	3178	20.1	1.48	1.72	1	4
6/18/2008	0:15	31.08	6.82	3152	20	1.47	1.71	1	4
6/18/2008	0:30	31.02	6.8	3138	15.6	1.15	1.7	1	4
6/18/2008	0:45	30.95	6.79	3124	11.6	0.85	1.69	1	4
6/18/2008	1:00	30.84	6.8	3100	14.5	1.07	1.68	1	4
6/18/2008	1:15	30.79	6.79	3093	10.5	0.77	1.67	1	4
6/18/2008	1:30	30.7	6.79	3084	10.7	0.79	1.67	1	4
6/18/2008	1:45	30.64	6.78	3055	8.7	0.64	1.65	1	4
6/18/2008	2:00	30.59	6.77	3027	4.6	0.34	1.64	1	4
6/18/2008	2:15	30.52	6.76	3028	1.8	0.14	1.64	1	4
6/18/2008	2:30	30.44	6.79	3029	8.1	0.61	1.64	1	4
6/18/2008	2:45	30.46	6.78	3055	4.6	0.34	1.65	1	4
6/18/2008	3:00	30.43	6.77	3063	4.4	0.32	1.66	1	4
6/18/2008	3:15	30.4	6.79	3059	7.7	0.57	1.65	1	4
6/18/2008	3:30	30.31	6.79	3031	7.5	0.56	1.64	1	4
6/18/2008	3:45	30.23	6.79	2995	6.2	0.46	1.62	1	4
6/18/2008	4:00	30.17	6.79	2986	5.5	0.41	1.61	1	4
6/18/2008	4:15	30.14	6.78	2970	2.5	0.18	1.6	1	4
6/18/2008	4:30	30.09	6.77	2974	1.4	0.1	1.61	1	4
6/18/2008	4:45	30.04	6.78	2976	0.5	0.04	1.61	1	4
6/18/2008	5:00	29.96	6.78	2975	0.5	0.04	1.61	1	4
6/18/2008	5:15	29.87	6.79	2954	4.3	0.32	1.6	1	4
6/18/2008	5:30	29.81	6.79	2956	3.3	0.25	1.6	1	4
6/18/2008	5:45	29.74	6.78	2956	1	0.07	1.6	1	4
6/18/2008	6:00	29.77	6.79	2959	1.2	0.09	1.6	1	4
6/18/2008	6:15	29.72	6.79	2959	0.7	0.05	1.6	1	4
6/18/2008	6:30	29.66	6.79	2958	2.4	0.18	1.6	1	4
6/18/2008	6:45	29.61	6.79	2945	2.7	0.2	1.59	1	4
6/18/2008	7:00	29.56	6.79	2923	2.5	0.19	1.58	1	4
6/18/2008	7:15	29.48	6.79	2868	3.3	0.25	1.55	1	4
6/18/2008	7:30	29.46	6.79	2846	3.3	0.25	1.54	1	4
6/18/2008	7:45	29.41	6.79	2827	3.2	0.24	1.52	1	4
6/18/2008	8:00	29.44	6.79	2831	2.4	0.18	1.53	1	4
6/18/2008	8:15	29.44	6.8	2852	4.3	0.33	1.54	1	4
6/18/2008	8:30	29.4	6.8	2851	3.3	0.25	1.54	1	4
6/18/2008	8:45	29.4	6.79	2854	4	0.3	1.54	1	4
6/18/2008	9:00	29.48	6.79	2876	4.5	0.34	1.55	1	4
3/10/2000	5.00	20.70	0.75	2010	⊣.∪	0.04	1.00	1	7


6/18/2008	9:15	29.52	6.81	2936	7.5	0.57	1.59	1	4
6/18/2008	9:30	29.65	6.81	2928	9.2	0.69	1.58	1	4
6/18/2008	9:45	29.61	6.8	2954	4.3	0.32	1.59	1	4
6/18/2008	10:00	29.72	6.8	2962	8.9	0.67	1.6	1	4
6/18/2008	10:15	29.88	6.8	3007	10.6	0.8	1.62	1	4
6/18/2008	10:30	29.92	6.79	3047	4.5	0.34	1.65	1	4
6/18/2008	10:45	29.97	6.8	3076	11.7	0.88	1.66	1	4
6/18/2008	11:00	30.03	6.81	3073	18.6	1.39	1.66	1	4
6/18/2008	11:15	30.28	6.85	3094	27.3	2.03	1.67	1	4
6/18/2008	11:30	30.42	6.84	3135	27.5	2.05	1.7	1	4
6/18/2008	11:45	30.61	6.86	3142	30.1	2.23	1.7	1	4
6/18/2008	12:00	30.97	6.88	3174	39.3	2.89	1.72	1	4
6/18/2008	12:15	30.9	6.91	3195	42.2	3.11	1.73	1	4
6/18/2008	12:30	30.96	6.89	3175	37.3	2.75	1.72	1	4
6/18/2008	12:45	31.2	6.92	3226	48.3	3.54	1.75	1	4
6/18/2008	13:00	31.36	6.88	3202	36.7	2.69	1.73	1	4
6/18/2008	13:15	31.28	6.93	3244	47	3.44	1.76	1	4
6/18/2008	13:30	31.43	6.96	3251	56.2	4.1	1.76	0	4
6/18/2008	13:45	31.91	6.98	3246	60.9	4.41	1.76	0	4
6/18/2008	14:00	31.79	7.01	3306	54.9	3.99	1.79	1	4
6/18/2008	14:15	31.77	6.97	3329	59.8	4.35	1.8	0	4
6/18/2008	14:30	31.89	6.98	3324	59.3	4.3	1.8	0	4
6/18/2008	14:45	31.86	7	3329	62.5	4.53	1.8	0	4
6/18/2008	15:00	31.93	7.02	3347	64.4	4.66	1.81	0	4
6/18/2008	15:15	31.93	7.02	3388	66.6	4.82	1.84	0	4
			7.06 7.1						4
6/18/2008	15:30	32.16		3378	70.1	5.05	1.83	0	
6/18/2008	15:45	32.24 32.35	7.14 7.17	3377	77.5	5.58 6.54	1.83 1.83	0	4 4
6/18/2008	16:00		7.17	3375	90.9	6.54		0	4
6/18/2008	16:15	32.41		3450	100	7.18	1.87	0	
6/18/2008	16:30	32.41	7.32	3466	110.7	7.95	1.88	0	4
6/18/2008	16:45	32.43	7.4	3475	110.3	7.92	1.89	0	4
6/18/2008	17:00	32.38	7.48	3468	112.4	8.07	1.88	0	4
6/18/2008	17:15	32.37	7.42	3459	109.3	7.85	1.88	0	4
6/18/2008	17:30	32.44	7.71	3537	125.9	9.03	1.92	0	4
6/18/2008	17:45	32.48	7.86	3545	131.6	9.44	1.92	0	4
6/18/2008	18:00	32.39	7.88	3549	128.3	9.21	1.93	0	4
6/18/2008	18:15	32.44	7.97	3577	133.8	9.6	1.94	0	4
6/18/2008	18:30	32.43	8.07	3588	135.1	9.7	1.95	0	4
6/18/2008	18:45	32.43	8.09	3603	133	9.54	1.96	0	4
6/18/2008	19:00	32.42	8.18	3608	134.2	9.64	1.96	0	4
6/18/2008	19:15	32.42	8.2	3629	135.5	9.73	1.97	0	4
6/18/2008	19:30	32.43	8.31	3655	140.5	10.08	1.99	0	4
6/18/2008	19:45	32.39	8.28	3635	138.1	9.91	1.97	0	4
6/18/2008	20:00	32.36	8.25	3641	135.1	9.7	1.98	0	4
6/18/2008	20:15	32.32	8.26	3645	135	9.71	1.98	0	4
6/18/2008	20:30	32.27	8.2	3644	132.3	9.52	1.98	0	4
6/18/2008	20:45	32.27	8.2	3659	130.8	9.41	1.99	0	4
6/18/2008	21:00	32.24	8.15	3663	126.1	9.07	1.99	0	4
6/18/2008	21:15	32.21	8.09	3661	125.5	9.04	1.99	0	4
6/18/2008	21:30	32.11	8.01	3663	120.1	8.66	1.99	0	4


6/18/2008	21:45	32.1	7.97	3657	118	8.52	1.99	0	4
6/18/2008	22:00	32.03	8	3653	121.5	8.78	1.98	0	4
6/18/2008	22:15	31.98	7.94	3637	118.7	8.58	1.98	0	4
6/18/2008	22:30	31.9	7.82	3626	113.2	8.19	1.97	0	4
6/18/2008	22:45	31.8	7.62	3608	104.9	7.61	1.96	0	4
6/18/2008	23:00	31.69	7.46	3586	94.1	6.84	1.95	0	4
6/18/2008	23:15	31.63	7.33	3388	86	6.26	1.83	0	4
6/18/2008	23:30	31.55	7.28	3417	82.5	6.01	1.86	0	4
6/18/2008	23:45	31.5	7.26	3548	81.1	5.91	1.93	0	4
6/19/2008	0:00	31.41	7.22	3533	77	5.63	1.92	0	4
6/19/2008	0:15	31.36	7.18	3525	74	5.4	1.91	0	4
6/19/2008	0:30	31.29	7.13	3487	67.5	4.94	1.89	0	4
6/19/2008	0:45	31.18	7.09	3480	63.2	4.63	1.89	0	4
6/19/2008	1:00	31.11	7.05	3451	58.1	4.26	1.87	0	4
6/19/2008	1:15	31.04	7.02	3435	53.1	3.9	1.86	1	4
6/19/2008	1:30	30.92	6.98	3399	46.4	3.42	1.84	1	4
6/19/2008	1:45	30.83	6.96	3382	43.1	3.18	1.83	1	4
6/19/2008	2:00	30.71	6.93	3352	37.4	2.76	1.82	1	4
6/19/2008	2:15	30.62	6.91	3330	33.9	2.51	1.8	1	4
6/19/2008	2:30	30.56	6.91	3340	32.4	2.4	1.81	1	4
6/19/2008	2:45	30.43	6.89	3317	28.2	2.09	1.8	1	4
6/19/2008	3:00	30.36	6.88	3299	25.7	1.91	1.79	1	4
6/19/2008	3:15	30.27	6.87	3282	23	1.71	1.78	1	4
6/19/2008	3:30	30.23	6.86	3287	20.9	1.56	1.78	1	4
6/19/2008	3:45	30.18	6.86	3289	21.8	1.63	1.78	1	4
6/19/2008	4:00	30.09	6.85	3272	19	1.42	1.77	1	4
6/19/2008	4:15	29.98	6.85	3258	15.7	1.18	1.76	1	4
6/19/2008	4:30	29.92	6.84	3235	13.9	1.04	1.75	1	4
6/19/2008	4:45	29.8	6.83	3205	12.3	0.92	1.73	1	4
6/19/2008	5:00	29.76	6.83	3187	11.4	0.86	1.72	1	4
6/19/2008	5:15	29.68	6.83	3178	11.5	0.87	1.72	1	4
6/19/2008	5:30	29.61	6.83	3181	10.8	0.81	1.72	1	4
6/19/2008	5:45	29.49	6.82	3175	10	0.75	1.72	1	4
6/19/2008	6:00	29.41	6.82	3177	8.6	0.65	1.72	1	4
6/19/2008	6:15	29.43	6.82	3176	8.3	0.63	1.72	1	4
6/19/2008	6:30	29.41	6.82	3176	8.9	0.67	1.72	1	4
6/19/2008	6:45	29.34	6.82	3176	8.7	0.66	1.72	1	4
6/19/2008	7:00	29.28	6.82	3179	7.9	0.6	1.72	1	4
6/19/2008	7:15	29.18	6.82	3180	8.1	0.61	1.72	1	4
6/19/2008	7:30	29.16	6.82	3182	7.7	0.58	1.72	1	4
6/19/2008	7:45	29.13	6.82	3183	9.1	0.69	1.72	1	4
6/19/2008	8:00	29.14	6.82	3182	9.1	0.69	1.72	1	4
6/19/2008	8:15	29.16	6.83	3181	10.6	0.8	1.72	1	4
6/19/2008	8:30	29.16	6.84	3179	13	0.99	1.72	1	4
6/19/2008	8:45	29.17	6.84	3182	14.8	1.12	1.72	1	4
6/19/2008	9:00	29.17	6.84	3190	15.7	1.12	1.72	1	4
6/19/2008	9:15	29.19	6.85	3235	14.6	1.13	1.75	1	4
6/19/2008	9:30	29.29	6.84	3256	14.0	1.08	1.76	1	4
6/19/2008	9:45	29.34	6.85	3269	15.5	1.17	1.77	1	4
6/19/2008	10:00	29.42	6.85	3279	16.4	1.17	1.78	1	4
0/ 13/2000	10.00	23.42	0.00	3213	10.4	1.24	1.70	1	4


Bayou Cane Watershed TMDL Subsegments 040903 and 040904 Originated: February 4, 2011

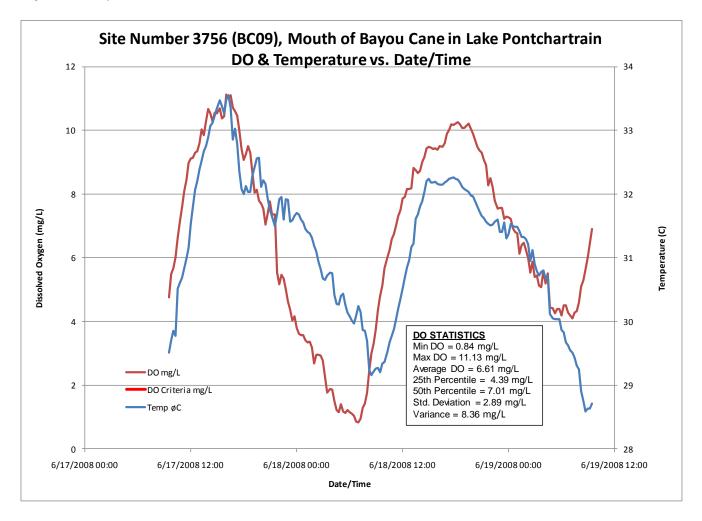
6/19/2008 10:15 29.48 6.86 3301 19.1 1.44 1.79 1 4

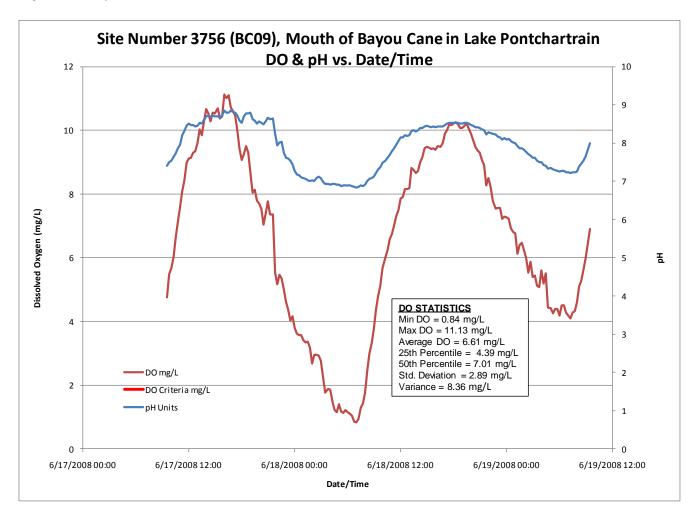
avg= 1.758929 min= 1.52 max= 1.99

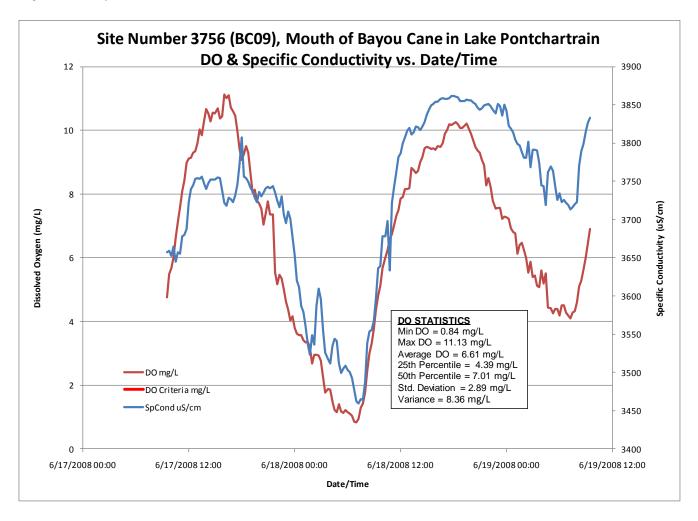
Site Number:	3666	Site Name:	Bayou Cane Bott	om Site Up	stream of L	ake Pontcl	nartrain
Subsegment #:	040904		·				
	Temp deg C	pН	SpCond uS/cm	DO % sat	DO mg/L		
Minimum	29.33	6.79	3374.00	2.20	0.16		
Maximum	33.80	8.90	3831.00	180.30	12.73		
Average	31.59	7.67	3638.03	84.86	6.12		
Geometric Mean	31.57	7.64	#NUM!	#NUM!	4.50		
25th Percentile	30.62	7.01	3519.00	45.23	3.35		
30th Percentile	30.86	7.07	3549.80	52.19	3.90		
40th Percentile	31.17	7.16	3610.60	60.54	4.49		
50th Percentile	31.56	7.44	3674.50	81.80	5.96		
Standard Deviation	1.12	0.74	127.53	50.97	3.61		
Variance	1.25	0.54	16263.63	2597.61	13.01		
Data Row Count		194					
Total Values							
Failing DO Criteria		65					
Percent failing DO							
Criteria		33.51	%				

Bayou Cane, Site 3666, Continuous Monitoring Data

Date_	Time	Temp	рН	SpCond	DO PERCENT	DO	SALINITY	Is DO < Criteria	DO Criteria
MMDDYY	HHMM	øС	Units	uS/cm	Sat	mg/L	ppt	4	mg/L
6/17/2008	9:30	30.38	6.89	3452	23	1.71	1.87	1	4
6/17/2008	9:45	30.45	6.89	3454	23.2	1.73	1.87	1	4
6/17/2008	10:00	30.51	6.89	3461	27.4	2.03	1.88	1	4
6/17/2008	10:00	30.78	6.93	3487	34.8	2.57	1.89	1	4
6/17/2008	10:13	31.11	6.98	3517	44.9	3.29	1.91	1	4
6/17/2008	10:35	31.26	7.05	3519	55.3	4.05	1.91	0	4
6/17/2008	11:00	31	6.96	3509	41.6	3.06	1.9	1	4
6/17/2008	11:15	30.97	6.94	3495	35.6	2.62	1.9	1	4
6/17/2008	11:30	31.14	7.01	3503	51.8	3.8	1.9	1	4
6/17/2008	11:45	32.5	7.33	3591	96.2	6.9	1.95	0	4
6/17/2008	12:00	32.03	7.25	3581	78	5.64	1.94	0	4
6/17/2008	12:15	32.84	7.82	3608	127.9	9.12	1.96	0	4
6/17/2008	12:30	32.56	7.93	3597	121.8	8.72	1.95	0	4
6/17/2008	12:45	32.56	8.22	3644	130	9.31	1.98	0	4
6/17/2008	13:00	31.65	7.43	3584	81.8	5.95	1.95	0	4
6/17/2008	13:15	31.3	7.08	3535	57.4	4.2	1.92	0	4
6/17/2008	13:30	31.68	7.02	3517	49.7	3.61	1.91	1	4
6/17/2008	13:45	33.13	8.51	3656	149	10.57	1.99	0	4
6/17/2008	14:00	33.21	8.52	3668	149.4	10.58	1.99	0	4
6/17/2008	14:15	33.67	8.67	3681	157.3	11.05	2	0	4
6/17/2008	14:30	33.69	8.68	3688	157.4	11.06	2	0	4
6/17/2008	14:45	33.8	8.73	3692	142.2	9.97	2.01	0	4
6/17/2008	15:00	32.32	7.25	3486	59	4.25	1.89	0	4
6/17/2008	15:15	31.61	7.11	3540	65.5	4.77	1.92	0	4
6/17/2008	15:30	31.37	6.94	3519	37.1	2.71	1.91	1	4
6/17/2008	15:45	31.85	7.16	3551	72.3	5.24	1.93	0	4
6/17/2008	16:00	32.74	7.7	3591	115.1	8.22	1.95	0	4
6/17/2008	16:15	33.27	8.07	3625	125.8	8.9	1.97	0	4
6/17/2008	16:30	33.27	7.95	3604	118.5	8.39	1.96	0	4
6/17/2008	16:45	33.49	8.5	3643	144.9	10.21	1.98	0	4
6/17/2008	17:00	32.95	7.93	3623	116.1	8.26	1.97	0	4
6/17/2008	17:15	33.03	7.95	3636	114.9	8.16	1.98	0	4
6/17/2008	17:30	33.13	8.08	3656	117.4	8.33	1.99	0	4
6/17/2008	17:45	32.91	8.77	3744	132.3	9.41	2.04	0	4
6/17/2008	18:00	32.85	8.71	3747	121.5	8.66	2.04	0	4
6/17/2008	18:15	32.88	8.68	3735	125.5	8.93	2.03	0	4
6/17/2008	18:30	32.81	8.69	3743	123.5	8.81	2.04	0	4
6/17/2008	18:45	32.76	8.72	3747	124.3	8.87	2.04	0	4
6/17/2008	19:00	32.82	8.61	3737	118.7	8.46	2.03	0	4
6/17/2008	19:15	32.85	8.45	3722	109.9	7.83	2.02	0	4
6/17/2008	19:30	32.82	8.13	3690	100.4	7.15	2.01	0	4
6/17/2008	19:45	32.66	7.74	3652	93.1	6.65	1.98	0	4
6/17/2008	20:00	32.46	7.45	3617	79.6	5.71	1.96	0	4
6/17/2008	20:15	32.58	7.61	3654	88.3	6.32	1.99	0	4
6/17/2008	20:30	32.63	7.65	3672	88.2	6.3	2	0	4


6/17/2008	20:45	32.64	7.98	3708	92.2	6.59	2.02	0	4
6/17/2008	21:00	32.54	8	3718	89.4	6.4	2.02	0	4
6/17/2008	21:15	32.5	8.01	3713	87.8	6.29	2.02	0	4
6/17/2008	21:30	32.52	7.84	3703	83.2	5.96	2.01	0	4
6/17/2008	21:45	32.44	7.64	3679	80.5	5.77	2	0	4
6/17/2008	22:00	32.3	7.41	3649	73.3	5.27	1.98	0	4
6/17/2008	22:15	32.09	7.25	3607	67.4	4.87	1.96	0	4
6/17/2008	22:30	32.07	7.2	3601	62.3	4.5	1.96	0	4
6/17/2008	22:45	31.98	7.2	3600	64.6	4.67	1.95	0	4
6/17/2008	23:00	31.88	7.18	3580	64.6	4.68	1.94	0	4
6/17/2008	23:15	31.84	7.14	3564	60.2	4.36	1.94	0	4
6/17/2008	23:30	31.82	7.1	3568	51.5	3.74	1.94	1	4
6/17/2008	23:45	31.76	7.13	3569	60.2	4.37	1.94	0	4
6/18/2008	0:00	31.7	7.1	3565	56.3	4.09	1.94	0	4
6/18/2008	0:15	31.62	7.08	3550	54.8	3.98	1.93	1	4
6/18/2008	0:30	31.57	7.05	3536	52.3	3.81	1.92	1	4
6/18/2008	0:45	31.48	7.02	3529	48.5	3.54	1.92	1	4
6/18/2008	1:00	31.44	7.01	3520	46.2	3.38	1.91	1	4
6/18/2008	1:15	31.37	6.99	3511	43.6	3.18	1.91	1	4
6/18/2008	1:30	31.36	6.95	3502	38.4	2.81	1.9	1	4
6/18/2008	1:45	31.28	6.94	3493	36.4	2.67	1.9	1	4
6/18/2008	2:00	31.26	6.9	3485	29.1	2.13	1.89	1	4
6/18/2008	2:15	31.19	6.92	3490	35.3	2.59	1.89	1	4
6/18/2008	2:30	31.16	6.94	3506	35.7	2.62	1.9	1	4
6/18/2008	2:45	31.12	6.94	3513	35	2.57	1.91	1	4
6/18/2008	3:00	31.08	6.9	3512	29.3	2.15	1.91	1	4
6/18/2008	3:15	31.04	6.91	3507	29.8	2.19	1.9	1	4
6/18/2008	3:30	30.99	6.88	3500	25.6	1.88	1.9	1	4
6/18/2008	3:45	30.97	6.86	3487	21.4	1.57	1.89	1	4
6/18/2008	4:00	30.87	6.85	3457	18.9	1.4	1.88	1	4
6/18/2008	4:15	30.87	6.82	3458	10	0.74	1.88	1	4
6/18/2008	4:30	30.86	6.8	3463	3.3	0.24	1.88	1	4
6/18/2008	4:45	30.85	6.79	3457	2.2	0.16	1.88	1	4
6/18/2008	5:00	30.81	6.8	3457	2.2	0.16	1.88	1	4
6/18/2008	5:15	30.66	6.81	3441	11.7	0.87	1.87	1	4
6/18/2008	5:30	30.61	6.81	3430	8	0.59	1.86	1	4
6/18/2008	5:45	30.46	6.81	3439	7.8	0.58	1.87	1	4
6/18/2008	6:00	30.43	6.83	3438	13	0.96	1.86	1	4
6/18/2008	6:15	30.41	6.82	3433	8.9	0.66	1.86	1	4
6/18/2008	6:30	30.37	6.81	3434	8.1	0.6	1.86	1	4
6/18/2008	6:45	30.31	6.81	3422	6.8	0.5	1.86	1	4
6/18/2008	7:00	30.26	6.81	3405	5	0.37	1.85	1	4
6/18/2008	7:15	30.22	6.8	3390	3.3	0.25	1.84	1	4
6/18/2008	7:30	30.18	6.79	3380	2.3	0.17	1.83	1	4
6/18/2008	7:45	30.1	6.8	3374	6	0.45	1.83	1	4
6/18/2008	8:00	30.08	6.81	3384	9.4	0.71	1.83	1	4
6/18/2008	8:15	30.07	6.82	3404	10.5	0.79	1.85	1	4
6/18/2008	8:30	30.11	6.82	3416	10.3	0.77	1.85	1	4
6/18/2008	8:45	30.1	6.82	3427	10.2	0.76	1.86	1	4
6/18/2008	9:00	30.1	6.83	3431	11.7	0.87	1.86	1	4
									-


6/18/2008	9:15	30.1	6.84	3439	14.1	1.05	1.87	1	4
6/18/2008	9:30	30.07	6.87	3457	20.2	1.51	1.88	1	4
6/18/2008	9:45	30	6.9	3471	27.1	2.02	1.88	1	4
6/18/2008	10:00	29.89	6.97	3493	41.8	3.13	1.9	1	4
6/18/2008	10:15	29.78	7.07	3516	57.8	4.34	1.91	0	4
6/18/2008	10:30	29.74	7.09	3526	59.7	4.49	1.91	0	4
6/18/2008	10:45	29.79	7.2	3548	71.5	5.36	1.93	0	4
6/18/2008	11:00	29.87	7.28	3570	79.4	5.95	1.94	0	4
6/18/2008	11:15	29.96	7.46	3591	94	7.03	1.95	0	4
6/18/2008	11:30	30.1	7.59	3609	100.9	7.53	1.96	0	4
6/18/2008	11:45	30.26	7.69	3617	105.3	7.84	1.96	0	4
6/18/2008	12:00	30.5	7.78	3627	110.8	8.21	1.97	0	4
6/18/2008	12:15	30.78	7.88	3643	117	8.64	1.98	0	4
6/18/2008	12:30	30.99	7.98	3661	121.5	8.93	1.99	0	4
6/18/2008	12:45	31.2	8.09	3677	127	9.3	2	0	4
6/18/2008	13:00	31.28	8.15	3679	129.7	9.49	2	0	4
6/18/2008	13:15	31.38	8.22	3684	132.1	9.64	2	0	4
6/18/2008	13:30	31.73	8.44	3701	143.1	10.38	2.01	0	4
6/18/2008	13:45	32.28	8.61	3713	153.3	11.02	2.02	0	4
6/18/2008	14:00	32.48	8.61	3724	152.9	10.96	2.02	0	4
6/18/2008	14:15	32.76	8.68	3736	159.5	11.38	2.03	0	4
6/18/2008	14:30	32.83	8.7	3736	161.3	11.49	2.03	0	4
6/18/2008	14:45	33.02	8.76	3744	167.8	11.92	2.04	0	4
6/18/2008	15:00	33.08	8.8	3738	168.5	11.95	2.03	0	4
6/18/2008	15:15	33.17	8.84	3769	173.3	12.28	2.05	0	4
6/18/2008	15:30	33.24	8.88	3771	175.5	12.42	2.05	0	4
6/18/2008	15:45	33.36	8.9	3774	180.3	12.73	2.05	0	4
6/18/2008	16:00	33.25	8.9	3776	177.6	12.56	2.05	0	4
6/18/2008	16:15	33.21	8.88	3781	170.6	12.07	2.06	0	4
6/18/2008	16:30	33.17	8.89	3780	173.2	12.27	2.06	0	4
6/18/2008	16:45	33.18	8.9	3784	172.9	12.24	2.06	0	4
6/18/2008	17:00	33.14	8.88	3784	171	12.12	2.06	0	4
6/18/2008	17:15	33.21	8.88	3787	171.4	12.14	2.06	0	4
6/18/2008	17:30	33.12	8.87	3792	165.1	11.7	2.06	0	4
6/18/2008	17:45	33.06	8.86	3798	165.6	11.75	2.07	0	4
6/18/2008	18:00	32.99	8.84	3801	163.5	11.62	2.07	0	4
6/18/2008	18:15	33.01	8.87	3800	165	11.72	2.07	0	4
6/18/2008	18:30	32.91	8.85	3813	163.2	11.61	2.07	0	4
6/18/2008	18:45	32.86	8.84	3814	160.1	11.4	2.08	0	4
6/18/2008	19:00	32.81	8.81	3819	158.6	11.3	2.08	0	4
6/18/2008	19:15	32.78	8.79	3818	155.2	11.06	2.08	0	4
6/18/2008	19:30	32.74	8.73	3822	151.7	10.82	2.08	0	4
6/18/2008	19:45	32.71	8.76	3824	153	10.92	2.08	0	4
6/18/2008	20:00	32.68	8.78	3825	151.9	10.85	2.08	0	4
6/18/2008	20:15	32.6	8.75	3827	146.4	10.47	2.08	0	4
6/18/2008	20:30	32.55	8.64	3826	142.7	10.21	2.08	0	4
6/18/2008	20:45	32.47	8.65	3827	137.9	9.88	2.08	0	4
6/18/2008	21:00	32.41	8.62	3829	134.8	9.67	2.08	0	4
6/18/2008	21:15	32.39	8.58	3831	128.9	9.25	2.08	0	4
6/18/2008	21:30	32.38	8.51	3831	125.2	8.98	2.08	0	4


6/18/2008	21:45	32.33	8.43	3830	117.9	8.47	2.08	0	4
6/18/2008	22:00	32.27	8.49	3828	128.6	9.24	2.08	0	4
6/18/2008	22:15	32.21	8.48	3823	126.2	9.08	2.08	0	4
6/18/2008	22:30	32.17	8.43	3812	123.7	8.91	2.07	0	4
6/18/2008	22:45	32.08	8.37	3800	118.5	8.55	2.07	0	4
6/18/2008	23:00	32.03	8.27	3792	115.9	8.37	2.06	0	4
6/18/2008	23:15	31.99	8.27	3793	116	8.38	2.06	0	4
6/18/2008	23:30	31.94	8.28	3796	116.3	8.41	2.06	0	4
6/18/2008	23:45	31.89	8.2	3783	110.4	7.99	2.06	0	4
6/19/2008	0:00	31.82	8.14	3780	108.2	7.84	2.06	0	4
6/19/2008	0:15	31.76	8.13	3774	110	7.98	2.05	0	4
6/19/2008	0:30	31.72	8.13	3770	109.5	7.95	2.05	0	4
6/19/2008	0:45	31.67	8.1	3523	108.3	7.88	1.91	0	4
6/19/2008	1:00	31.61	8.05	3766	107	7.78	2.05	0	4
6/19/2008	1:15	31.55	8.02	3760	105.3	7.67	2.04	0	4
6/19/2008	1:30	31.49	7.95	3755	103.8	7.56	2.04	0	4
6/19/2008	1:45	31.42	7.89	3744	100.3	7.32	2.04	0	4
6/19/2008	2:00	31.35	7.81	3739	97	7.09	2.03	0	4
6/19/2008	2:15	31.31	7.75	3731	95.8	7	2.03	0	4
6/19/2008	2:30	31.24	7.66	3723	92.5	6.77	2.02	0	4
6/19/2008	2:45	31.16	7.6	3717	90.4	6.62	2.02	0	4
6/19/2008	3:00	31.1	7.53	3718	87.3	6.41	2.02	0	4
6/19/2008	3:15	31.05	7.49	3714	81.8	6.01	2.02	0	4
6/19/2008	3:30	31.04	7.41	3716	77.1	5.66	2.02	0	4
6/19/2008	3:45	30.95	7.41	3711	81.9	6.03	2.02	0	4
6/19/2008	4:00	30.87	7.39	3710	79.1	5.83	2.02	0	4
6/19/2008	4:15	30.8	7.35	3700	76.8	5.66	2.01	0	4
6/19/2008	4:30	30.75	7.29	3686	73.8	5.45	2	0	4
6/19/2008	4:45	30.71	7.24	3676	68.3	5.05	2	0	4
6/19/2008	5:00	30.7	7.16	3687	54	3.99	2	1	4
6/19/2008	5:15	30.53	7.17	3675	61.9	4.59	2	0	4
6/19/2008	5:30	30.51	7.16	3676	60.1	4.45	2	0	4
6/19/2008	5:45	30.46	7.13	3677	55.9	4.15	2	0	4
6/19/2008	6:00	30.4	7.06	3687	40.4	3	2	1	4
6/19/2008	6:15	30.31	7.11	3472	56	4.17	1.88	0	4
6/19/2008	6:30	30.27	7.09	3664	53.8	4	1.99	0	4
6/19/2008	6:45	30.3	6.97	3686	19.8	1.47	2	1	4
6/19/2008	7:00	30.16	6.94	3677	10.4	0.77	2	1	4
6/19/2008	7:15	30.19	6.93	3681	9.3	0.69	2	1	4
6/19/2008	7:30	30.04	7.03	3681	44.7	3.34	2	1	4
6/19/2008	7:45	29.97	7.03	3676	48.8	3.65	2	1	4
6/19/2008	8:00	29.96	7.06	3674	51.2	3.83	2	1	4
6/19/2008	8:15	29.93	7.08	3676	53.2	3.98	2	1	4
6/19/2008	8:30	29.93	7.08	3681	52.2	3.91	2	1	4
6/19/2008	8:45	29.96	7.09	3688	53.2	3.98	2	1	4
6/19/2008	9:00	30.07	7.1	3695	53.4	3.99	2.01	1	4
6/19/2008	9:15	29.92	7.07	3711	47.5	3.56	2.02	1	4
6/19/2008	9:30	29.46	7.12	3728	52.1	3.93	2.03	1	4
6/19/2008	9:45	29.33	7.15	3734	54.8	4.15	2.03	0	4

Bayou Cane Watershed TMDL Subsegments 040903 and 040904 Originated: February 4, 2011

> avg= 1.976753 min= 1.83 max= 2.08

Site Number:	3756 (BC09)	Site Name:	Lake Pontchartrainsouth of mouth of Bayou Ca			
	Temp deg C	pН	SpCond uS/cm	DO % sat	DO mg/L	
Minimum	28.59	6.84	3459.00	11.20	0.84	
Maximum	33.55	8.85	3862.00	157.90	11.13	
Average	31.18	7.90	3724.94	90.77	6.61	
Geometric Mean	31.16	7.88	#NUM!	#NUM!	5.70	
25th Percentile	30.26	7.30	3677.00	58.90	4.39	
30th Percentile	30.63	7.44	3708.80	65.56	4.92	
40th Percentile	30.96	7.69	3726.80	76.20	5.68	
50th Percentile	31.42	8.01	3744.00	95.00	7.01	
Standard Deviation	1.15	0.63	110.34	40.80	2.89	
Variance	1.33	0.39	12174.33	1664.52	8.36	

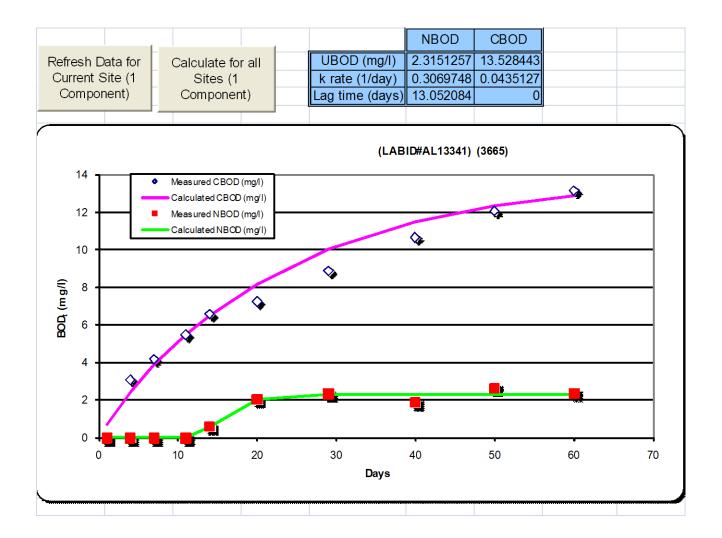
Bayou Cane, Site 3756, Continuous Monitoring Data

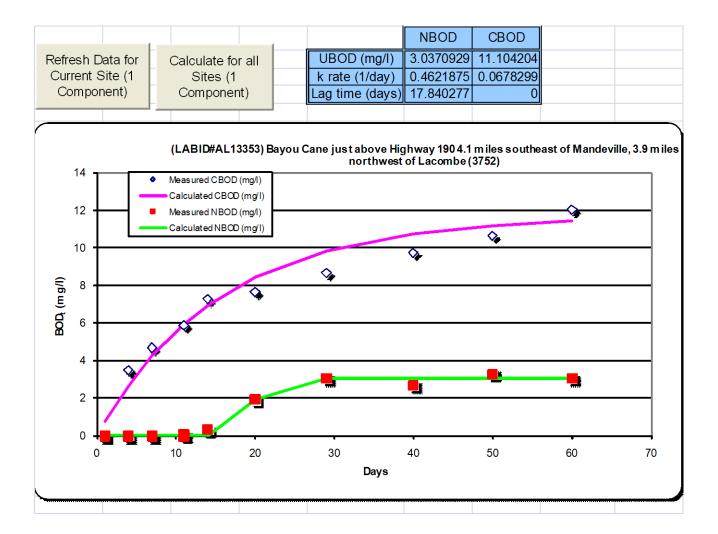
MMIDDYY HHMM C Units uS/cm Sat mg/L ppt	Date_	Time	Temp	рН	SpCond	DO PERCENT	DO	SALINITY
6/17/2008 9:30 29.51 7.4 3657 63.2 4.76 1.99 6/17/2008 9:45 29.71 7.51 3659 73.1 5.49 1.99 6/17/2008 10:00 29.85 7.54 3652 75.6 5.66 1.98 6/17/2008 10:15 29.77 7.64 3665 80.2 6.02 1.99 6/17/2008 10:30 30.51 7.72 3645 89.3 6.62 1.98 6/17/2008 10:30 30.51 7.72 3645 89.3 6.62 1.98 6/17/2008 11:03 30.61 7.87 3657 96.5 7.14 1.99 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:45 31.15 8.45 3688 122.4 8.97 2 6/17/2008 11:30 30.98 8.32 3680 114.9 8.44 2 6/17/2008 11:30 30.98 8.51 3723 125.3 9.12 2.02 6/17/2008 12:30 32.07 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:45 32.57 8.6 3747 144.2 10.28 2.04 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 15:30 33.47 8.7 3755 149.1 10.56 2.04 6/17/2008 15:30 33.48 8.68 3752 145 10.28 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3752 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3752 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3752 149.1 10.54 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3752 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3754 149.1 10.56 2.04 6/17/2008 15:30 33.38 8.67 3752 149.1 10.45 2.03 6/17/2008 15:30 33.38 8.67 3752 149.2 10.54 2.04 6/17/2008 15:30 33.38 8.67 3754 149.2 10.54 2			-	•	•			
6/17/2008							-	
6/17/2008 10:00 29.85 7.54 3652 75.6 5.66 1.98 6/17/2008 10:15 29.77 7.64 3665 80.2 6.02 1.99 6/17/2008 10:30 30.51 7.72 3645 89.3 6.62 1.98 6/17/2008 10:45 30.61 7.87 3657 96.5 7.14 1.99 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:35 30.98 8.32 3680 114.9 8.44 2 6/17/2008 11:35 31.15 8.45 3688 122.4 8.97 2 6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:35 31.8 8.47 3745 128.8 9.3 2.04 6/17/2008 13:30 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008								
6/17/2008 10:30 30.51 7.72 3645 89.3 6.62 1.98 6/17/2008 10:45 30.61 7.87 3657 96.5 7.14 1.99 6/17/2008 11:00 30.69 7.96 3655 102.7 7.59 1.99 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:45 31.15 8.45 3688 122.4 8.97 2 6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:45 32.2 8.43 3753 129.8 9.35 2.04 6/17/2008 13:03 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/	6/17/2008				3652		5.66	
6/17/2008 10:45 30.61 7.87 3657 96.5 7.14 1.99 6/17/2008 11:10 30.69 7.96 3655 102.7 7.59 1.99 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:30 30.98 8.32 3680 114.9 8.44 2 6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:30 32.22 8.43 3753 129.8 9.35 2.04 6/17/2008 13:30 32.59 8.46 3754 133.8 9.6 2.04 6/17/2008 13:35 32.57 8.6 3747 144.2 10.28 2.04 6/17/	6/17/2008	10:15	29.77	7.64	3665	80.2	6.02	1.99
6/17/2008 11:00 30.69 7.96 3655 102.7 7.59 1.99 6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:30 30.98 8.32 3680 114.9 8.44 2 6/17/2008 11:45 31.15 8.45 3688 122.4 8.97 2 6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 15:00 33.35 8.7 3752 149.1 10.56 2.04 6/17/2008 15:15 33.47 8.7 3752 149.1 10.56 2.04 6/17/2008 15:15 33.47 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.34 8.85 3722 157.9 11.13 2.02 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:15 33.55 8.8 3727 150.5 10.72 2.03 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:15 33.55 8.8 3727 150.5 10.72 2.03 6/17/2008 16:15 33.55 8.8 3727 150.5 10.72 2.03 6/17/2008 16:15 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 16:15 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 16:15 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 16:15 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 18:15 32.08 8.58 3727 150.5 10.72 2.03 6/17/2008 18:15 32.08 8.58 3727 150.5 10.72 2.03 6/17/2008 18:15 32.08 8.58 3731 146.7 10.46 2.03 6/17/2008 18:15 32.03 8.77 3756 128.5 9.26 2.04 6/17/2008 18:15 32.03 8.77 3756 128.5 9.26 2.04 6/17/2008 18:15 32.03 8.77 3756 128.5 9.26 2.04 6/17/2008 18:15 32.03 8.77 3756	6/17/2008	10:30	30.51	7.72	3645	89.3	6.62	1.98
6/17/2008 11:15 30.83 8.21 3678 109.6 8.08 2 6/17/2008 11:30 30.98 8.32 3680 114.9 8.44 2 6/17/2008 11:45 31.15 8.45 3688 122.4 8.97 2 6/17/2008 12:05 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:35 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/200	6/17/2008	10:45	30.61	7.87	3657	96.5	7.14	1.99
6/17/2008 11:30 30.98 8.32 3680 114.9 8.44 2 6/17/2008 11:45 31.15 8.45 3688 122.4 8.97 2 6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:15 33.07 8.71 3747 144.2 10.28 2.04 6/1	6/17/2008	11:00	30.69	7.96	3655	102.7	7.59	1.99
6/17/2008 11:45 31.15 8.45 3688 122.4 8.97 2 6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:10 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 144.2 10.52 2.04 6	6/17/2008	11:15	30.83	8.21	3678	109.6	8.08	2
6/17/2008 12:00 31.53 8.51 3723 125.3 9.12 2.02 6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 12:45 32.2 8.43 3753 129.8 9.35 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.37 8.71 3747 148.2 10.52 2.04 6	6/17/2008	11:30	30.98	8.32	3680	114.9	8.44	
6/17/2008 12:15 31.8 8.47 3740 126 9.14 2.03 6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 12:45 32.2 8.43 3753 129.8 9.35 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:15 32.52 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.23 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.23 8.71 3752 149.1 10.56 2.04 <	6/17/2008	11:45	31.15	8.45	3688	122.4	8.97	2
6/17/2008 12:30 32.07 8.47 3745 128.8 9.3 2.04 6/17/2008 12:45 32.2 8.43 3753 129.8 9.35 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 15:00 33.35 8.7 3755 151.6 10.52 2.04 <t< td=""><td>6/17/2008</td><td>12:00</td><td>31.53</td><td>8.51</td><td>3723</td><td>125.3</td><td>9.12</td><td>2.02</td></t<>	6/17/2008	12:00	31.53	8.51	3723	125.3	9.12	2.02
6/17/2008 12:45 32.2 8.43 3753 129.8 9.35 2.04 6/17/2008 13:00 32.39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 14:45 33.23 8.71 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04	6/17/2008		31.8	8.47	3740	126		
6/17/2008 13:00 32:39 8.46 3754 133.8 9.6 2.04 6/17/2008 13:15 32:52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:30 32:67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32:75 8.6 3747 144.2 10:28 2.04 6/17/2008 14:00 32:89 8.7 3740 150 10:67 2.03 6/17/2008 14:15 33:07 8.71 3747 148.2 10:52 2.04 6/17/2008 14:45 33:07 8.71 3752 149.1 10:56 2.04 6/17/2008 15:00 33:35 8.7 3755 149.1 10:56 2.04 6/17/2008 15:15 33:47 8.7 3755 151.6 10:68 2.04 6/17/2008 15:30 33:38 8.67 3754 146:9 10:37 2.04								
6/17/2008 13:15 32.52 8.52 3753 139.9 10.02 2.04 6/17/2008 13:30 32.67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:45 33.23 8.71 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.1 10.56 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03								
6/17/2008 13:30 32:67 8.5 3756 137.8 9.84 2.04 6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 14:45 33.23 8.71 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02								
6/17/2008 13:45 32.75 8.6 3747 144.2 10.28 2.04 6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 15:00 33.35 8.7 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:35 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.03								
6/17/2008 14:00 32.89 8.7 3740 150 10.67 2.03 6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 15:00 33.35 8.7 3752 149.1 10.56 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03								
6/17/2008 14:15 33.07 8.71 3747 148.2 10.52 2.04 6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 14:45 33.23 8.71 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03								
6/17/2008 14:30 33.12 8.68 3752 145 10.28 2.04 6/17/2008 14:45 33.23 8.71 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:03 33.02 8.81 3731 146.7 10.46 2.03								
6/17/2008 14:45 33.23 8.71 3752 149.1 10.56 2.04 6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3727 150.5 10.72 2.03 6/17/2008 16:30 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03								
6/17/2008 15:00 33.35 8.7 3752 149.2 10.54 2.04 6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05								
6/17/2008 15:15 33.47 8.7 3755 151.6 10.68 2.04 6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05								
6/17/2008 15:30 33.38 8.67 3754 146.9 10.37 2.04 6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07								
6/17/2008 15:45 33.27 8.72 3738 147.7 10.45 2.03 6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 <								
6/17/2008 16:00 33.48 8.85 3722 157.9 11.13 2.02 6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
6/17/2008 16:15 33.55 8.8 3718 156.4 11.01 2.02 6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3749 128.8 9.3 2.04 6								
6/17/2008 16:30 33.34 8.8 3728 157 11.09 2.03 6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6								
6/17/2008 16:45 32.85 8.85 3727 150.5 10.72 2.03 6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03								
6/17/2008 17:00 33.02 8.81 3723 149.3 10.6 2.02 6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03<								
6/17/2008 17:15 32.79 8.8 3731 146.7 10.46 2.03 6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6/17/2008 17:30 32.35 8.72 3746 139 9.98 2.04 6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6/17/2008 17:45 32.08 8.58 3772 130.4 9.41 2.05 6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 18:00 32 8.53 3807 125.4 9.06 2.07 6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 18:15 32.12 8.7 3756 128.5 9.26 2.04 6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 18:30 32.03 8.77 3754 131.6 9.5 2.04 6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 18:45 32.03 8.77 3749 128.8 9.3 2.04 6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 19:00 32.29 8.79 3742 120.5 8.66 2.03 6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 19:15 32.42 8.62 3737 112.2 8.05 2.03 6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 19:30 32.56 8.58 3728 113.6 8.13 2.03 6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 19:45 32.57 8.5 3723 108.8 7.79 2.02 6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 20:00 32.11 8.57 3736 106.9 7.71 2.03 6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								
6/17/2008 20:15 32.22 8.53 3730 104.6 7.53 2.03								

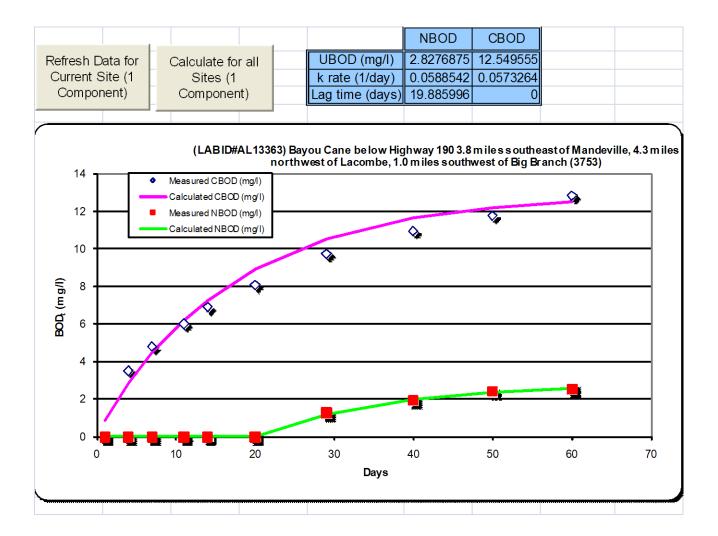
6/17/2008	20:45	31.93	8.56	3741	102	7.38	2.03
6/17/2008	21:00	31.76	8.66	3743	107.2	7.78	2.04
6/17/2008	21:15	31.64	8.63	3741	101.3	7.36	2.03
6/17/2008	21:30	31.5	8.64	3744	101.1	7.36	2.04
6/17/2008	21:45	31.69	8.24	3735	76.3	5.54	2.03
6/17/2008	22:00	31.92	7.94	3725	71.5	5.17	2.02
6/17/2008	22:15	31.95	8.01	3716	75.5	5.46	2.02
6/17/2008	22:30	31.6	8.04	3730	73.4	5.34	2.03
6/17/2008	22:45	31.92	7.74	3707	69	5	2.02
6/17/2008	23:00	31.91	7.61	3695	63.7	4.61	2.01
6/17/2008	23:15	31.57	7.6	3710	59.9	4.36	2.02
6/17/2008	23:30	31.59	7.53	3701	55.3	4.02	2.01
6/17/2008	23:45	31.66	7.45	3677	57.3	4.17	2
6/18/2008	0:00	31.7	7.28	3653	52.2	3.79	1.98
6/18/2008	0:15	31.68	7.18	3620	49.7	3.61	1.97
6/18/2008	0:30	31.6	7.15	3611	49.1	3.57	1.96
6/18/2008	0:45	31.55	7.11	3587	48.8	3.56	1.95
6/18/2008	1:00	31.45	7.09	3579	46.9	3.42	1.94
6/18/2008	1:15	31.4	7.06	3560	45.8	3.34	1.93
6/18/2008	1:30	31.38	7.03	3537	46.1	3.37	1.92
6/18/2008	1:45	31.31	7	3523	43.6	3.19	1.91
6/18/2008	2:00	31.19	7.02	3549	36.7	2.69	1.93
6/18/2008	2:15	31.1	7	3536	40.3	2.96	1.92
6/18/2008	2:30	30.94	7.08	3587	40.1	2.95	1.95
6/18/2008	2:45	30.82	7.12	3610	39.9	2.94	1.96
6/18/2008	3:00	30.68	7.09	3596	37.6	2.78	1.95
6/18/2008	3:15	30.65	6.99	3556	30.6	2.26	1.93
6/18/2008	3:30	30.72	6.93	3526	23.8	1.76	1.91
6/18/2008	3:45	30.77	6.93	3517	25.5	1.88	1.91
6/18/2008	4:00	30.76	6.92	3512	25.1	1.86	1.91
6/18/2008	4:15	30.41	6.93	3534	20	1.49	1.92
6/18/2008	4:30	30.28	6.93	3544	16.2	1.21	1.92
6/18/2008	4:45	30.26	6.92	3541	15.6	1.16	1.92
6/18/2008	5:00	30.4	6.91	3512	18.7	1.39	1.91
6/18/2008	5:15	30.43	6.88	3499	15.9	1.18	1.9
6/18/2008	5:30	30.26	6.89	3505	15.1	1.13	1.9
6/18/2008	5:45	30.14	6.9	3509	16.3	1.21	1.9
6/18/2008	6:00	30.08	6.9	3503	15.6	1.16	1.9
6/18/2008	6:15	30.01	6.89	3500	14.8	1.11	1.9
6/18/2008	6:30	29.97	6.88	3493	13.8	1.03	1.9
6/18/2008	6:45	30.09	6.85	3477	11.6	0.86	1.89
6/18/2008	7:00	30.24	6.84	3462	11.2	0.84	1.88
6/18/2008	7:15	30.15	6.86	3459	12.6	0.94	1.88
6/18/2008	7:30	29.87	6.9	3465	17.1	1.28	1.88
6/18/2008	7:45	29.85	6.88	3464	19.1	1.43	1.88
6/18/2008	8:00	29.69	6.92	3487	23.5	1.76	1.89
6/18/2008	8:15	29.24	7	3538	32.4	2.46	1.92
6/18/2008	8:30	29.16	7.06	3553	39.4	2.99	1.93
6/18/2008	8:45	29.10	7.09	3555	43.4	3.29	1.93
6/18/2008	9:00	29.26	7.13	3567	49.5	3.75	1.94
3/ 13/2000	5.00	20.20	7.10	0001	75.5	0.70	1.54

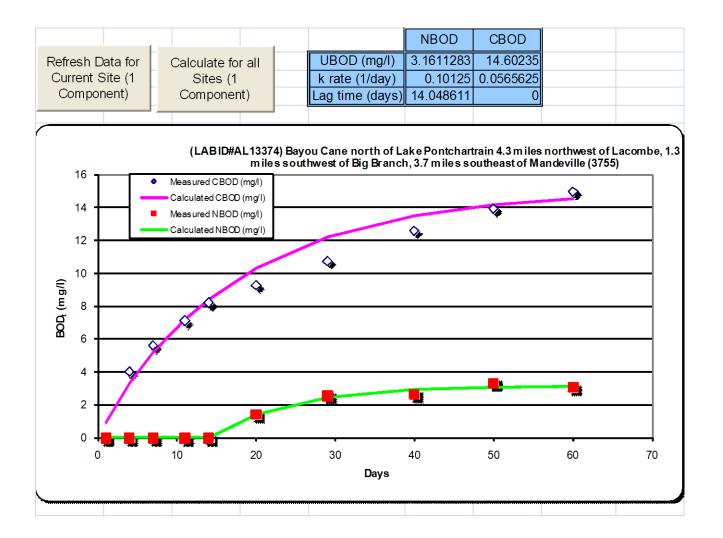
6/18/2008	9:15	29.27	7.22	3597	57.6	4.36	1.95
6/18/2008	9:30	29.2	7.31	3636	63.2	4.79	1.98
6/18/2008	9:45	29.34	7.36	3639	67.8	5.13	1.98
6/18/2008	10:00	29.36	7.49	3678	75.1	5.68	2
6/18/2008	10:15	29.52	7.54	3678	79.8	6.01	2
6/18/2008	10:30	29.67	7.61	3698	83	6.24	2.01
6/18/2008	10:45	29.77	7.7	3633	87.6	6.58	1.97
6/18/2008	11:00	29.88	7.78	3722	90.1	6.75	2.02
6/18/2008	11:15	30.03	7.87	3743	93.8	7.01	2.03
6/18/2008	11:30	30.21	7.96	3762	98.3	7.32	2.05
6/18/2008	11:45	30.35	8.05	3782	101	7.5	2.06
6/18/2008	12:00	30.51	8.15	3786	106.2	7.87	2.06
6/18/2008	12:15	30.69	8.14	3800	107	7.9	2.07
6/18/2008	12:30	30.85	8.2	3807	110.7	8.15	2.07
6/18/2008	12:45	30.96	8.19	3816	110.9	8.15	2.08
6/18/2008	13:00	31.16	8.2	3820	111.8	8.19	2.08
6/18/2008	13:15	31.22	8.32	3811	120.6	8.83	2.07
6/18/2008	13:30	31.61	8.33	3814	120.4	8.75	2.07
6/18/2008	13:45	31.68	8.3	3822	119.3	8.66	2.08
6/18/2008	14:00	31.8	8.34	3821	120.5	8.73	2.08
6/18/2008	14:15	31.88	8.39	3817	124.3	9	2.08
6/18/2008	14:30	32.03	8.4	3822	127	9.17	2.08
6/18/2008	14:45	32.2	8.44	3827	131.2	9.44	2.08
6/18/2008	15:00	32.24	8.45	3837	131.6	9.44	2.00
6/18/2008	15:15	32.18	8.43	3844	131.4	9.46	2.09
6/18/2008	15:30	32.18	8.42	3849	130.8	9.40	2.09
6/18/2008	15:45	32.10			131.2	9.42 9.44	2.09
			8.43	3851			2.1
6/18/2008	16:00	32.16	8.42	3854	130.4	9.39	
6/18/2008	16:15	32.15	8.43	3854	132	9.51	2.1
6/18/2008	16:30	32.15	8.44	3858	131.6	9.48	2.1
6/18/2008	16:45	32.18	8.44	3859	133.3	9.6	2.1
6/18/2008	17:00	32.2	8.48	3858	137.5	9.9	2.1
6/18/2008	17:15	32.24	8.5	3858	139.2	10.01	2.1
6/18/2008	17:30	32.25	8.52	3859	141.6	10.19	2.1
6/18/2008	17:45	32.26	8.52	3862	141.3	10.16	2.1
6/18/2008	18:00	32.24	8.52	3862	141.8	10.2	2.1
6/18/2008	18:15	32.23	8.53	3861	142.7	10.26	2.1
6/18/2008	18:30	32.18	8.52	3860	141.4	10.18	2.1
6/18/2008	18:45	32.11	8.51	3855	139.7	10.07	2.1
6/18/2008	19:00	32.08	8.51	3855	139.8	10.08	2.1
6/18/2008	19:15	32.05	8.52	3855	140.7	10.15	2.1
6/18/2008	19:30	32.03	8.52	3857	141.3	10.2	2.1
6/18/2008	19:45	31.98	8.51	3856	139.1	10.05	2.1
6/18/2008	20:00	31.96	8.48	3856	136.8	9.89	2.1
6/18/2008	20:15	31.88	8.45	3853	133.7	9.68	2.1
6/18/2008	20:30	31.8	8.42	3851	131	9.49	2.1
6/18/2008	20:45	31.73	8.41	3846	129	9.36	2.09
6/18/2008	21:00	31.66	8.4	3844	127.8	9.29	2.09
6/18/2008	21:15	31.62	8.36	3845	124.9	9.08	2.09
6/18/2008	21:30	31.57	8.33	3849	122.4	8.9	2.09

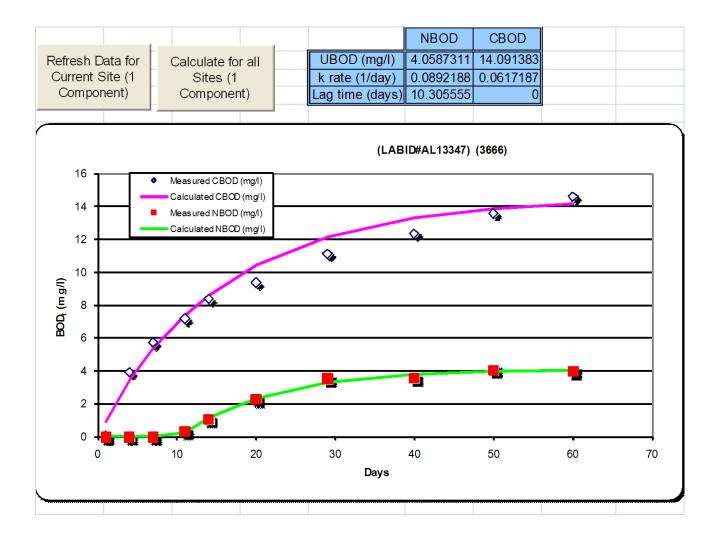
6/18/2008	21:45	31.53	8.23	3850	113.8	8.28	2.1
6/18/2008	22:00	31.51	8.28	3851	116.8	8.51	2.1
6/18/2008	22:15	31.52	8.27	3848	112.9	8.22	2.09
6/18/2008	22:30	31.56	8.24	3844	107.2	7.8	2.09
6/18/2008	22:45	31.6	8.22	3839	103.8	7.55	2.09
6/18/2008	23:00	31.4	8.16	3851	103.7	7.56	2.1
6/18/2008	23:15	31.41	8.15	3848	103.8	7.57	2.09
6/18/2008	23:30	31.55	8.09	3836	99.4	7.23	2.09
6/18/2008	23:45	31.3	8.12	3850	99.9	7.3	2.09
6/19/2008	0:00	31.37	8.1	3842	99.5	7.26	2.09
6/19/2008	0:15	31.53	8.11	3823	99.1	7.21	2.08
6/19/2008	0:30	31.5	8.05	3819	95	6.92	2.08
6/19/2008	0:45	31.48	8.01	3814	93.6	6.82	2.08
6/19/2008	1:00	31.48	7.99	3805	93	6.77	2.07
6/19/2008	1:15	31.42	7.92	3799	83.9	6.12	2.07
6/19/2008	1:30	31.33	7.87	3797	87.7	6.41	2.07
6/19/2008	1:45	31.32	7.86	3788	88.5	6.47	2.06
6/19/2008	2:00	31.29	7.82	3781	85.4	6.24	2.06
6/19/2008	2:15	31.21	7.76	3781	81.7	5.98	2.06
6/19/2008	2:30	30.95	7.71	3802	75.2	5.53	2.07
6/19/2008	2:45	31.12	7.67	3768	80.1	5.87	2.05
6/19/2008	3:00	30.9	7.62	3791	73.3	5.4	2.06
6/19/2008	3:15	30.79	7.62	3791	73.9	5.45	2.06
6/19/2008	3:30	30.72	7.54	3790	69.5	5.13	2.06
6/19/2008	3:45	30.78	7.5	3774	68.9	5.08	2.05
6/19/2008	4:00	30.8	7.5	3745	75.8	5.59	2.04
6/19/2008	4:15	30.68	7.43	3744	70.4	5.2	2.04
6/19/2008	4:30	30.72	7.41	3719	74.5	5.5	2.02
6/19/2008	4:45	30.12	7.33	3762	59.4	4.43	2.05
6/19/2008	5:00	30.05	7.34	3769	59	4.41	2.05
6/19/2008	5:15	30.04	7.31	3764	57	4.26	2.05
6/19/2008	5:30	30.04	7.3	3744	58.7	4.39	2.04
6/19/2008	5:45	30.03	7.27	3726	58.9	4.4	2.03
6/19/2008	6:00	29.86	7.25	3734	55.9	4.19	2.03
6/19/2008	6:15	29.83	7.27	3723	60.2	4.51	2.02
6/19/2008	6:30	29.67	7.27	3726	60	4.51	2.03
6/19/2008	6:45	29.62	7.24	3722	56.8	4.27	2.02
6/19/2008	7:00	29.55	7.23	3719	55.5	4.18	2.02
6/19/2008	7:15	29.51	7.21	3713	54.4	4.1	2.02
6/19/2008	7:30	29.43	7.23	3716	56.7	4.28	2.02
6/19/2008	7:45	29.31	7.23	3720	57.2	4.33	2.02
6/19/2008	8:00	29.25	7.26	3723	60.6	4.59	2.02
6/19/2008	8:15	28.91	7.39	3770	66.8	5.09	2.05
6/19/2008	8:30	28.76	7.46	3789	69.3	5.29	2.06
6/19/2008	8:45	28.59	7.54	3799	73.5	5.63	2.07
6/19/2008	9:00	28.63	7.65	3814	78.3	5.99	2.08
6/19/2008	9:15	28.63	7.83	3826	84.2	6.44	2.08
6/19/2008	9:30	28.71	7.99	3833	90.1	6.89	2.09

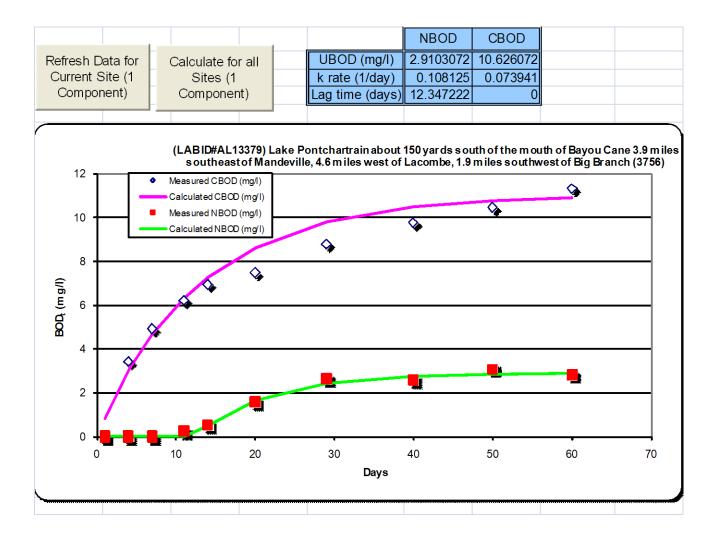

avg= 2.025337

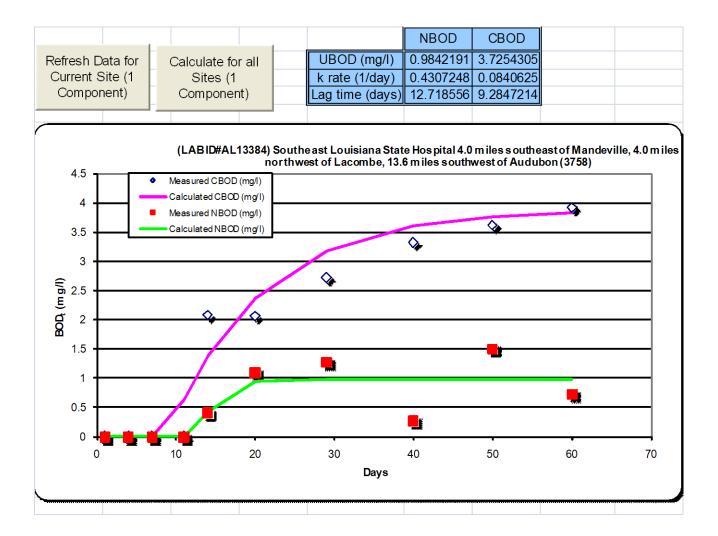

> min= 1.88 max= 2.1


	Bayou Cane Initial Conditions													
Reach	Temp	Source	Salinity	Source	DO	Source	Chl A	Source						
Reach 1	28.13	Cont Mont Avg (3665)	0.10	Cont Mont Avg (3665)	0.47	Cont Mont Avg (3665)	8.5	3665						
Reach 2	28.57	Cont Mont Avg (3752-BC04)	0.23	Cont Mont Avg (3752-BC04)	0.86	Cont Mont Avg (3752-BC04)	8.5	3665						
Reach 3	29.98	Cont Mont Avg (3753-BC05)	1.15	Cont Mont Avg (3753-BC05)	1.79	Cont Mont Avg (3753-BC05)	33.6	3753-BC05						
Reach 4	30.51	Cont Mont Avg (BC05, BC07)	1.45	Cont Mont Avg (BC05, BC07)	2.66	Cont Mont Avg (BC05, BC07)	33.6	3753-BC05						
Reach 5	31.04	Cont Mont Avg (3755-BC07)	1.76	Cont Mont Avg (3755-BC07)	3.52	Cont Mont Avg (3755-BC07)	28.5	3666						
Reach 6	31.59	Cont Mont Avg (3666)	1.98	Cont Mont Avg (3666)	6.12	Cont Mont Avg (3666)	28.5	3666						


Appendix F5 – BOD Calculations


1 Component		NBOD			CBOD	
Site ID	LIBOD (mg/l)		Lag time (days)	LIBOD (mg/l)		Lag time (days)
(LAB ID#AL13341) (3665)	2.315	0.307	13.052	13.528	0.044	0.000
(LAB ID#AL13347) (3666)	4.059	0.089	10.306	14.091	0.062	0.000
(LAB ID#AL13353) Bayou Cane just above Highway 190 4.1 miles		5.000	70.000		0.00=	0.000
southeast of Mandeville, 3.9 miles northwest of Lacombe (3752)	3.037	0.462	17.840	11.104	0.068	0.000
(LAB ID#AL13363) Bayou Cane below Highway 190 3.8 miles						
southeast of Mandeville, 4.3 miles northwest of Lacombe, 1.0 miles						
southwest of Big Branch (3753)	2.828	0.059	19.886	12.550	0.057	0.000
(LAB ID#AL13374) Bayou Cane north of Lake Pontchartrain 4.3						
miles northwest of Lacombe, 1.3 miles southwest of Big Branch, 3.7						
miles southeast of Mandeville (3755)	3.161	0.101	14.049	14.602	0.057	0.000
(LAB ID#AL13379) Lake Pontchartrain about 150 yards south of the						
mouth of Bayou Cane 3.9 miles southeast of Mandeville, 4.6 miles						
west of Lacombe, 1.9 miles southwest of Big Branch (3756)	2.910	0.108	12.347	10.626	0.074	0.000
(LAB ID#AL13384) Southeast Louisiana State Hospital 4.0 miles						
southeast of Mandeville, 4.0 miles northwest of Lacombe, 13.6 miles						
southwest of Audubon (3758)	0.984	0.431	12.719	3.725	0.084	9.285





Appendix F6 – Dye Study Calculations

Bayou Cane									
Subsegment 040904									
Dispersion Summary									
Dispersion Coefficient (Kd)	Elapsed Time (hrs)								
0.540	29.6								
0.288	54.2								
	persion Summa Dispersion Coefficient (Kd) 0.540								

For the purposes of this TMDL the Dispersion coefficient for Dye Run 2 will be used.

This is because the data was gathered over the longest time period allowing for a better dispersion of the dye into the water body.

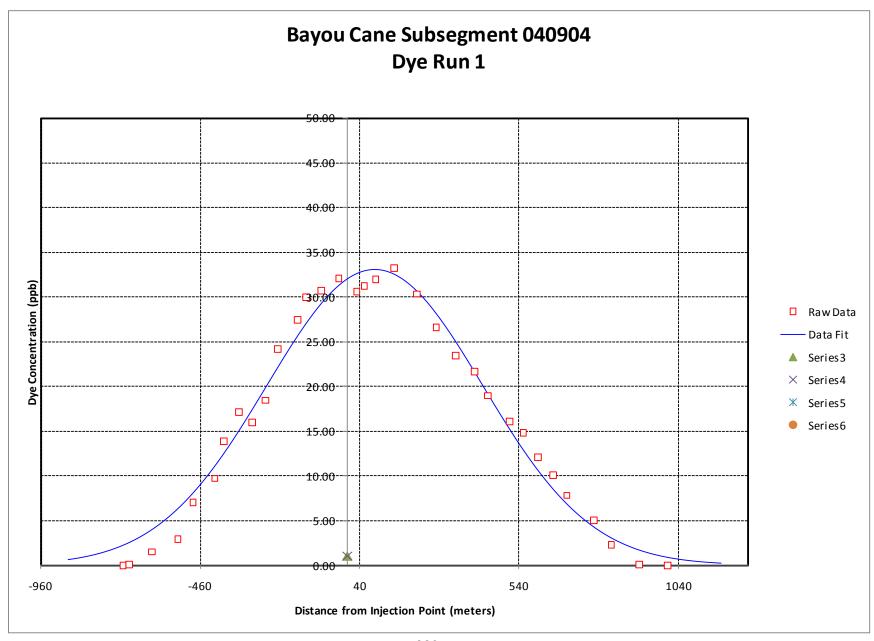
Bayou Cane Dye Study Cross Section Summary											
SITE		WIDTH (meters)	DEPTH (feet)	DEPTH (meters)							
Bayou Cane XS 0	69.000	21.031	3.853	1.174							
Bayou Cane XS 1	79.000	24.079	3.220	0.981							
Bayou Cane XS 2	100.000	30.480	3.610	1.100							
Bayou Cane XS 3	86.000	26.213	2.660	0.811							
Bayou Cane XS 4	63.000	19.202	1.910	0.582							
Bayou Cane XS Dump	93.000	28.346	3.350	1.021							
Dye Run 1 (avg of XS0, XS1, XS2, XS3, XS4, XSDump)	81.667	24.892	3.101	0.945							
Dye Run 2 (avg of XS0, XS1, XS2, XS3, XS4, XSDump)	81.667	24.892	3.101	0.945							

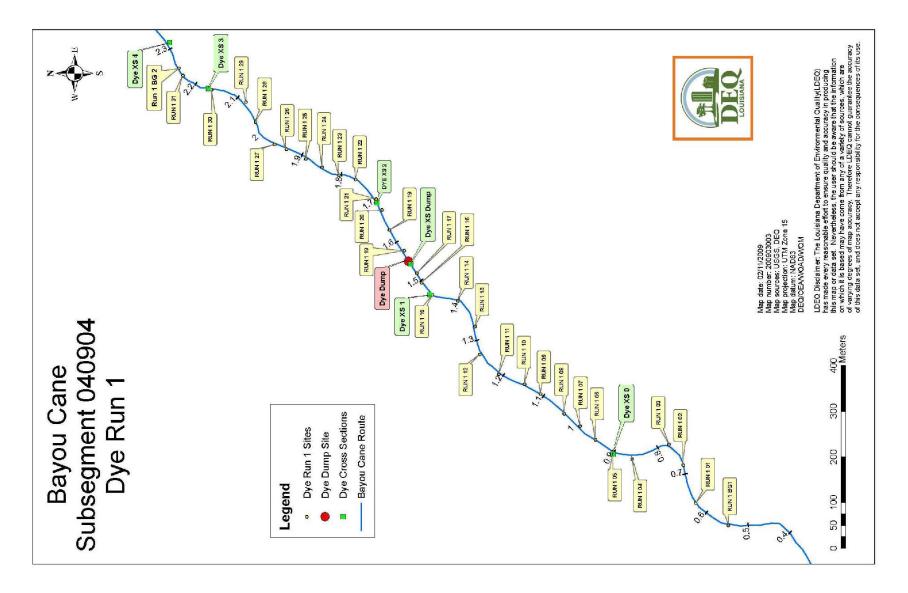
		Dye Arc			Distance from Dye	Distance from Dye					
x	Υ	RUN	Concen	RKM	Dump (Kilometers)	Dump (Meters)	ТЕМР	Date + Time	Run minus Dump (Days)	PROJECTION	ZONE
-90.01043	30.33052	dump		1.55	,			6/17/08 9:30 AM	- P (GCS_WGS_1984	
		RUN 1 BG1	0.00	0.54	1.01	1006.20	30.14	6/18/08 2:45:16 PM	1.218935	GCS_WGS_1984	
-90.01610	30.32493	RUN 1 01	0.08	0.63	0.92	918.07	30.09	6/18/08 2:47:45 PM	1.220660	GCS_WGS_1984	Zone 15 North
-90.01523	30.32516	RUN 1 02	2.31	0.72	0.83	830.09		6/18/08 2:49:28 PM	1.221852	GCS_WGS_1984	Zone 15 North
-90.01475	30.32543	RUN 1 03	5.02	0.78	0.77	774.59	29.90	6/18/08 2:50:44 PM	1.222731	GCS_WGS_1984	Zone 15 North
-90.01506	30.32617	RUN 1 04	7.80	0.86	0.69	690.23	29.92	6/18/08 2:53:03 PM	1.224340	GCS_WGS_1984	Zone 15 North
-90.01488	30.32654	RUN 1 05	10.04	0.90	0.65	647.81	29.89	6/18/08 2:53:59 PM	1.224988	GCS_WGS_1984	Zone 15 North
-90.01460	30.32689	RUN 1 06	12.07	0.95	0.60	600.53	29.94	6/18/08 2:54:59 PM	1.225683	GCS_WGS_1984	Zone 15 North
-90.01428	30.32719	RUN 1 07	14.82	1.00	0.55	554.26	29.93	6/18/08 2:56:03 PM	1.226424	GCS_WGS_1984	Zone 15 North
-90.01399	30.32750	RUN 1 08	16.10	1.04	0.51	510.35	29.94	6/18/08 2:57:27 PM	1.227396	GCS_WGS_1984	Zone 15 North
-90.01352	30.32796	RUN 1 09	18.98	1.11	0.44	441.94	29.89	6/18/08 2:58:59 PM	1.228461	GCS_WGS_1984	Zone 15 North
-90.01329	30.32827	RUN 1 10	21.63	1.15	0.40	401.48	29.75	6/18/08 2:59:57 PM	1.229132	GCS_WGS_1984	
-90.01305	30.32878	RUN 1 11	23.44	1.21	0.34	340.92	29.70	6/18/08 3:01:27 PM	1.230174	GCS_WGS_1984	Zone 15 North
-90.01259	30.32915	RUN 1 12	26.58	1.27	0.28	280.59	29.66	6/18/08 3:02:39 PM	1.231007	GCS_WGS_1984	
-90.01195	30.32923	RUN 1 13	30.35	1.33	0.22	219.47	29.66	6/18/08 3:03:54 PM	1.231875	GCS_WGS_1984	Zone 15 North
-90.01135	30.32956	RUN 1 14	33.26	1.40	0.15	148.09	29.86	6/18/08 3:05:25 PM	1.232928	GCS_WGS_1984	Zone 15 North
-90.01120	30.33006	RUN 1 15	31.96	1.46	0.09	90.08	29.65	6/18/08 3:06:28 PM	1.233657	GCS_WGS_1984	Zone 15 North
-90.01092	30.33027	RUN 1 16	31.24	1.50	0.05	54.55	29.69	6/18/08 3:07:20 PM	1.234259	GCS_WGS_1984	Zone 15 North
-90.01070	30.33036	RUN 1 17	30.61	1.52	0.03	31.42	29.54	6/18/08 3:07:59 PM	1.234711	GCS_WGS_1984	Zone 15 North
-90.01018	30.33060	RUN 1 18	32.06	1.58	-0.03	-25.15	29.81	6/18/08 3:09:15 PM	1.235590	GCS_WGS_1984	Zone 15 North
-90.00970	30.33088	RUN 1 19	30.70	1.63	-0.08	-80.82	29.92	6/18/08 3:10:20 PM	1.236343	GCS_WGS_1984	Zone 15 North
-90.00924	30.33102	RUN 1 20	30.00	1.68	-0.13	-127.79	29.77	6/18/08 3:11:31 PM	1.237164	GCS_WGS_1984	Zone 15 North
-90.00899	30.33113	RUN 1 21	27.43	1.70	-0.15	-154.02	29.89	6/18/08 3:12:12 PM	1.237639	GCS_WGS_1984	Zone 15 North
-90.00853	30.33153	RUN 1 22	24.18	1.77	-0.22	-216.88	29.78	6/18/08 3:13:35 PM	1.238600	GCS_WGS_1984	Zone 15 North
-90.00842	30.33186	RUN 1 23	18.43	1.81	-0.26	-255.88	29.89	6/18/08 3:14:38 PM	1.239329	GCS_WGS_1984	Zone 15 North
-90.00823	30.33219	RUN 1 24	15.95	1.85	-0.30	-297.82	29.75	6/18/08 3:15:38 PM	1.240023	GCS_WGS_1984	Zone 15 North
-90.00803	30.33251	RUN 1 25	17.10	1.89	-0.34	-338.22	29.69	6/18/08 3:16:38 PM	1.240718	GCS_WGS_1984	Zone 15 North
-90.00780	30.33289	RUN 1 26	13.88	1.94	-0.39	-386.46	29.67	6/18/08 3:17:46 PM	1.241505	GCS_WGS_1984	Zone 15 North
-90.00768	30.33312	RUN 1 27	9.72	1.96	-0.41	-414.46	29.84	6/18/08 3:18:29 PM	1.242002	GCS_WGS_1984	Zone 15 North
-90.00716	30.33349	RUN 1 28	7.03	2.03	-0.48	-482.86	29.66	6/18/08 3:19:59 PM	1.243044	GCS_WGS_1984	Zone 15 North
-90.00670	30.33367	RUN 1 29	2.91	2.08	-0.53	-530.46	29.79	6/18/08 3:21:22 PM	1.244005	GCS_WGS_1984	Zone 15 North
-90.00640	30.33435	RUN 1 30	1.49	2.16	-0.61	-611.53	29.51	6/18/08 3:23:05 PM	1.245197	GCS_WGS_1984	Zone 15 North
-90.00606	30.33491	RUN 1 31	0.05	2.23	-0.68	-683.98	29.39	6/18/08 3:24:37 PM	1.246262	GCS_WGS_1984	Zone 15 North
-90.00589	30.33499	RUN 1 BG2	0.00	2.25	-0.70	-702.75	29.19	6/18/08 3:25:11 PM	1.246655	GCS_WGS_1984	Zone 15 North
								Dye Run 1			
								Average Time (days)	1.233736		
								Average Time (hours)	29.609663		
							378	Average Time (seconds)	106594.787882		

Bayou	Cane	Dye Arc	Table	Cald	culations	Page	2 of	2			
X	Y	RUN	Concen	RKM	Distance from Dye Dump (Kilometers)	Distance from Dye Dump (Meters)		Date + Time	Run minus Dump (Days)	PROJECTION	ZONE
-90.01488	30.32579	RUN 02 BG1	0.00	0.816	0.73	734.1419	30.00	6/19/08 3:22:15 PM	2.244618	GCS_WGS_1984	Zone 15 North
-90.01505	30.32628	RUN 02 01	0.03	0.871	0.68	679.4261	30.02	6/19/08 3:24:10 PM	2.245949	GCS_WGS_1984	Zone 15 North
-90.01442	30.32709	RUN 02 02	1.94	0.978	0.57	571.6677	29.98	6/19/08 3:26:10 PM	2.247338	GCS_WGS_1984	Zone 15 North
-90.01376	30.32775	RUN 02 03	4.04	1.075	0.47	474.8015	29.83	6/19/08 3:28:06 PM	2.248681	GCS_WGS_1984	Zone 15 North
-90.01319	30.32858	RUN 02 04	7.18	1.184	0.37	366.1284	29.72	6/19/08 3:30:01 PM	2.250012	GCS_WGS_1984	Zone 15 North
-90.01293	30.32894	RUN 02 05	7.80	1.23	0.32	320.0995	29.84	6/19/08 3:31:05 PM	2.250752	GCS_WGS_1984	Zone 15 North
-90.01256	30.32921	RUN 02 06	8.85	1.28	0.27	274.5159	29.68	6/19/08 3:32:00 PM	2.251389	GCS_WGS_1984	Zone 15 North
-90.01207	30.32926	RUN 02 07	9.70	1.32	0.23	230.3705	29.58	6/19/08 3:33:03 PM	2.252118	GCS_WGS_1984	Zone 15 North
-90.01148	30.32940	RUN 02 08	10.99	1.379	0.17	170.8075	29.64	6/19/08 3:34:05 PM	2.252836	GCS_WGS_1984	Zone 15 North
-90.01130	30.32969	RUN 02 09	11.28	1.417	0.13	132.9681	29.44	6/19/08 3:35:02 PM	2.253495	GCS_WGS_1984	Zone 15 North
-90.01119	30.33012	RUN 02 10	12.37	1.465	0.09	85.06867	29.62	6/19/08 3:36:10 PM	2.254282	GCS_WGS_1984	Zone 15 North
-90.01079	30.33036	RUN 02 11	13.64	1.511	0.04	38.81242	29.55	6/19/08 3:37:01 PM	2.254873	GCS_WGS_1984	Zone 15 North
-90.01030	30.33057	RUN 02 12	15.64	1.564	-0.01	-13.5655	29.66	6/19/08 3:38:03 PM	2.255590	GCS_WGS_1984	Zone 15 North
-90.00993	30.33081	RUN 02 13	18.00	1.608	-0.06	-57.6263	29.91	6/19/08 3:39:04 PM	2.256296	GCS_WGS_1984	Zone 15 North
-90.00947	30.33099	RUN 02 14	18.42	1.656	-0.11	-106.023	29.73	6/19/08 3:40:02 PM	2.256968	GCS_WGS_1984	Zone 15 North
-90.00899	30.33116	RUN 02 15	19.10	1.706	-0.16	-155.959	30.16	6/19/08 3:41:13 PM	2.257789	GCS_WGS_1984	Zone 15 North
-90.00873	30.33132	RUN 02 16	19.11	1.737	-0.19	-186.479	29.66	6/19/08 3:42:00 PM	2.258333	GCS_WGS_1984	Zone 15 North
-90.00853	30.33157	RUN 02 17	19.45	1.771	-0.22	-220.795	29.83	6/19/08 3:43:13 PM	2.259178	GCS_WGS_1984	Zone 15 North
-90.00842	30.33193	RUN 02 18	19.86	1.814	-0.26	-263.626	29.72	6/19/08 3:44:06 PM	2.259792	GCS_WGS_1984	Zone 15 North
-90.00806	30.33251	RUN 02 19	19.39	1.887	-0.34	-336.602	29.47	6/19/08 3:45:13 PM	2.260567	GCS_WGS_1984	Zone 15 North
-90.00757	30.33330	RUN 02 20	16.48	1.987	-0.44	-436.814	29.55	6/19/08 3:47:02 PM	2.261829	GCS_WGS_1984	Zone 15 North
-90.00669	30.33373	RUN 02 21	11.15	2.086	-0.54	-535.379	29.77	6/19/08 3:48:56 PM	2.263148	GCS_WGS_1984	Zone 15 North
-90.00625				2.206	-0.66	-655.963		6/19/08 3:51:03 PM	2.264618	GCS_WGS_1984	
-90.00535	30.33516	RUN 02 23	4.55	2.308	-0.76	-757.995	29.17	6/19/08 3:53:01 PM	2.265984	GCS_WGS_1984	Zone 15 North
-90.00480				2.378	-0.83	-827.886		6/19/08 3:54:30 PM	2.267014	GCS_WGS_1984	
		RUN 02 25		2.418	-0.87	-867.385		6/19/08 3:55:31 PM	2.267720	GCS_WGS_1984	
-90.00457	30.33606	RUN 02 BG 2	0.00	2.439	-0.89	-888.669	28.80	6/19/08 3:56:08 PM	2.268148	GCS_WGS_1984	
								Dye Run 2			
								Average Time (days)	2.256641		
								Average Time (hours)	54.159393		
								Average Time (seconds)	194973.814818		

Dye Run 1

ø	Depth of Stream (meters)	0.945
Inputs	Width of Stream (meters)	24.892
du	Time Elapsed Since Dye Injection	
	(sec)	106595
User	¹ Mass of Solution Injected (kg)	35.000
	Number of Iterations	20
² Initial Guess		
	K_d : Diffusion (m ² /s)	0.1000


Run Dispersion Routine


²Initial guesses must be chosen carefully chosen since they control to a great degree the success and rate of convergence of the Gauss–Newton algorithm

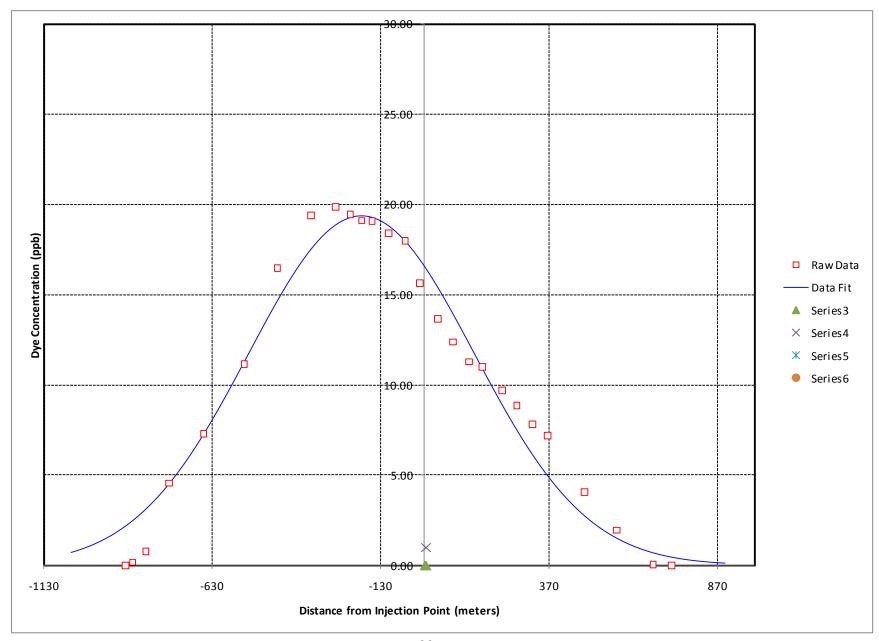
of the Gauss–Newton algorithm		
Observed Dye Data for Dye Run 1		
X: Distance From Injection Point (meters)		
1006.204634		
918.0669194		
830.0913326		
774.5930253		
690.2263908		
647.8137841		
600.5256449		
554.2598255		
510.3473921		
441.9373247		
401.4799889		
340.9229792		
280.5914159		
219.4733799		
148.0851611		
90.07762884		

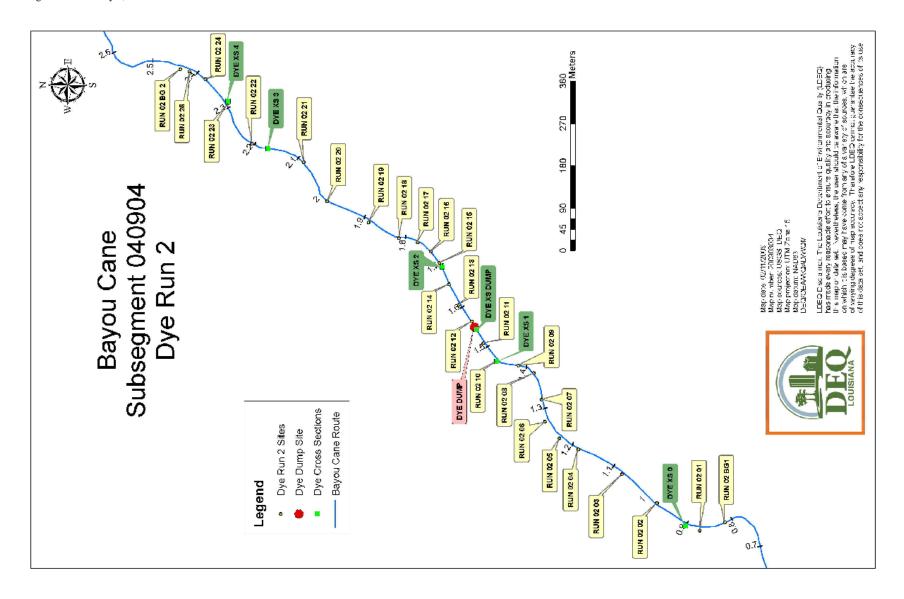
 $^{^{1}}$ Mass of solution injected is multiplied by 0.2 since the solution is 20% dye

31.24	54.54562079
30.61	31.42408912
32.06	-25.15267922
30.7	-80.8221038
30	-127.7912582
27.43	-154.0180624
24.18	-216.8802902
18.43	-255.8765086
15.95	-297.8232189
17.1	-338.2168053
13.88	-386.4592633
9.72	-414.4588101
7.03	-482.861369
2.91	-530.4643347
1.49	-611.5294888
0.05	-683.9754105
0	-702.7452799

Dye Run 2

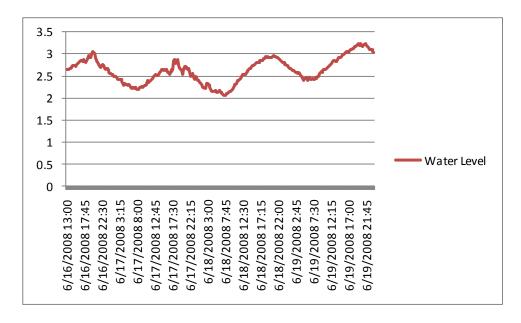
Dyc Ruii Z		
ø	Depth of Stream (meters)	0.945
Inputs	Width of Stream (meters)	24.892
ďu	Time Elapsed Since Dye Injection	
	(sec)	194974
User	¹Mass of Solution Injected (kg)	35.000
	Number of Iterations	20
² Initial Guess		
$\frac{1}{2}$	K_d : Diffusion (m^2/s)	0.1000


Run Dispersion Routine


²Initial guesses must be chosen carefully chosen since they control to a great degree the success and rate of convergence of the Gauss–Newton algorithm

of the Gauss–Newton algorithm		
Observed Dye Data for Dye Run 2		
f(X): Concentration (ppb)	X: Distance From Injection Point (meters)	
0.00	734.1418831	
0.03	679.4261453	
1.94	571.6677139	
4.04	474.8014551	
7.18	366.1283813	
7.80	320.099547	
8.85	274.5158657	
9.70	230.3705161	
10.99	170.807504	
11.28	132.9680566	
12.37	85.06867184	
13.64	38.8124163	
15.64	-13.56549426	
18.00	-57.62630318	
18.42	-106.0231942	
19.10	-155.958952	

 $^{^{1}}$ Mass of solution injected is multiplied by 0.2 since the solution is 20% dye


19.11	-186.4793016
19.45	-220.7952116
19.86	-263.6258245
19.39	-336.602322
16.48	-436.8140573
11.15	-535.3791198
7.3	-655.9628143
4.55	-757.9953902
0.77	-827.8857733
0.17	-867.3853992
0	-888.6685157

Appendix F7 – Water Level Monitor Data & Tide Calculations

Bayou Cane, Site 3665, Calculation of Tide Height							
		water level		tidal rango	tidal ampl	itudo-tido k	oight
		(feet)		(feet)	=tiuai ampi	itude=tide i	leigrit
valley	6/17/2008 8:15	2.19		0.68	(=2.87-2.19	9)	
peak	6/17/2008 18:37	2.87		0.82	(=2.87-2.0	5)	
valley	6/18/2008 7:45	2.05		0.91	(=2.96-2.0	5)	
peak	6/18/2008 21:00	2.96		0.55	(=2.96-2.4	1)	
valley	6/19/2008 5:30	2.41					
			avg=	0.74	>	0.225552	meters

Bayou Cane, Site 3665, Water Level Monitor Data

ei Moiltoi Data	
	Water Level (ft)
6/16/2008 13:00	2.64
6/16/2008 13:15	2.65
6/16/2008 13:30	2.65
6/16/2008 13:45	2.67
6/16/2008 14:00	2.66
6/16/2008 14:15	2.69
6/16/2008 14:30	2.71
6/16/2008 14:45	2.75
6/16/2008 15:00	2.74
6/16/2008 15:15	2.73
6/16/2008 15:30	2.72
6/16/2008 15:45	2.76
6/16/2008 16:00	2.79
6/16/2008 16:15	2.8
6/16/2008 16:30	2.83
6/16/2008 16:45	2.85
6/16/2008 17:00	2.85
6/16/2008 17:15	2.84
6/16/2008 17:30	2.87
6/16/2008 17:45	2.84
6/16/2008 18:00	2.82
6/16/2008 18:15	2.81
6/16/2008 18:30	2.85
6/16/2008 18:45	2.89
6/16/2008 19:00	2.96
6/16/2008 19:15	2.92
6/16/2008 19:30	2.92
6/16/2008 19:45	3
6/16/2008 20:00	3.05
6/16/2008 20:15	3.03
6/16/2008 20:30	3.02
6/16/2008 20:45	2.9
6/16/2008 21:00	2.86

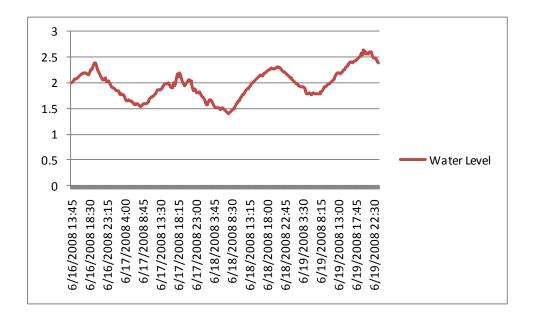
6/16/2008 21:15	2.83
6/16/2008 21:30	2.8
6/16/2008 21:45	2.76
6/16/2008 22:00	2.71
6/16/2008 22:15	2.69
6/16/2008 22:30	2.74
6/16/2008 22:45	2.77
6/16/2008 23:00	2.75
6/16/2008 23:15	2.68
6/16/2008 23:30	2.65
6/16/2008 23:45	2.67
6/17/2008	2.67
6/17/2008 0:15	2.62
6/17/2008 0:30	2.58
6/17/2008 0:45	2.56
6/17/2008 1:00	2.56
6/17/2008 1:15	2.54
6/17/2008 1:30	2.53
6/17/2008 1:45	2.49
6/17/2008 2:00	2.5
6/17/2008 2:15	2.48
6/17/2008 2:30	2.46
6/17/2008 2:45	2.43
6/17/2008 3:00	2.43
6/17/2008 3:15	2.42
6/17/2008 3:30	2.43
6/17/2008 3:45	2.43
6/17/2008 4:00	2.38
6/17/2008 4:15	2.33
6/17/2008 4:30	2.28
6/17/2008 4:45	2.33
6/17/2008 5:00	2.31
6/17/2008 5:15	2.32
6/17/2008 5:30	2.29
6/17/2008 5:45	2.31
6/17/2008 6:00	2.28

6/17/2008 6:15	2.25
6/17/2008 6:30	2.22
6/17/2008 6:45	2.24
6/17/2008 7:00	2.23
6/17/2008 7:15	2.23
6/17/2008 7:30	2.25
6/17/2008 7:45	2.24
6/17/2008 8:00	2.19
6/17/2008 8:15	2.19
6/17/2008 8:30	2.19
6/17/2008 8:45	2.24
6/17/2008 9:00	2.25
6/17/2008 9:15	2.26
6/17/2008 9:30	2.24
6/17/2008 9:45	2.26
6/17/2008 10:00	2.28
6/17/2008 10:15	2.29
6/17/2008 10:30	2.32
6/17/2008 10:45	2.34
6/17/2008 11:00	2.39
6/17/2008 11:15	2.36
6/17/2008 11:30	2.38
6/17/2008 11:45	2.39
6/17/2008 12:00	2.43
6/17/2008 12:15	2.44
6/17/2008 12:30	2.48
6/17/2008 12:45	2.51
6/17/2008 13:00	2.54
6/17/2008 13:15	2.52
6/17/2008 13:30	2.52
6/17/2008 13:45	2.54
6/17/2008 14:00	2.57
6/17/2008 14:15	2.59
6/17/2008 14:30	2.61
6/17/2008 14:45	2.64
6/17/2008 15:00	2.65

6/17/2008 15:15	2.62
6/17/2008 15:30	2.65
6/17/2008 15:45	2.63
6/17/2008 16:00	2.64
6/17/2008 16:15	2.57
6/17/2008 16:30	2.57
6/17/2008 16:45	2.54
6/17/2008 17:00	2.59
6/17/2008 17:15	2.65
6/17/2008 17:30	2.61
6/17/2008 17:45	2.65
6/17/2008 18:00	2.86
6/17/2008 18:15	2.87
6/17/2008 18:30	2.79
6/17/2008 18:45	2.8
6/17/2008 19:00	2.87
6/17/2008 19:15	2.73
6/17/2008 19:30	2.66
6/17/2008 19:45	2.64
6/17/2008 20:00	2.62
6/17/2008 20:15	2.54
6/17/2008 20:30	2.67
6/17/2008 20:45	2.66
6/17/2008 21:00	2.72
6/17/2008 21:15	2.71
6/17/2008 21:30	2.69
6/17/2008 21:45	2.65
6/17/2008 22:00	2.66
6/17/2008 22:15	2.57
6/17/2008 22:30	2.49
6/17/2008 22:45	2.52
6/17/2008 23:00	2.56
6/17/2008 23:15	2.46
6/17/2008 23:30	2.43
6/17/2008 23:45	2.49
6/18/2008	2.47

6/18/2008 0:15	2.45
6/18/2008 0:30	2.41
6/18/2008 0:45	2.39
6/18/2008 1:00	2.36
6/18/2008 1:15	2.33
6/18/2008 1:30	2.3
6/18/2008 1:45	2.24
6/18/2008 2:00	2.24
6/18/2008 2:15	2.22
6/18/2008 2:30	2.23
6/18/2008 2:45	2.33
6/18/2008 3:00	2.34
6/18/2008 3:15	2.32
6/18/2008 3:30	2.28
6/18/2008 3:45	2.24
6/18/2008 4:00	2.2
6/18/2008 4:15	2.15
6/18/2008 4:30	2.15
6/18/2008 4:45	2.16
6/18/2008 5:00	2.16
6/18/2008 5:15	2.17
6/18/2008 5:30	2.13
6/18/2008 5:45	2.13
6/18/2008 6:00	2.15
6/18/2008 6:15	2.17
6/18/2008 6:30	2.14
6/18/2008 6:45	2.14
6/18/2008 7:00	2.11
6/18/2008 7:15	2.08
6/18/2008 7:30	2.05
6/18/2008 7:45	2.05
6/18/2008 8:00	2.05
6/18/2008 8:15	2.1
6/18/2008 8:30	2.11
6/18/2008 8:45	2.14
6/18/2008 9:00	2.16

6/18/2008 9:15	2.15
6/18/2008 9:30	2.18
6/18/2008 9:45	2.2
6/18/2008 10:00	2.25
6/18/2008 10:15	2.28
6/18/2008 10:30	2.3
6/18/2008 10:45	2.31
6/18/2008 11:00	2.34
6/18/2008 11:15	2.39
6/18/2008 11:30	2.41
6/18/2008 11:45	2.42
6/18/2008 12:00	2.45
6/18/2008 12:15	2.49
6/18/2008 12:30	2.53
6/18/2008 12:45	2.53
6/18/2008 13:00	2.54
6/18/2008 13:15	2.54
6/18/2008 13:30	2.57
6/18/2008 13:45	2.61
6/18/2008 14:00	2.63
6/18/2008 14:15	2.65
6/18/2008 14:30	2.66
6/18/2008 14:45	2.68
6/18/2008 15:00	2.72
6/18/2008 15:15	2.74
6/18/2008 15:30	2.75
6/18/2008 15:45	2.77
6/18/2008 16:00	2.79
6/18/2008 16:15	2.8
6/18/2008 16:30	2.81
6/18/2008 16:45	2.8
6/18/2008 17:00	2.81
6/18/2008 17:15	2.85
6/18/2008 17:30	2.85
6/18/2008 17:45	2.86
6/18/2008 18:00	2.86


6/18/2008 18:15	2.89
6/18/2008 18:30	2.9
6/18/2008 18:45	2.94
6/18/2008 19:00	2.93
6/18/2008 19:15	2.94
6/18/2008 19:30	2.93
6/18/2008 19:45	2.93
6/18/2008 20:00	2.93
6/18/2008 20:15	2.92
6/18/2008 20:30	2.94
6/18/2008 20:45	2.94
6/18/2008 21:00	2.96
6/18/2008 21:15	2.94
6/18/2008 21:30	2.94
6/18/2008 21:45	2.92
6/18/2008 22:00	2.93
6/18/2008 22:15	2.89
6/18/2008 22:30	2.87
6/18/2008 22:45	2.85
6/18/2008 23:00	2.84
6/18/2008 23:15	2.81
6/18/2008 23:30	2.81
6/18/2008 23:45	2.8
6/19/2008	2.76
6/19/2008 0:15	2.76
6/19/2008 0:30	2.74
6/19/2008 0:45	2.73
6/19/2008 1:00	2.7
6/19/2008 1:15	2.68
6/19/2008 1:30	2.67
6/19/2008 1:45	2.65
6/19/2008 2:00	2.63
6/19/2008 2:15	2.62
6/19/2008 2:30	2.6
6/19/2008 2:45	2.59
6/19/2008 3:00	2.58

6/19/2008 3:15	2.56
6/19/2008 3:30	2.58
6/19/2008 3:45	2.58
6/19/2008 4:00	2.55
6/19/2008 4:15	2.52
6/19/2008 4:30	2.49
6/19/2008 4:45	2.45
6/19/2008 5:00	2.41
6/19/2008 5:15	2.45
6/19/2008 5:30	2.45
6/19/2008 5:45	2.46
6/19/2008 6:00	2.41
6/19/2008 6:15	2.43
6/19/2008 6:30	2.45
6/19/2008 6:45	2.46
6/19/2008 7:00	2.43
6/19/2008 7:15	2.43
6/19/2008 7:30	2.44
6/19/2008 7:45	2.43
6/19/2008 8:00	2.42
6/19/2008 8:15	2.46
6/19/2008 8:30	2.45
6/19/2008 8:45	2.48
6/19/2008 9:00	2.49
6/19/2008 9:15	2.55
6/19/2008 9:30	2.57
6/19/2008 9:45	2.61
6/19/2008 10:00	2.59
6/19/2008 10:15	2.62
6/19/2008 10:30	2.64
6/19/2008 10:45	2.64
6/19/2008 11:00	2.64
6/19/2008 11:15	2.66
6/19/2008 11:30	2.7
6/19/2008 11:45	2.72
6/19/2008 12:00	2.73

6/19/2008 12:15	2.76
6/19/2008 12:30	2.78
6/19/2008 12:45	2.83
6/19/2008 13:00	2.85
6/19/2008 13:15	2.86
6/19/2008 13:30	2.84
6/19/2008 13:45	2.84
6/19/2008 14:00	2.83
6/19/2008 14:15	2.87
6/19/2008 14:30	2.91
6/19/2008 14:45	2.92
6/19/2008 15:00	2.93
6/19/2008 15:15	2.95
6/19/2008 15:30	2.98
6/19/2008 15:45	2.99
6/19/2008 16:00	3.01
6/19/2008 16:15	3.03
6/19/2008 16:30	3.05
6/19/2008 16:45	3.06
6/19/2008 17:00	3.04
6/19/2008 17:15	3.04
6/19/2008 17:30	3.07
6/19/2008 17:45	3.09
6/19/2008 18:00	3.11
6/19/2008 18:15	3.13
6/19/2008 18:30	3.13
6/19/2008 18:45	3.16
6/19/2008 19:00	3.16
6/19/2008 19:15	3.18
6/19/2008 19:30	3.22
6/19/2008 19:45	3.23
6/19/2008 20:00	3.19
6/19/2008 20:15	3.23
6/19/2008 20:30	3.2
6/19/2008 20:45	3.19
6/19/2008 21:00	3.17

6/19/2008 21:15	3.22
6/19/2008 21:30	3.21
6/19/2008 21:45	3.23
6/19/2008 22:00	3.2
6/19/2008 22:15	3.17
6/19/2008 22:30	3.15
6/19/2008 22:45	3.11
6/19/2008 23:00	3.1
6/19/2008 23:15	3.1
6/19/2008 23:30	3.09
6/19/2008 23:45	3.06
6/20/2008	3.04

Bayou	Cane, Site 3753, Cal	culation of Tide	Height			
		water level	tidal range	=tidal ampli	tude=tide h	eight
		(feet)	(feet)			
valley	6/17/2008 8:15	1.54	0.66	(=2.2-1.54)		
peak	6/17/2008 18:45	2.2	0.8	(=2.2-1.4)		
valley	6/18/2008 7:45	1.4	0.9	(=2.3-1.4)		
peak	6/18/2008 21:00	2.3	0.53	(=2.3-1.77)		
valley	6/19/2008 6:00	1.77				
		av	g= 0.7225	>	0.220218	meters

Bayou Cane, Site 3753, Water Level Monitor Data

	Water Level (ft)
6/16/2008 13:45	2
6/16/2008 14:00	2.01
6/16/2008 14:15	2.03
6/16/2008 14:30	2.07
6/16/2008 14:45	2.08
6/16/2008 15:00	2.08
6/16/2008 15:15	2.07
6/16/2008 15:30	2.09
6/16/2008 15:45	2.11
6/16/2008 16:00	2.13
6/16/2008 16:15	2.15
6/16/2008 16:30	2.17
6/16/2008 16:45	2.18
6/16/2008 17:00	2.19
6/16/2008 17:15	2.19
6/16/2008 17:30	2.19
6/16/2008 17:45	2.18
6/16/2008 18:00	2.17
6/16/2008 18:15	2.16
6/16/2008 18:30	2.19
6/16/2008 18:45	2.26
6/16/2008 19:00	2.27
6/16/2008 19:15	2.25
6/16/2008 19:30	2.29
6/16/2008 19:45	2.35
6/16/2008 20:00	2.38
6/16/2008 20:15	2.38
6/16/2008 20:30	2.32
6/16/2008 20:45	2.25
6/16/2008 21:00	2.21
6/16/2008 21:15	2.17
6/16/2008 21:30	2.14
6/16/2008 21:45	2.09

6/16/2008 22:00	2.05
6/16/2008 22:15	2.05
6/16/2008 22:30	2.08
6/16/2008 22:45	2.1
6/16/2008 23:00	2.07
6/16/2008 23:15	2.02
6/16/2008 23:30	2.02
6/16/2008 23:45	2.03
6/17/2008	2
6/17/2008 0:15	1.96
6/17/2008 0:30	1.93
6/17/2008 0:45	1.91
6/17/2008 1:00	1.9
6/17/2008 1:15	1.89
6/17/2008 1:30	1.86
6/17/2008 1:45	1.85
6/17/2008 2:00	1.84
6/17/2008 2:15	1.84
6/17/2008 2:30	1.81
6/17/2008 2:45	1.79
6/17/2008 3:00	1.77
6/17/2008 3:15	1.78
6/17/2008 3:30	1.77
6/17/2008 3:45	1.76
6/17/2008 4:00	1.72
6/17/2008 4:15	1.67
6/17/2008 4:30	1.65
6/17/2008 4:45	1.66
6/17/2008 5:00	1.67
6/17/2008 5:15	1.66
6/17/2008 5:30	1.65
6/17/2008 5:45	1.64
6/17/2008 6:00	1.63
6/17/2008 6:15	1.59
6/17/2008 6:30	1.59
6/17/2008 6:45	1.58

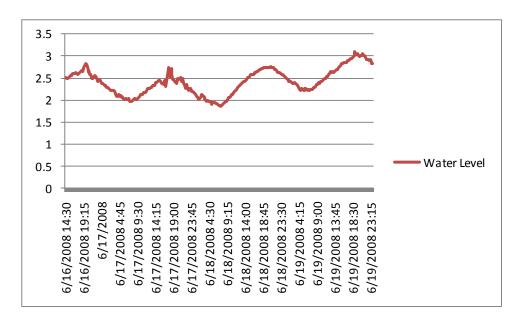
6/17/2008 7:00	1.57
6/17/2008 7:15	1.59
6/17/2008 7:30	1.6
6/17/2008 7:45	1.57
6/17/2008 8:00	1.55
6/17/2008 8:15	1.54
6/17/2008 8:30	1.56
6/17/2008 8:45	1.57
6/17/2008 9:00	1.59
6/17/2008 9:15	1.59
6/17/2008 9:30	1.59
6/17/2008 9:45	1.59
6/17/2008 10:00	1.61
6/17/2008 10:15	1.63
6/17/2008 10:30	1.66
6/17/2008 10:45	1.69
6/17/2008 11:00	1.71
6/17/2008 11:15	1.72
6/17/2008 11:30	1.72
6/17/2008 11:45	1.74
6/17/2008 12:00	1.76
6/17/2008 12:15	1.79
6/17/2008 12:30	1.83
6/17/2008 12:45	1.86
6/17/2008 13:00	1.86
6/17/2008 13:15	1.86
6/17/2008 13:30	1.87
6/17/2008 13:45	1.89
6/17/2008 14:00	1.91
6/17/2008 14:15	1.92
6/17/2008 14:30	1.95
6/17/2008 14:45	1.98
6/17/2008 15:00	1.98
6/17/2008 15:15	1.98
6/17/2008 15:30	1.98
6/17/2008 15:45	1.99

6/17/2008 16:00	1.96
6/17/2008 16:15	1.93
6/17/2008 16:30	1.9
6/17/2008 16:45	1.91
6/17/2008 17:00	1.99
6/17/2008 17:15	1.94
6/17/2008 17:30	1.98
6/17/2008 17:45	2.09
6/17/2008 18:00	2.18
6/17/2008 18:15	2.18
6/17/2008 18:30	2.12
6/17/2008 18:45	2.2
6/17/2008 19:00	2.16
6/17/2008 19:15	2.07
6/17/2008 19:30	2.02
6/17/2008 19:45	1.98
6/17/2008 20:00	1.94
6/17/2008 20:15	1.96
6/17/2008 20:30	1.99
6/17/2008 20:45	2.02
6/17/2008 21:00	2.05
6/17/2008 21:15	2.06
6/17/2008 21:30	2.02
6/17/2008 21:45	2.03
6/17/2008 22:00	1.97
6/17/2008 22:15	1.9
6/17/2008 22:30	1.85
6/17/2008 22:45	1.89
6/17/2008 23:00	1.86
6/17/2008 23:15	1.81
6/17/2008 23:30	1.81
6/17/2008 23:45	1.81
6/18/2008	1.83
6/18/2008 0:15	1.78
6/18/2008 0:30	1.75
6/18/2008 0:45	1.72

6/18/2008 1:00	1.7
6/18/2008 1:15	1.67
6/18/2008 1:30	1.63
6/18/2008 1:45	1.61
6/18/2008 2:00	1.58
6/18/2008 2:15	1.58
6/18/2008 2:30	1.63
6/18/2008 2:45	1.67
6/18/2008 3:00	1.67
6/18/2008 3:15	1.65
6/18/2008 3:30	1.62
6/18/2008 3:45	1.58
6/18/2008 4:00	1.54
6/18/2008 4:15	1.52
6/18/2008 4:30	1.51
6/18/2008 4:45	1.52
6/18/2008 5:00	1.51
6/18/2008 5:15	1.5
6/18/2008 5:30	1.49
6/18/2008 5:45	1.48
6/18/2008 6:00	1.5
6/18/2008 6:15	1.51
6/18/2008 6:30	1.49
6/18/2008 6:45	1.47
6/18/2008 7:00	1.45
6/18/2008 7:15	1.43
6/18/2008 7:30	1.41
6/18/2008 7:45	1.4
6/18/2008 8:00	1.42
6/18/2008 8:15	1.44
6/18/2008 8:30	1.46
6/18/2008 8:45	1.48
6/18/2008 9:00	1.5
6/18/2008 9:15	1.5
6/18/2008 9:30	1.52
6/18/2008 9:45	1.56

6/18/2008 10:00	1.6
6/18/2008 10:15	1.62
6/18/2008 10:30	1.65
6/18/2008 10:45	1.66
6/18/2008 11:00	1.7
6/18/2008 11:15	1.73
6/18/2008 11:30	1.76
6/18/2008 11:45	1.77
6/18/2008 12:00	1.8
6/18/2008 12:15	1.84
6/18/2008 12:30	1.86
6/18/2008 12:45	1.88
6/18/2008 13:00	1.88
6/18/2008 13:15	1.9
6/18/2008 13:30	1.92
6/18/2008 13:45	1.95
6/18/2008 14:00	1.97
6/18/2008 14:15	1.99
6/18/2008 14:30	2.01
6/18/2008 14:45	2.03
6/18/2008 15:00	2.06
6/18/2008 15:15	2.08
6/18/2008 15:30	2.1
6/18/2008 15:45	2.12
6/18/2008 16:00	2.13
6/18/2008 16:15	2.15
6/18/2008 16:30	2.14
6/18/2008 16:45	2.14
6/18/2008 17:00	2.16
6/18/2008 17:15	2.18
6/18/2008 17:30	2.2
6/18/2008 17:45	2.2
6/18/2008 18:00	2.22
6/18/2008 18:15	2.24
6/18/2008 18:30	2.26
6/18/2008 18:45	2.26

6/18/2008 19:00	2.27
6/18/2008 19:15	2.28
6/18/2008 19:30	2.27
6/18/2008 19:45	2.27
6/18/2008 20:00	2.27
6/18/2008 20:15	2.28
6/18/2008 20:30	2.28
6/18/2008 20:45	2.3
6/18/2008 21:00	2.3
6/18/2008 21:15	2.3
6/18/2008 21:30	2.28
6/18/2008 21:45	2.28
6/18/2008 22:00	2.26
6/18/2008 22:15	2.24
6/18/2008 22:30	2.22
6/18/2008 22:45	2.21
6/18/2008 23:00	2.19
6/18/2008 23:15	2.17
6/18/2008 23:30	2.16
6/18/2008 23:45	2.14
6/19/2008	2.12
6/19/2008 0:15	2.1
6/19/2008 0:30	2.09
6/19/2008 0:45	2.07
6/19/2008 1:00	2.05
6/19/2008 1:15	2.03
6/19/2008 1:30	2.01
6/19/2008 1:45	2
6/19/2008 2:00	1.97
6/19/2008 2:15	1.97
6/19/2008 2:30	1.95
6/19/2008 2:45	1.95
6/19/2008 3:00	1.92
6/19/2008 3:15	1.92
6/19/2008 3:30	1.93
6/19/2008 3:45	1.92


6/19/2008 4:00	1.9
6/19/2008 4:15	1.86
6/19/2008 4:30	1.84
6/19/2008 4:45	1.79
6/19/2008 5:00	1.78
6/19/2008 5:15	1.78
6/19/2008 5:30	1.8
6/19/2008 5:45	1.78
6/19/2008 6:00	1.77
6/19/2008 6:15	1.78
6/19/2008 6:30	1.8
6/19/2008 6:45	1.79
6/19/2008 7:00	1.78
6/19/2008 7:15	1.79
6/19/2008 7:30	1.78
6/19/2008 7:45	1.78
6/19/2008 8:00	1.79
6/19/2008 8:15	1.79
6/19/2008 8:30	1.82
6/19/2008 8:45	1.83
6/19/2008 9:00	1.85
6/19/2008 9:15	1.88
6/19/2008 9:30	1.93
6/19/2008 9:45	1.92
6/19/2008 10:00	1.94
6/19/2008 10:15	1.96
6/19/2008 10:30	1.97
6/19/2008 10:45	1.97
6/19/2008 11:00	1.99
6/19/2008 11:15	2.01
6/19/2008 11:30	2.04
6/19/2008 11:45	2.06
6/19/2008 12:00	2.08
6/19/2008 12:15	2.1
6/19/2008 12:30	2.13
6/19/2008 12:45	2.17

6/19/2008 13:00	2.19
6/19/2008 13:15	2.19
6/19/2008 13:30	2.2
6/19/2008 13:45	2.18
6/19/2008 14:00	2.2
6/19/2008 14:15	2.22
6/19/2008 14:30	2.25
6/19/2008 14:45	2.26
6/19/2008 15:00	2.28
6/19/2008 15:15	2.3
6/19/2008 15:30	2.32
6/19/2008 15:45	2.34
6/19/2008 16:00	2.36
6/19/2008 16:15	2.38
6/19/2008 16:30	2.4
6/19/2008 16:45	2.4
6/19/2008 17:00	2.39
6/19/2008 17:15	2.4
6/19/2008 17:30	2.42
6/19/2008 17:45	2.43
6/19/2008 18:00	2.45
6/19/2008 18:15	2.47
6/19/2008 18:30	2.48
6/19/2008 18:45	2.5
6/19/2008 19:00	2.52
6/19/2008 19:15	2.58
6/19/2008 19:30	2.55
6/19/2008 19:45	2.56
6/19/2008 20:00	2.63
6/19/2008 20:15	2.61
6/19/2008 20:30	2.59
6/19/2008 20:45	2.56
6/19/2008 21:00	2.58
6/19/2008 21:15	2.57
6/19/2008 21:30	2.6
6/19/2008 21:45	2.6

6/19/2008 22:00	2.59
6/19/2008 22:15	2.53
6/19/2008 22:30	2.49
6/19/2008 22:45	2.49
6/19/2008 23:00	2.48
6/19/2008 23:15	2.45
6/19/2008 23:30	2.43
6/19/2008 23:45	2.41
6/20/2008	2.39

Cane, Site 3666								
•		riod. and	Period	of Tidal F	Rise			
	9 ,	,						
		water level		tidal range	tidal amplitud	le=tide heig	ht	
		(feet)		(feet)				
6/17/2008 7:45		1.98		0.77	(=2.75-1.98)			
6/17/2008 17:45		2.75						
6/18/2008 7:30		1.86		0.89	(=2.75-1.86)			
6/18/2008 20:45		2.76						
6/19/2008 6:30		2.22		0.9	(=2.76-1.86)			
				0.54	(=2.76-2.22)			
			avg=	0.775	>	0.23622	meters	
do	houro			poriod of ti	dal riao:			hours
us.	Tiours			penod or ti	uai iise.			riouis
7 to valley 6/18=	23.75			valley on 6/17 to peak on 6/17=		10		
	23			-	•			13.25
	27							
							avg=	11.625
avg=	24.58333333							
1	6/17/2008 7:45 6/17/2008 17:45 6/18/2008 7:30 6/18/2008 20:45 6/19/2008 6:30 ds: 7 to valley 6/18= 3 to valley 6/18= 4 to peak 6/18=	6/17/2008 7:45 6/17/2008 17:45 6/18/2008 7:30 6/18/2008 20:45 6/19/2008 6:30 ds: hours 7 to valley 6/18= 23.75 3 to valley 6/19= 23 1 to peak 6/18= 27	water level (feet) 6/17/2008 7:45 6/18/2008 7:30 6/18/2008 20:45 6/19/2008 6:30 ds: hours 7 to valley 6/18= 3 to yalley 6/18= 23 10 yalley 6/18= 27 water level (feet) 1.98 2.75 2.75 2.75 2.75 2.76 2.76 2.22	water level (feet) 6/17/2008 7:45 6/18/2008 17:45 6/18/2008 7:30 1.86 6/18/2008 20:45 6/19/2008 6:30 2.22 ds: hours 7 to valley 6/18= 23.75 3 to yalley 6/19= 23 1 to peak 6/18= 27	water level (feet) (feet) 6/17/2008 7:45	(feet) (feet) (feet) (feet	water level	water level (feet) (fee

Data Type 10, Tidal Range, fraction of boundar	y tide:	model input:
TopSite 3665, amplitude=	0.74 ft	0.954839 =(0.74/0.775)
MiddleSite 3753, amplitude=	0.7225 ft	0.932258 =(0.7225/0.775)
BottomSite 3666, amplitude=	0.775 ft	1.0

Bayou Cane, Site 3666, Water Level Monitor Data

	Water Level (ft
6/16/2008 14:30	2.51
6/16/2008 14:45	2.49
6/16/2008 15:00	2.5
6/16/2008 15:15	2.52
6/16/2008 15:30	2.54
6/16/2008 15:45	2.56
6/16/2008 16:00	2.56
6/16/2008 16:15	2.58
6/16/2008 16:30	2.6
6/16/2008 16:45	2.61
6/16/2008 17:00	2.61
6/16/2008 17:15	2.63
6/16/2008 17:30	2.61

6/16/2008 17:45	2.59
6/16/2008 18:00	2.6
6/16/2008 18:15	2.63
6/16/2008 18:30	2.65
6/16/2008 18:45	2.68
6/16/2008 19:00	2.65
6/16/2008 19:15	2.73
6/16/2008 19:30	2.79
6/16/2008 19:45	2.84
6/16/2008 20:00	2.81
6/16/2008 20:15	2.75
6/16/2008 20:30	2.62
6/16/2008 20:45	2.66
6/16/2008 21:00	2.58
6/16/2008 21:15	2.57
6/16/2008 21:30	2.5
6/16/2008 21:45	2.49
6/16/2008 22:00	2.51
6/16/2008 22:15	2.55
6/16/2008 22:30	2.53
6/16/2008 22:45	2.48
6/16/2008 23:00	2.43
6/16/2008 23:15	2.46
6/16/2008 23:30	2.46
6/16/2008 23:45	2.42
6/17/2008	2.37
6/17/2008 0:15	2.38
6/17/2008 0:30	2.36
6/17/2008 0:45	2.34
6/17/2008 1:00	2.33
6/17/2008 1:15	2.3
6/17/2008 1:30	2.28
6/17/2008 1:45	2.29
6/17/2008 2:00	2.27
6/17/2008 2:15	2.25
6/17/2008 2:30	2.23

6/17/2008 2:45	2.22
6/17/2008 3:00	2.22
6/17/2008 3:15	2.21
6/17/2008 3:30	2.19
6/17/2008 3:45	2.12
6/17/2008 4:00	2.09
6/17/2008 4:15	2.09
6/17/2008 4:30	2.12
6/17/2008 4:45	2.09
6/17/2008 5:00	2.1
6/17/2008 5:15	2.07
6/17/2008 5:30	2.09
6/17/2008 5:45	2.05
6/17/2008 6:00	2.02
6/17/2008 6:15	2.02
6/17/2008 6:30	2.03
6/17/2008 6:45	2.01
6/17/2008 7:00	2.02
6/17/2008 7:15	2.03
6/17/2008 7:30	1.98
6/17/2008 7:45	1.98
6/17/2008 8:00	1.98
6/17/2008 8:15	2
6/17/2008 8:30	2.01
6/17/2008 8:45	2.03
6/17/2008 9:00	2.01
6/17/2008 9:15	2.02
6/17/2008 9:30	2.03
6/17/2008 9:45	2.06
6/17/2008 10:00	2.06
6/17/2008 10:15	2.08
6/17/2008 10:30	2.12
6/17/2008 10:45	2.13
6/17/2008 11:00	2.12
6/17/2008 11:15	2.17
6/17/2008 11:30	2.18

6/17/2008 11:45	2.18
6/17/2008 12:00	2.21
6/17/2008 12:15	2.26
6/17/2008 12:30	2.27
6/17/2008 12:45	2.27
6/17/2008 13:00	2.28
6/17/2008 13:15	2.29
6/17/2008 13:30	2.33
6/17/2008 13:45	2.34
6/17/2008 14:00	2.34
6/17/2008 14:15	2.39
6/17/2008 14:30	2.41
6/17/2008 14:45	2.39
6/17/2008 15:00	2.42
6/17/2008 15:15	2.44
6/17/2008 15:30	2.45
6/17/2008 15:45	2.42
6/17/2008 16:00	2.37
6/17/2008 16:15	2.37
6/17/2008 16:30	2.35
6/17/2008 16:45	2.45
6/17/2008 17:00	2.3
6/17/2008 17:15	2.45
6/17/2008 17:30	2.57
6/17/2008 17:45	2.75
6/17/2008 18:00	2.57
6/17/2008 18:15	2.51
6/17/2008 18:30	2.72
6/17/2008 18:45	2.58
6/17/2008 19:00	2.46
6/17/2008 19:15	2.47
6/17/2008 19:30	2.42
6/17/2008 19:45	2.4
6/17/2008 20:00	2.37
6/17/2008 20:15	2.49
6/17/2008 20:30	2.46

6/17/2008 20:45	2.5
6/17/2008 21:00	2.51
6/17/2008 21:15	2.43
6/17/2008 21:30	2.5
6/17/2008 21:45	2.38
6/17/2008 22:00	2.33
6/17/2008 22:15	2.27
6/17/2008 22:30	2.36
6/17/2008 22:45	2.27
6/17/2008 23:00	2.22
6/17/2008 23:15	2.25
6/17/2008 23:30	2.27
6/17/2008 23:45	2.27
6/18/2008	2.19
6/18/2008 0:15	2.19
6/18/2008 0:30	2.17
6/18/2008 0:45	2.16
6/18/2008 1:00	2.12
6/18/2008 1:15	2.08
6/18/2008 1:30	2.05
6/18/2008 1:45	2.01
6/18/2008 2:00	2.04
6/18/2008 2:15	2.07
6/18/2008 2:30	2.14
6/18/2008 2:45	2.1
6/18/2008 3:00	2.09
6/18/2008 3:15	2.06
6/18/2008 3:30	2.01
6/18/2008 3:45	1.99
6/18/2008 4:00	1.97
6/18/2008 4:15	1.99
6/18/2008 4:30	1.97
6/18/2008 4:45	1.97
6/18/2008 5:00	1.97
6/18/2008 5:15	1.91
6/18/2008 5:30	1.94

6/18/2008 5:45	1.94
6/18/2008 6:00	1.95
6/18/2008 6:15	1.92
6/18/2008 6:30	1.93
6/18/2008 6:45	1.9
6/18/2008 7:00	1.87
6/18/2008 7:15	1.87
6/18/2008 7:30	1.86
6/18/2008 7:45	1.89
6/18/2008 8:00	1.89
6/18/2008 8:15	1.91
6/18/2008 8:30	1.93
6/18/2008 8:45	1.94
6/18/2008 9:00	1.96
6/18/2008 9:15	1.98
6/18/2008 9:30	2.01
6/18/2008 9:45	2.06
6/18/2008 10:00	2.07
6/18/2008 10:15	2.09
6/18/2008 10:30	2.12
6/18/2008 10:45	2.14
6/18/2008 11:00	2.18
6/18/2008 11:15	2.2
6/18/2008 11:30	2.21
6/18/2008 11:45	2.24
6/18/2008 12:00	2.29
6/18/2008 12:15	2.32
6/18/2008 12:30	2.32
6/18/2008 12:45	2.33
6/18/2008 13:00	2.36
6/18/2008 13:15	2.37
6/18/2008 13:30	2.4
6/18/2008 13:45	2.42
6/18/2008 14:00	2.43
6/18/2008 14:15	2.44
6/18/2008 14:30	2.47

6/18/2008 14:45	2.51
6/18/2008 15:00	2.52
6/18/2008 15:15	2.54
6/18/2008 15:30	2.57
6/18/2008 15:45	2.59
6/18/2008 16:00	2.59
6/18/2008 16:15	2.59
6/18/2008 16:30	2.6
6/18/2008 16:45	2.62
6/18/2008 17:00	2.63
6/18/2008 17:15	2.64
6/18/2008 17:30	2.64
6/18/2008 17:45	2.67
6/18/2008 18:00	2.69
6/18/2008 18:15	2.7
6/18/2008 18:30	2.71
6/18/2008 18:45	2.72
6/18/2008 19:00	2.74
6/18/2008 19:15	2.73
6/18/2008 19:30	2.73
6/18/2008 19:45	2.73
6/18/2008 20:00	2.73
6/18/2008 20:15	2.74
6/18/2008 20:30	2.75
6/18/2008 20:45	2.76
6/18/2008 21:00	2.75
6/18/2008 21:15	2.74
6/18/2008 21:30	2.74
6/18/2008 21:45	2.73
6/18/2008 22:00	2.7
6/18/2008 22:15	2.69
6/18/2008 22:30	2.67
6/18/2008 22:45	2.63
6/18/2008 23:00	2.63
6/18/2008 23:15	2.62
6/18/2008 23:30	2.6

6/18/2008 23:45	2.58
6/19/2008	2.57
6/19/2008 0:15	2.56
6/19/2008 0:30	2.53
6/19/2008 0:45	2.52
6/19/2008 1:00	2.49
6/19/2008 1:15	2.47
6/19/2008 1:30	2.46
6/19/2008 1:45	2.43
6/19/2008 2:00	2.43
6/19/2008 2:15	2.42
6/19/2008 2:30	2.41
6/19/2008 2:45	2.38
6/19/2008 3:00	2.38
6/19/2008 3:15	2.41
6/19/2008 3:30	2.37
6/19/2008 3:45	2.35
6/19/2008 4:00	2.33
6/19/2008 4:15	2.29
6/19/2008 4:30	2.25
6/19/2008 4:45	2.23
6/19/2008 5:00	2.26
6/19/2008 5:15	2.25
6/19/2008 5:30	2.23
6/19/2008 5:45	2.22
6/19/2008 6:00	2.26
6/19/2008 6:15	2.26
6/19/2008 6:30	2.24
6/19/2008 6:45	2.23
6/19/2008 7:00	2.24
6/19/2008 7:15	2.22
6/19/2008 7:30	2.25
6/19/2008 7:45	2.25
6/19/2008 8:00	2.24
6/19/2008 8:15	2.29
6/19/2008 8:30	2.29

6/19/2008 8:45	2.31
6/19/2008 9:00	2.35
6/19/2008 9:15	2.36
6/19/2008 9:30	2.4
6/19/2008 9:45	2.38
6/19/2008 10:00	2.43
6/19/2008 10:15	2.42
6/19/2008 10:30	2.43
6/19/2008 10:45	2.45
6/19/2008 11:00	2.46
6/19/2008 11:15	2.5
6/19/2008 11:30	2.5
6/19/2008 11:45	2.54
6/19/2008 12:00	2.54
6/19/2008 12:15	2.58
6/19/2008 12:30	2.61
6/19/2008 12:45	2.64
6/19/2008 13:00	2.63
6/19/2008 13:15	2.64
6/19/2008 13:30	2.63
6/19/2008 13:45	2.65
6/19/2008 14:00	2.68
6/19/2008 14:15	2.7
6/19/2008 14:30	2.7
6/19/2008 14:45	2.73
6/19/2008 15:00	2.75
6/19/2008 15:15	2.77
6/19/2008 15:30	2.79
6/19/2008 15:45	2.82
6/19/2008 16:00	2.83
6/19/2008 16:15	2.86
6/19/2008 16:30	2.85
6/19/2008 16:45	2.85
6/19/2008 17:00	2.86
6/19/2008 17:15	2.89
6/19/2008 17:30	2.89

0/40/0000 47 45	0.00
6/19/2008 17:45	2.92
6/19/2008 18:00	2.94
6/19/2008 18:15	2.94
6/19/2008 18:30	2.97
6/19/2008 18:45	2.99
6/19/2008 19:00	3
6/19/2008 19:15	3.09
6/19/2008 19:30	3.06
6/19/2008 19:45	3.04
6/19/2008 20:00	3.05
6/19/2008 20:15	3
6/19/2008 20:30	2.98
6/19/2008 20:45	3.02
6/19/2008 21:00	3.02
6/19/2008 21:15	3.05
6/19/2008 21:30	3.01
6/19/2008 21:45	3.02
6/19/2008 22:00	2.96
6/19/2008 22:15	2.93
6/19/2008 22:30	2.91
6/19/2008 22:45	2.92
6/19/2008 23:00	2.9
6/19/2008 23:15	2.91
6/19/2008 23:30	2.86
6/19/2008 23:45	2.84
6/20/2008	2.83

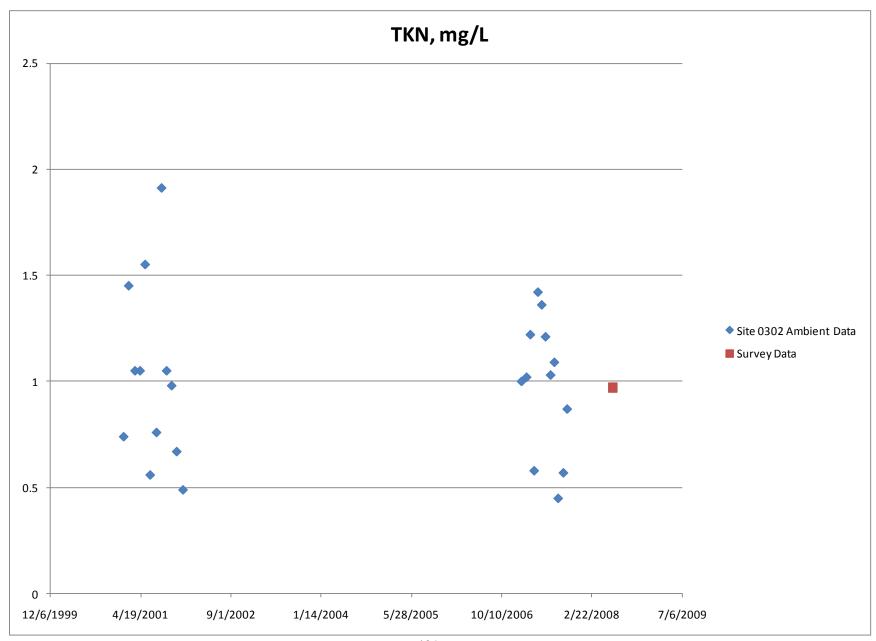
Appendix G- Historical and Ambient Data

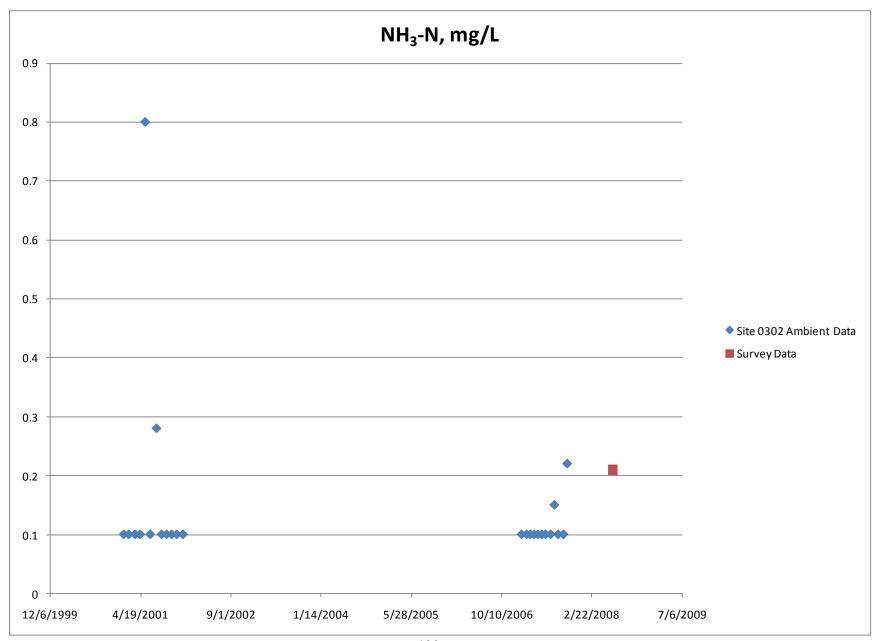
 $Appendix \ G1- \qquad Ambient \ temperature \ \& \ DO \ Calculations \ for \ current \ criteria$

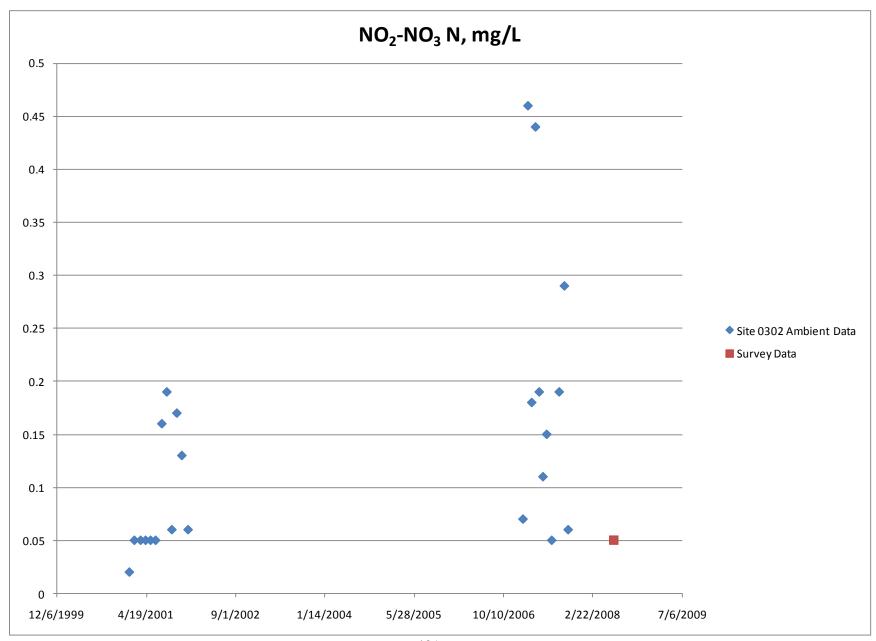
Critical Temperature and DO Determinations:

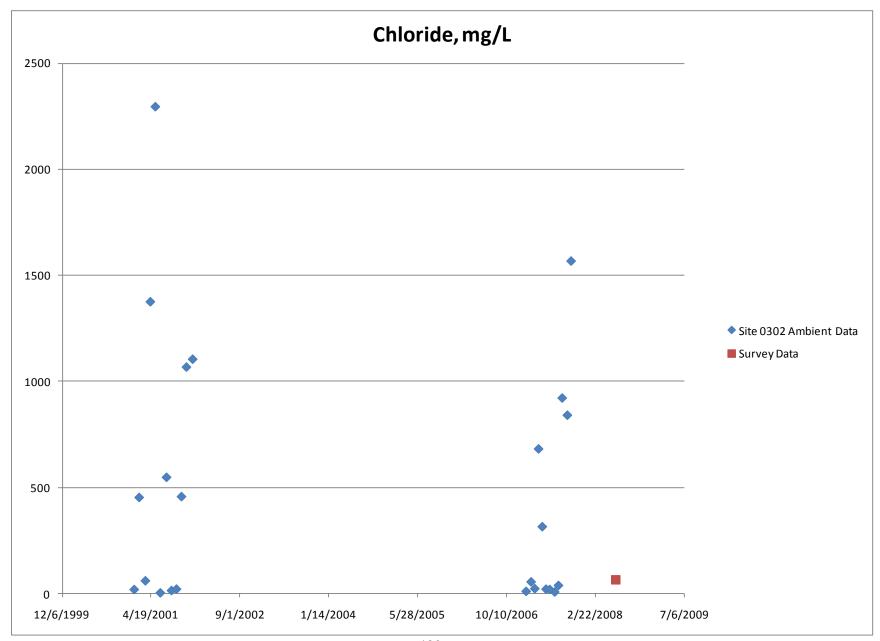
SITE 0302

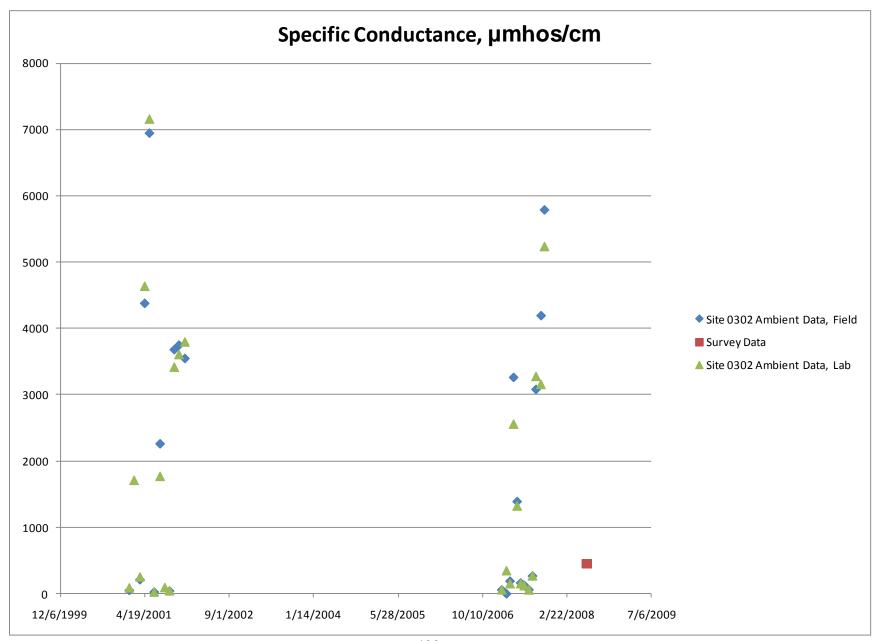
SITE Cane Bayou east of Mandeville, Louisiana

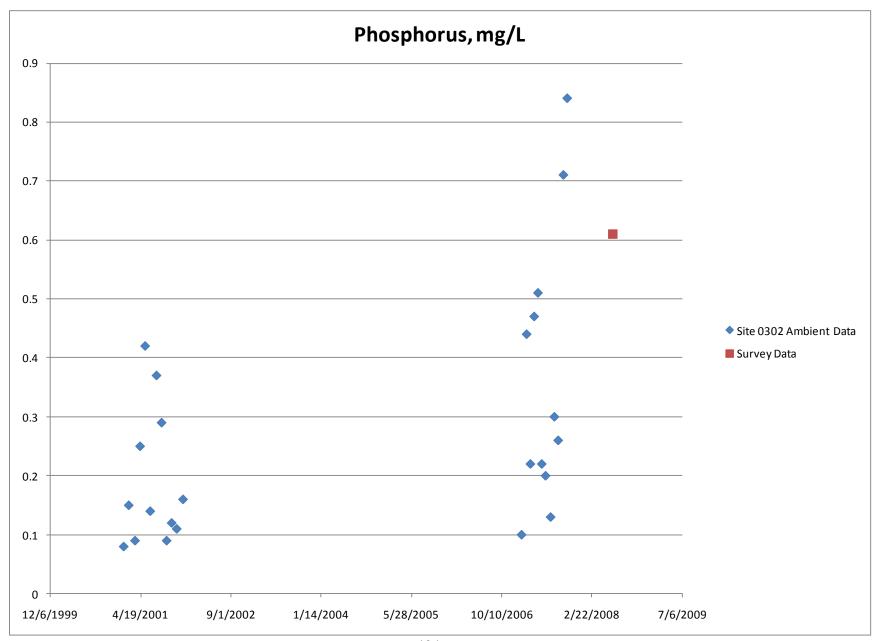

004 D 44	Summer Season	Winter Season
90th Percentile	27.91	20.71
90 % DO Sat (mg/L):	7.06	8.07
Months:	May To Oct	Nov To Apr
Date	Water Temp. (°C)	DO(mg/L)
3/21/2006 10:55:00) AM 18.69	3.44
1/18/2006 9:00:00	AM 12.25	2.40
12/13/2005	9.80	11.40
11/29/2005	15.78	3.96
11/15/2005	21.00	1.48
11/8/2005	20.04	2.36
11/1/2005	16.54	2.10
10/25/2005	16.59	2.75
10/18/2005	18.00	6.10
10/7/2005	27.57	0.25
10/3/2005	28.70	0.29
9/29/2005	27.77	1.70
9/27/2005	27.68	1.40

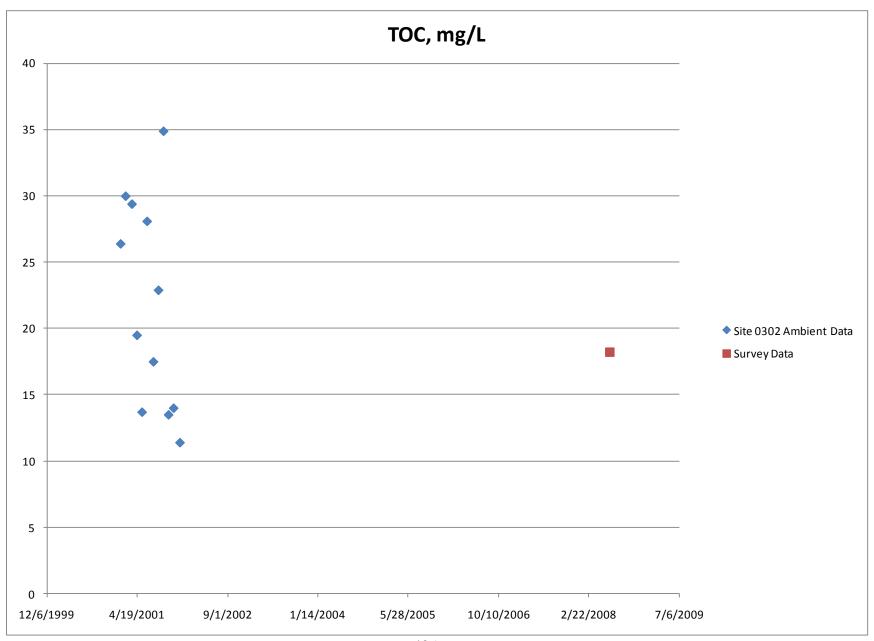

9/20/2005	26.97	0.11
9/17/2005	26.12	0.17
9/14/2005	25.55	0.17
9/12/2005	25.21	0.25
9/7/2005	26.39	0.16
12/11/2001	16.00	4.02
11/6/2001	17.95	4.26
10/9/2001	20.53	4.76
9/11/2001	24.91	4.31
7/17/2001	28.41	0.92
6/12/2001	24.91	4.69
5/15/2001	24.90	2.49
4/17/2001	23.31	4.15
3/20/2001	14.90	7.04
2/13/2001	14.92	3.57
1/16/2001	12.29	7.88
5/11/1998	24.58	1.04
3/9/1998	13.57	6.80
1/13/1998	14.51	6.12
11/17/1997	11.61	4.60
9/9/1997	26.53	0.78

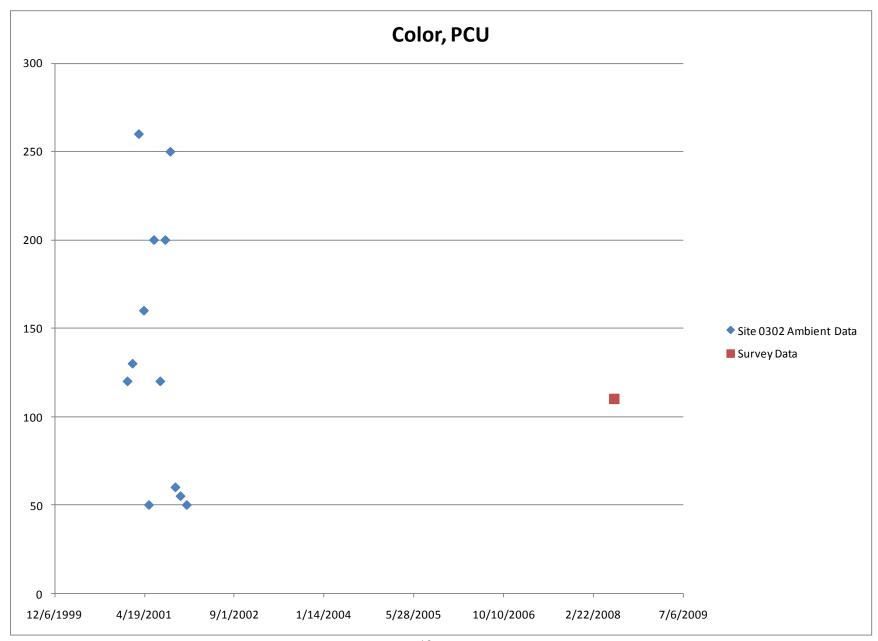

7/15/1997	26.00	4.58
5/13/1997	21.22	2.15
3/11/1997	17.71	2.42
1/7/1997	17.55	0.97
11/18/1996	17.07	4.75
9/10/1996	26.73	3.05
7/8/1996	28.99	0.78
5/14/1996	23.95	0.89
3/11/1996	8.17	7.66
1/8/1996	6.55	8.42
11/14/1995	14.25	3.47
9/12/1995	25.85	4.45
7/11/1995	28.19	1.28
3/14/1995	16.08	8.13
1/10/1995	10.92	8.58
11/15/1994	19.32	0.28
9/13/1994	25.70	0.62
7/12/1994	25.83	0.83
5/10/1994	24.02	2.90
3/14/1994	13.58	6.76
1/10/1994	9.48	4.90
		426

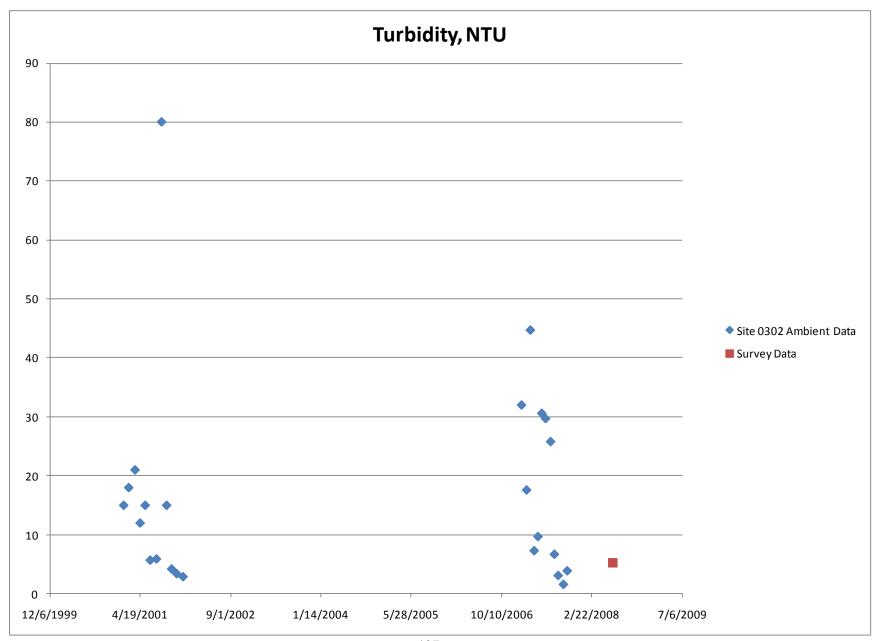

11/15/1993	16.77	4.18
9/14/1993	25.68	0.90
7/13/1993	24.57	5.06
5/11/1993	22.70	2.28
3/9/1993	14.06	5.90
1/12/1993	16.77	5.60
11/17/1992	12.80	5.60
9/15/1992	25.99	1.20
7/14/1992	29.35	0.60
5/12/1992	21.92	3.40
3/10/1992	18.31	6.00
1/7/1992	12.70	3.90
11/19/1991	17.68	8.40
9/10/1991	26.30	1.50
7/16/1991	29.90	2.00
5/14/1991	24.57	4.50
3/12/1991	16.90	3.80
1/15/1991	8.70	8.20

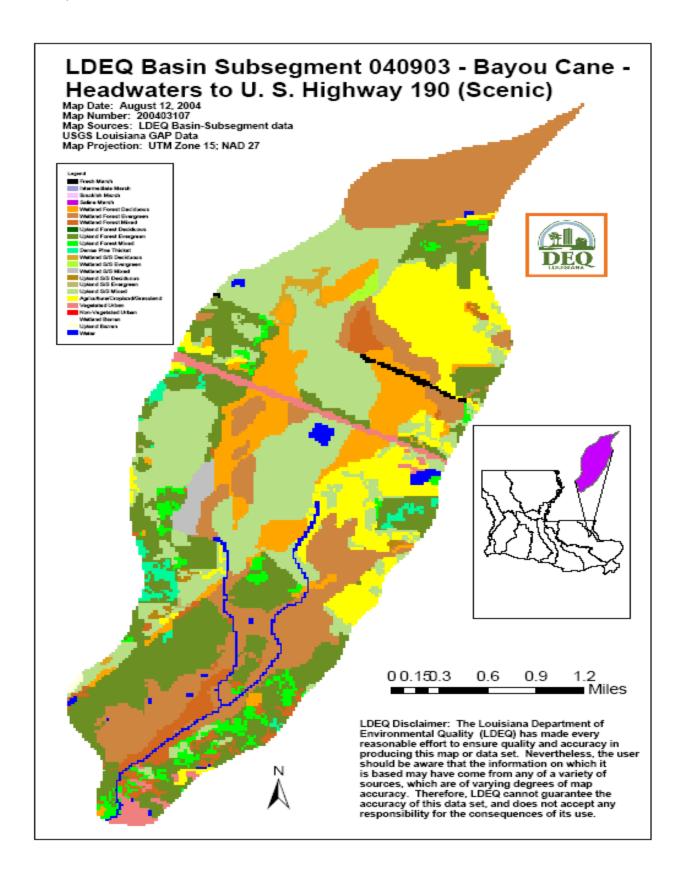

Appendix G2 – Water Quality Data for Ambient Monitoring Site 0302

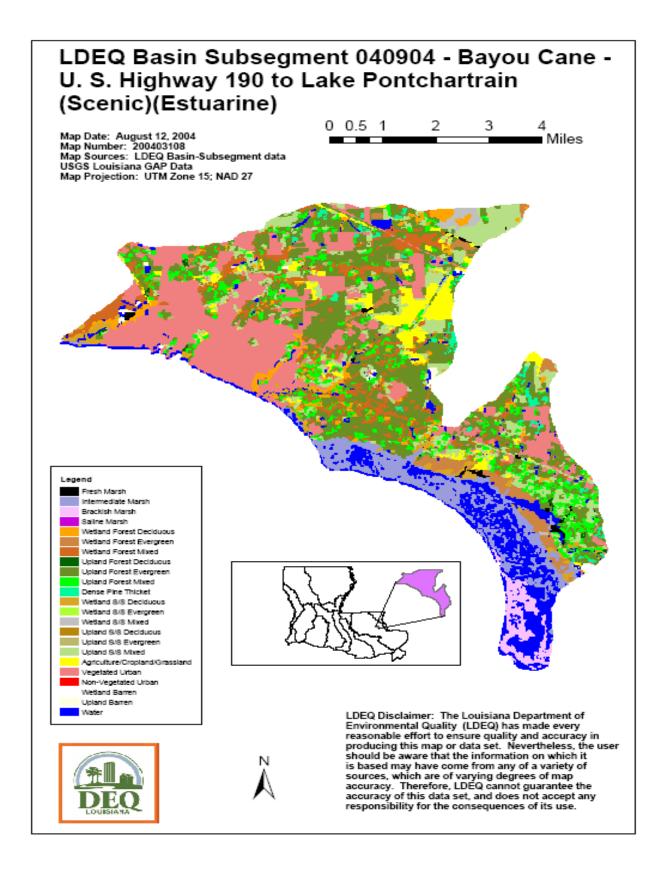




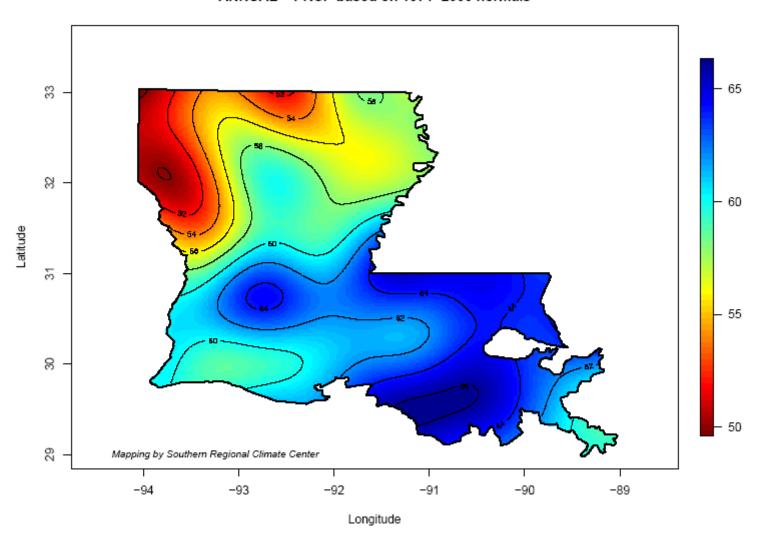


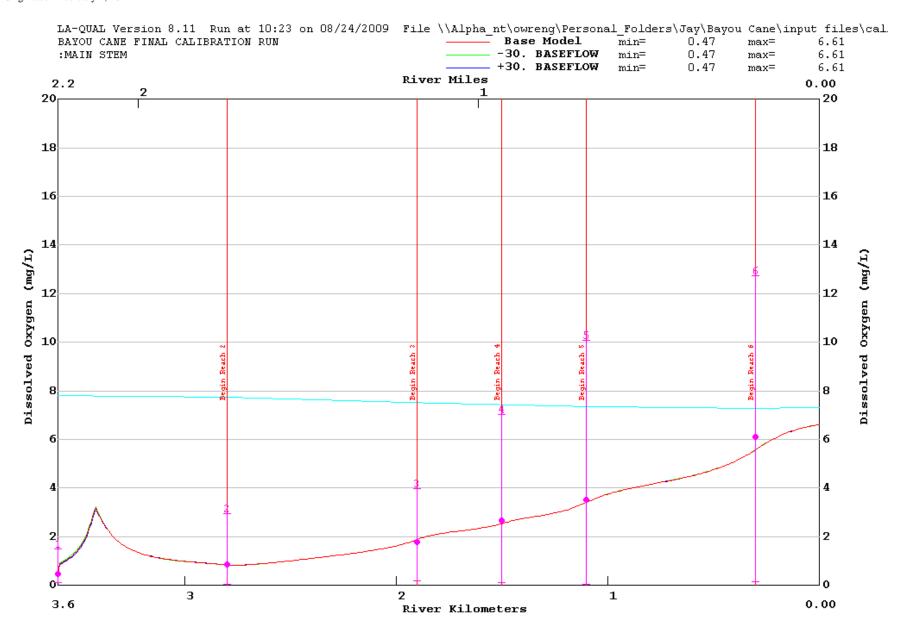


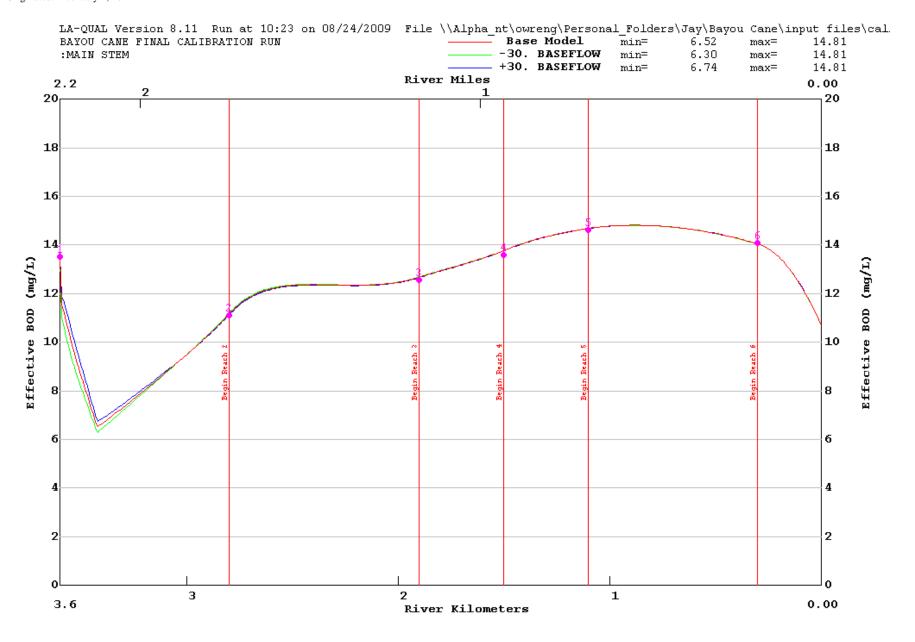

Appendix H – Maps and Diagrams

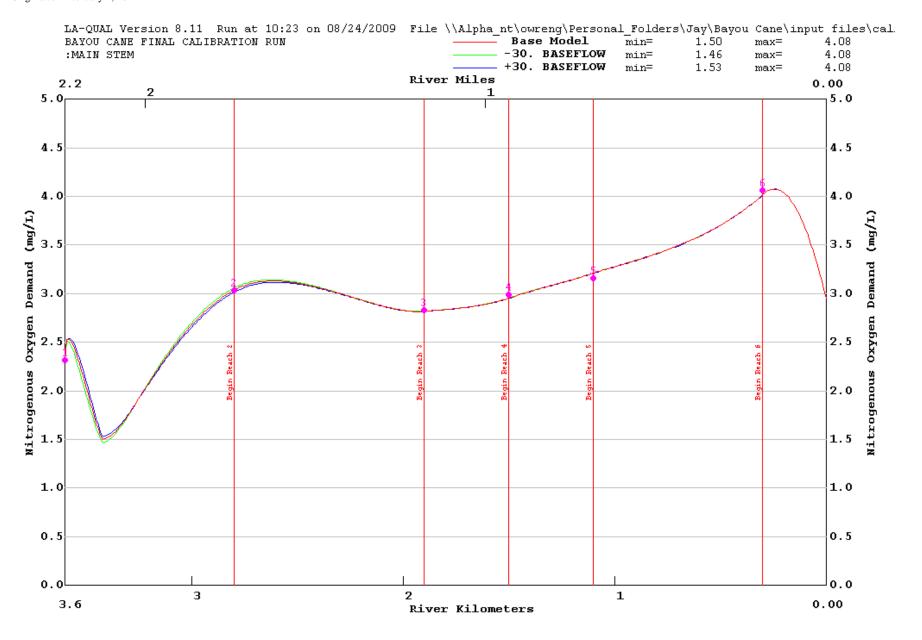

Appendix H1-

Overview map

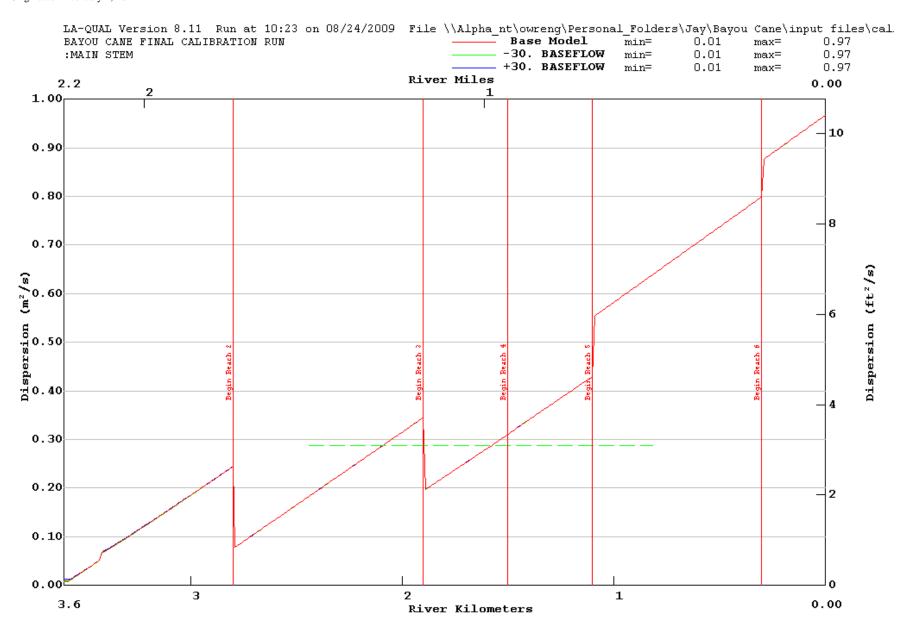

Appendix H2 – Land Use Maps

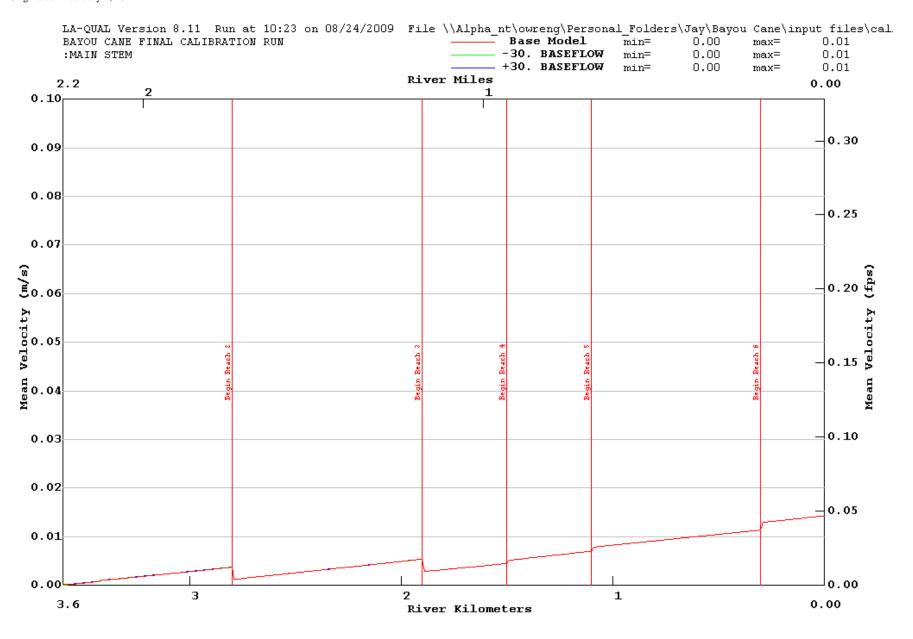

Appendix H3 – Louisiana Precipitation Map

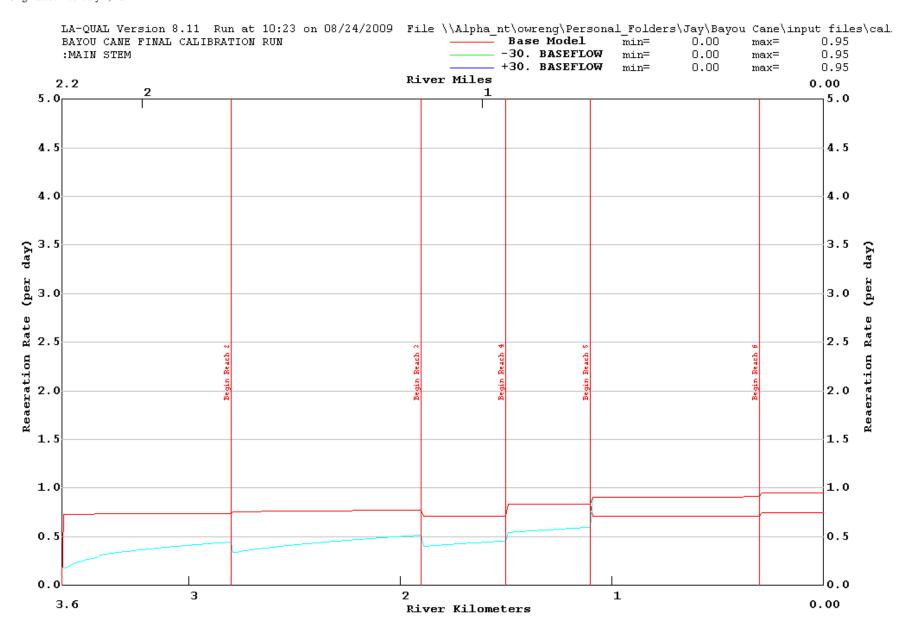

ANNUAL - PRCP based on 1971-2000 normals




Appendix I – Sensitivity Analysis


Appendix I1 – Sensitivity Output Graphs for Subsegments 040903 & 040904





Appendix I2 – Sensitivity Input and Output Data Set

BAYOU CANE Sensitivity Analysis Input Data Set

```
TITLE01
           BAYOU CANE WATERSHED MODEL
TITLE02
           BAYOU CANE FINAL CALIBRATION RUN
CONTROL YES METRIC UNITS
ENDATA01
MODOPT01 NO TEMPERATURE
MODOPT02 NO SALINITY
MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES
                                                               mq/L
                                                                       Chloride
MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY
                                                               umhos/cm Conduct
MODOPT05 YES DISSOLVED OXYGEN
MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND
MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND
MODOPT08 YES NBOD OXYGEN DEMAND
MODOPT10 NO PHOSPHORUS
MODOPT11 NO CHLOROPHYLL A
MODOPT12 NO MACROPHYTES
MODOPT13 NO COLIFORM
ENDATA02
PROGRAM DISPERSION EQUATION
                                     = 3.
PROGRAM OCEAN EXCHANGE RATIO
                                      = 1.0
PROGRAM TIDE HEIGHT
                                     = 0.236
PROGRAM TIDAL PERIOD
                                     = 24.58
                                    = 11.625
PROGRAM PERIOD OF TIDAL RISE
                                      = 0.7
PROGRAM KL MINIMUM
PROGRAM INHIBITION CONTROL VALUE
                                     = 3.
PROGRAM EFFECTIVE BOD DUE TO ALGAE
                                     = 0.0
                                      = 0.05
PROGRAM ALGAE OXYGEN PROD
PROGRAM K2 MAXIMUM
                                      = 10.0
PROGRAM HYDRAULIC CALCULATION METHOD
                                     = 2.
PROGRAM SETTLING RATE UNITS
ENDATA03
!Temperature Correction Constants
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        ******
ENDATA04
ENDATA05
ENDATA06
ENDATA07
!Reach Identification Data
```

```
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
         R# ID REACH NAME
                                               RKM
                                                       RKM
                                                             LENGTH
        1 BC RKM 3.6 to 2.8
                                               3.6
                                                       2.8
                                                               0.01
REACH ID
REACH ID
         2 BC RKM 2.8 to 1.9
                                               2.8
                                                       1.9
                                                               0.01
REACH ID
         3 BC RKM 1.9 to 1.5
                                               1.9
                                                       1.5
                                                               0.01
         4 BC RKM 1.5 to 1.1
                                              1.5
                                                       1.1
                                                               0.01
REACH ID
        5 BC RKM 1.1 to 0.3
                                              1.1
                                                       0.3
REACH ID
                                                               0.01
          6 BC RKM 0.3 to 0.0
                                               0.3
                                                       0.0
                                                               0.01
REACH ID
ENDATA08
!Advective Hydraulic Coefficients
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
        *** _____*******
1
                                             f
                                d
                                     е
             WIDTH WIDTH WIDTH DEPTH
                                           DEPTH
                                           CONST SLOPE MANNING
         R#
             COEFF
                    EXP
                         CONST COEFF
                                     EXP
! Reach 1 - 3665
         1 0.00
HYDR-1
                   0.00
                         4.877 0.00
                                     0.00
                                           1.113
! Reach 2 - BC04 (3752)
HYDR-1
          2 0.00
                  0.00
                         15.85 0.00
                                     0.00
                                           1.085
! Reach 3 - BC05 (3753)
HYDR-1
          3 0.00 0.00
                         27.737 0.00
                                     0.00
                                           1.189
!
! Reach 4 - BC06 (3754)
HYDR-1
          4 0.00 0.00
                         28.346 0.00
                                     0.00
                                           1.021
1
! Reach 5 - BC07 (3755)
HYDR-1
          5 0.00 0.00
                         21.488 0.00
                                     0.00
                                           1.21
! Reach 6 - 3666
HYDR-1
          6 0.00
                   0.00
                         19.812 0.00
                                     0.00
                                           1.156
ENDATA09
!Dispersive Hydraulic Coefficients
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
!The dispersion calculated from the dye study was entered into the overlay file under code 32.
!To take into consideration all modes of transport, equation 3 (E=aD^bQ^cVm^d) in Laqual was used.
```

!Using b=5/6, c=0, and d=1 will take into account all modes of transport in the manner of the Tracor and QUAL2E equations.

!The value for coefficient "a" was varied during calibration until the measured dispersion value was obtained. !The measured dispersion value was applied to the stretch of water that encompassed Dye Run 2.

! ********************************
HYDR-2 2 0.95 60.0 0.833 0.0 1.0 HYDR-2 3 0.93 60.0 0.833 0.0 1.0 HYDR-2 4 0.93 60.0 0.833 0.0 1.0 HYDR-2 5 1.00 60.0 0.833 0.0 1.0 HYDR-2 6 1.00 60.0 0.833 0.0 1.0 ENDATA10
HYDR-2 3 0.93 60.0 0.833 0.0 1.0 HYDR-2 4 0.93 60.0 0.833 0.0 1.0 HYDR-2 5 1.00 60.0 0.833 0.0 1.0 HYDR-2 6 1.00 60.0 0.833 0.0 1.0 ENDATA10
HYDR-2 4 0.93 60.0 0.833 0.0 1.0 HYDR-2 5 1.00 60.0 0.833 0.0 1.0 HYDR-2 6 1.00 60.0 0.833 0.0 1.0 ENDATA10
HYDR-2 5 1.00 60.0 0.833 0.0 1.0 HYDR-2 6 1.00 60.0 0.833 0.0 1.0 ENDATA10
HYDR-2 6 1.00 60.0 0.833 0.0 1.0 ENDATA10
ENDATA10
'Initial Conditions
.111-0141 00141-01010
!
! 234567890123456789012345678901234567890123456789012345678901234567890 ! *******************************
! R# TEMP SALINITY DO NH3 N NIT NIT PHOS CHL A MACROPHYTES
!Temp - Cont Mont Avg (3665)
!Salinity - Cont Mont Avg (3665)
!DO - Cont Mont Avg (3665)
!Chlorophyll A (3665)
INITIAL 1 28.13 0.10 0.47 8.5
!
!Temp - Cont Mont Avg (3752-BC04)
!Salinity - Cont Mont Avg (3752-BC04)
!DO - Cont Mont Avg (3752-BC04)
!Chlorophyll A (3665)
INITIAL 2 28.57 0.23 0.86 8.5
!
!Temp - Cont Mont Avg (3753-BC05)
!Salinity - Cont Mont Avg (3753-BC05)
!DO - Cont Mont Avg (3753-BC05)
!Chlorophyll A (3753-BC05)
INITIAL 3 29.98 1.15 1.79 33.6
1
!Temp - Cont Mont Avg (BC05, BC07)
!Salinity - Cont Mont Avg (BC05, BC07)
!DO - Cont Mont Avg (BC05, BC07)
!Chlorophyll A (3753-BC05)
INITIAL 4 30.51 1.45 2.66 33.6

```
!Temp - Cont Mont Avg (3755-BC07)
!Salinity - Cont Mont Avg (3755-BC07)
!DO - Cont Mont Avg (3755-BC07)
!Chlorophyll A (3666)
INITIAL 5
              31.04
                                                           28.5
                       1.76
                             3.52
!Temp - Cont Mont Avg (3666)
!Salinity - Cont Mont Avg (3666)
!DO - Cont Mont Avg (3666)
!Chlorophyll A (3666)
INITIAL
         6
             31.59
                             6.12
                                                           28.5
                       1.98
ENDATA11
!Reaeration, Sediment Oxygen Demand and BOD Coefficients
!23456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
              REA
                                         BOD 1 BOD 1
                                                       BOD 1
                                                                  BOD 2
                                                                          BOD 2
         R#
              ΕO
                                                       CONV
                                     SOD DECAY SETT
                                                                  DECAY
                                                                          SETT
!Texas Equation used for reaches 1-4.
!Mattingly equation was used for reaches 5 & 6 to account for wind reaeration.
!Settling rates determined through calibration. Decay rates from lab.
!CB0D1 DECAY (3665)
COEF-1 1 11.0
                                    3.50 0.0440 0.05
!CB0D1 DECAY (3752-BC04)
COEF-1
          2 11.0
                                    3.50 0.0680 0.05
!CB0D1 DECAY (3753-BC05)
COEF-1
          3 11.0
                                    3.00 0.0570 0.05
!CBOD1 DECAY - Avg (3753-BC05, 3755-BC07)
COEF-1
           4 11.0
                                    2.40 0.0570 0.05
!CB0D1 DECAY (3755-BC07)
COEF-1
          5 1.0 0.738
                                    1.90 0.0570 0.05
!CB0D1 DECAY (3666)
COEF-1
         6 1.0 0.773
                                    0.00 0.0620 0.05
ENDATA12
!Nitrogen and Phosphorus Coefficients
```

```
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
       *** _____*******
           NBOD
                  NBOD
        R# DECAY
                  SETT
!Settling rates determined through calibration. Began with decay rates from lab but adjusted
!them during calibration.
!NBOD Decay (3665)
COEF-2
      1 0.200
                  0.05
!NBOD Decay (3752-BC04)
COEF-2
       2 0.100
                  0.05
1
!NBOD Decay (3753-BC05)
COEF-2
       3 0.100
                  0.05
!NBOD Decay - Avg (3753-BC05, 3755-BC07)
COEF-2
      4 0.100
                  0.05
!NBOD Decay (3755-BC07)
COEF-2 5 0.100
                  0.05
!NBOD Decay (3666)
COEF-2
         6 0.100
                  0.05
ENDATA13
ENDATA14
!Coliform and Nonconservative Cofficients
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____******
1
ENDATA15
!Incremental Data for Flow, Temperature, Salinity, and Conservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
            OUTFLOW
                   INFLOW TEMP
                                 SALINITY CHLORIDE COND
ENDATA16
!Incremental Data for DO, BOD, and Nitrogen
·-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
BOD 1
                           NBOD
                                 NH3 N NIT NIT
                                                BOD 2
ENDATA17
!Incremental Data for Phosphorus, Chlorophyll, Coliform and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** ----*******
        R#
            PHOSPH
                   CHL A COLIFORM NONCONSERVATIVE
ENDATA18
!Nonpoint Source Data
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       *** _____*********
1
             BOD 1
                          COLIFORM NONCONS
                                         DO
        R#
                    NBOD
                                               BOD 2
             5.00
                    1.80
NONPOINT
        1
         2
            24.00
                    4.00
NONPOINT
            26.00
                    7.30
NONPOINT
            28.00
                    8.00
NONPOINT
            55.00
                   16.50
NONPOINT
             47.00
                    28.00
NONPOINT
ENDATA19
!Headwater Data for Flow, Temperature, Salinity, and Conservatives
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
           _____****************************
       E#
            NAME
                                FLOW
                                      TEMP SALIN
                                                 CHLORIDE
                                                         COND
!Flow (3665)
!Salinity - Cont Mont (3665)
!Chloride - Lab Data (3665)
!Conductivity - Cont Mont (3665)
HDWTR-1
        1 HEADWATER
                               0.0008
                                           0.10
                                                  21.5
                                                        215.38
ENDATA20
!Headwater Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       **** _____***********
        Ε#
              DO
                    BOD 1
                           NBOD
                                 NH3-N
                                        NIT NIT BOD 2
!DO - Cont Mont Avg (3665)
!BOD1 and NBOD (3665)
HDWTR-2
                    13.528 2.315
      1
              0.47
```

```
ENDATA21
!Headwater Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
            _____********
         E# PHOSPHOR CHL A COLIFORM NONCONSERVATIVE
ENDATA22
ENDATA23
!Wasteload Data for Flow, Temperature, Salinity, and Conservatives
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
         E#
              NAME
                              FIOW
                                       TEMP
                                            SALINITY CHLORIDE COND
!Southeast Louisiana State Hospital AI# 9371
!Flow obtained from facility personnel during survey
!Salinity from insitu. Chloride and conductivity from lab data
WSTLD-1
         18 SE LA State Hospital 0.0037
                                                0.22
                                                       22.5
                                                             458
ENDATA24
!Wasteload Data for DO, BOD, and Nitrogen
!-----5----6-----7----8
123456789012345678901234567890123456789012345678901234567890123456789012345678901
                DO
                     BOD 1
                                        NH3-N
                                 NBOD
                                                    NIT NIT BOD 2
!Southeast Louisiana State Hospital AI# 9371
WSTLD-2
         18
               8.09
                      3.725
                                 0.984
ENDATA25
!Wasteload Data for Phosphorus, Chlorophyll, Coliform, and Nonconservatives
!-----5----6-----7----8
!234567890123456789012345678901234567890123457890123456789012345678901234567890
         E# PHOSPHOR CHL A COLIFORM NONCONSERVATIVE
ENDATA26
!Lower Boundary Conditions
!Site 3756-BC09 Cont Mont
LOWER BC TEMPERATURE
                                    = 31.18
!Site 3756-BC09 Cont Mont
                                       2.03
LOWER BC SALINITY
1
!Site 3756-BC09 Lab
```

```
LOWER BC CONSERVATIVE MATERIAL I (CHLORIDES) = 1097
!Site 3756-BC09 Cont Mont
LOWER BC CONSERVATIVE MATERIAL II (COND) = 3724.94
!Site 3756-BC09 Cont Mont
LOWER BC DISSOLVED OXYGEN
                                      = 6.61
!Site 3756-BC09 Lab
LOWER BC BOD1 BIOCHEMICAL OXYGEN DEMAND
                                      = 10.626
!Site 3666 Lab
LOWER BC CHLOROPHYLL A
                                      = 28.5
!Site 3756-BC09 Lab
LOWER BC NBOD
                                          2.91
ENDATA27
!Dam Data
!-----5----6-----7----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
       **** ************ ** ** ***** ** *****
ENDATA28
SENSITIV BASEFLOW 30
                      -30
SENSITIV VELOCITY 30 -30
SENSITIV DEPTH
                 30
                      -30
SENSITIV DISPERSI 30 -30
SENSITIV REAERATI
                30 -30
SENSITIV BOD DECA
                30
                      -30
SENSITIV BOD SETT
                 30
                      -30
SENSITIV TRANGE
                      -30
SENSITIV NBOD DEC
                 30
                      -30
SENSITIV NBOD SET
                 30
                      -30
SENSITIV BENTHAL
                 30
                      -30
SENSITIV TEMPERAT
                      -2
                 30
                      -30
SENSITIV SALINITY
SENSITIV CHLOR A
                 30 -30
                30
                      -30
SENSITIV HDW FLOW
SENSITIV HDW DO
                 30
                      -30
                 30
                      -30
SENSITIV HDW BOD
SENSITIV HDW NBOD
                30 -30
                      -30
SENSITIV WSL FLOW
```

```
Bayou Cane Watershed TMDL
Subsegments 040903 and 040904
Originated: February 4, 2011
                        -30
SENSITIV WSL DO
                  30
SENSITIV WSL BOD
                  30
                        -30
SENSITIV WSL NBOD
                  30
                        -30
SENSITIV OXR
                  30
                        -30
SENSITIV LBC TEMP
                        -2
SENSITIV LBC DO
                  30
                        -30
SENSITIV LBC BOD
                  30
                        -30
                  30
                       -30
SENSITIV LBC NBOD
SENSITIV NPS BOD
                  30
                        -30
                  30
                        -30
SENSITIV NPS NBOD
ENDATA29
NUMBER OF PLOTS = 1
NUMBER OF REACHES IN PLOT 1 =
                                                     INCREMENT = 0.1
PLOT RCH 1 2 3 4 5 6
!-----5-----6-----7-----8
!2345678901234567890123456789012345678901234567890123456789012345678901234567890
1
ENDATA30
OVERLAY 1 bayoucaneovl.txt
                                       :MAIN STEM
```

ENDATA31

BAYOU CANE Sensitivity Analysis Output Dataset

```
LA-OUAL Version 8.11
 Louisiana Department of Environmental Quality
 Input file is \\Alpha nt\owreng\Personal Folders\Jay\Bayou Cane\input files\calibration\canecalib.txt
 Output produced at 10:40 on 08/24/2009
 $$$ DATA TYPE 1 (TITLES AND CONTROL CARDS) $$$
 CARD TYPE
                     CONTROL TITLES
 TITLE01
                      BAYOU CANE WATERSHED MODEL
 TITLE02
                       BAYOU CANE FINAL CALIBRATION RUN
 CONTROL YES METRIC UNITS
 ENDATA01
 $$$ DATA TYPE 2 (MODEL OPTIONS) $$$
 CARD TYPE
                       MODEL OPTION
 MODOPT01 NO TEMPERATURE
 MODOPT03 YES CONSERVATIVE MATERIAL I = CHLORIDES
                                                                                                        mg/L
                                                                                                                      Chloride
 MODOPT04 YES CONSERVATIVE MATERIAL II = CONDUCTIVITY
                                                                                                        umhos/cm Conduct
 MODOPT05 YES DISSOLVED OXYGEN
 MODOPT06 YES BOD1 BIOCHEMICAL OXYGEN DEMAND
 MODOPT06 NO BOD2 BIOCHEMICAL OXYGEN DEMAND
 MODOPT08 YES NBOD OXYGEN DEMAND
 MODOPT10 NO PHOSPHORUS
MODOPT11 NO CHLOROPHYLL A MODOPT12 NO MACROPHYTES
 MODOPT13 NO COLIFORM
 ENDATA02
 $$$ DATA TYPE 3 (PROGRAM CONSTANTS) $$$
 CARD TYPE
                    DESCRIPTION OF CONSTANT
                                                                                          VALUE
PROGRAM DISPERSION EQUATION = 3.00000 (values entered as a function of D,Q,Vmean)
PROGRAM OCEAN EXCHANGE RATIO = 1.00000
PROGRAM TIDE HEIGHT = 0.23600 meters
PROGRAM TIDAL PERIOD = 24.58000 hours
PROGRAM PERIOD OF TIDAL RISE = 11.62500 hours
PROGRAM KL MINIMUM = 0.70000 meters/day
PROGRAM INHIBITION CONTROL VALUE = 3.00000 (inhibit all rates but SOD)
PROGRAM EFFECTIVE BOD DUE TO ALGAE = 0.00000 mg/L BOD per ug/L chl a
PROGRAM ALGAE OXYGEN PROD = 0.05000 mg O/ug chl a/day
PROGRAM K2 MAXIMUM = 10.00000 per day
PROGRAM HYDRAULIC CALCULATION METHOD = 2.00000 (widths and depths)
PROGRAM SETTLING RATE UNITS = 2.00000 (values entered as per day)
 ENDATA03
 $$$ DATA TYPE 4 (TEMPERATURE CORRECTION CONSTANTS FOR RATE COEFFICIENTS) $$$
  CARD TYPE
                  RATE CODE
                                         THETA VALUE
```

ENDATA0	Λ
PNDAIAO	4

999	CONSTANTS	TVDF	5	(TEMPEDATIDE	ומדמת	999

CARD TYPE DESCRIPTION OF CONSTANT VALUE

ENDATA05

\$\$\$ DATA TYPE 6 (ALGAE CONSTANTS) \$\$\$

CARD TYPE DESCRIPTION OF CONSTANT VALUE

ENDATA06

\$\$\$ DATA TYPE 7 (MACROPHYTE CONSTANTS) \$\$\$

CARD TYPE DESCRIPTION OF CONSTANT VALUE

ENDATA07

\$\$\$ DATA TYPE 8 (REACH IDENTIFICATION DATA) \$\$\$

				BEGIN		END	ELEM	REACH	ELEMS	BEGIN	END
CARD TYPE	REACH	ID	NAME	REACH		REACH	LENGTH	LENGTH	PER RCH	ELEM	ELEM
				km		km	km	km		NUM	NUM
REACH ID	1	BC	RKM 3.6 to 2.8	3.60	TO	2.80	0.0100	0.80	80	1	80
REACH ID	2	BC	RKM 2.8 to 1.9	2.80	TO	1.90	0.0100	0.90	90	81	170
REACH ID	3	BC	RKM 1.9 to 1.5	1.90	TO	1.50	0.0100	0.40	40	171	210
REACH ID	4	BC	RKM 1.5 to 1.1	1.50	TO	1.10	0.0100	0.40	40	211	250
REACH ID	5	BC	RKM 1.1 to 0.3	1.10	TO	0.30	0.0100	0.80	80	251	330
REACH ID	6	BC	RKM 0.3 to 0.0	0.30	TO	0.00	0.0100	0.30	30	331	360
ENDATA08											

\$\$\$ DATA TYPE 9 (ADVECTIVE HYDRAULIC COEFFICIENTS) \$\$\$

CARD TYPE	REACH	ID	WIDTH "A"	WIDTH "B"	WIDTH "C"	DEPTH "D"	DEPTH "E"	DEPTH "F"	SLOPE	MANNINGS "N"
HYDR-1	1	BC	0.000	0.000	4.877	0.000	0.000	1.113	0.00000	0.000
HYDR-1	2	BC	0.000	0.000	15.850	0.000	0.000	1.085	0.00000	0.000
HYDR-1	3	BC	0.000	0.000	27.737	0.000	0.000	1.189	0.00000	0.000
HYDR-1	4	BC	0.000	0.000	28.346	0.000	0.000	1.021	0.00000	0.000
HYDR-1	5	BC	0.000	0.000	21.488	0.000	0.000	1.210	0.00000	0.000
HYDR-1 ENDATA09	6	BC	0.000	0.000	19.812	0.000	0.000	1.156	0.00000	0.000

\$\$\$ DATA TYPE 10 (DISPERSIVE HYDRAULIC COEFFICIENTS) \$\$\$

CARD TYPE	REACH	ID	TIDAL RANGE	DISPERSION "A"	DISPERSION "B"	DISPERSION "C"	DISPERSION "D"
HYDR	1	BC	0.95	60.000	0.833	0.000	1.000
HYDR	2	BC	0.95	60.000	0.833	0.000	1.000
HYDR	3	BC	0.93	60.000	0.833	0.000	1.000
HYDR	4	BC	0.93	60.000	0.833	0.000	1.000
HYDR	5	BC	1.00	60.000	0.833	0.000	1.000
HYDR	6	BC	1.00	60.000	0.833	0.000	1.000
ENDATA10							

\$\$\$ DATA TYPE 11 (INITIAL CONDITIONS) \$\$\$														
CARD TYPE	REACH ID	TEMP	SALIN	DO	NH3	NO3+2	PHOS	CHL A	MACRO					
INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL INITIAL ENDATA11	1 BC 2 BC 3 BC 4 BC 5 BC 6 BC	28.13 28.57 29.98 30.51 31.04 31.59	0.10 0.23 1.15 1.45 1.76 1.98	0.47 0.86 1.79 2.66 3.52 6.12	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	8.50 8.50 33.60 33.60 28.50 28.50	0.00 0.00 0.00 0.00 0.00)))				
	12 (REAERATION	, SEDIMEN	r oxygen d	EMAND, BOD	COEFFICIE	NTS) \$\$\$								
	RCH K2 ID OPT		K2 "A"	K2 "B"	K2 "C"	BKGRND SOD g/m²/d	BOD DECAY per day	BOD SETT m/d	BOD CONV TO SOD	ANAER BOD2 DECAY per day	BOD2 DECAY per day	BOD2 SETT m/d	BOD2 CONV TO SOD	ANAER BOD2 DECAY per day
COEF-1 1 COEF-1 2 COEF-1 3 COEF-1 4 COEF-1 5 COEF-1 6 ENDATA12	BC 11 TEXAS BC 11 TEXAS BC 11 TEXAS BC 11 TEXAS BC 1 K2=a BC 1 K2=a		0.000 0.000 0.000 0.000 0.738 0.773	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	3.500 3.500 3.000 2.400 1.900 0.000	0.044 0.068 0.057 0.057 0.057 0.062	0.050 0.050 0.050 0.050 0.050 0.050	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
\$\$\$ DATA TYPE	13 (NITROGEN A	ND PHOSPHO	ORUS COEFF	ICIENTS) \$\$	\$									
CARD TYPE	REACH ID	NBOD DECA	NBOD SETT	ORGN CONV TO NH3 SRC			H3 PHOS							
COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 ENDATA13	1 BC 2 BC 3 BC 4 BC 5 BC 6 BC	0.200 0.100 0.100 0.100 0.100 0.100	0.050 0.050 0.050 0.050 0.050 0.050	0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00	0 0.00 0 0.00 0 0.00 0 0.00	0.000 00 0.000 00 0.000 00 0.000	0.00	00 00 00					
\$\$\$ DATA TYPE	14 (ALGAE AND	MACROPHYTI	E COEFFICI	ENTS) \$\$\$										
CARD TYPE	REACH ID	SECCHI DEPTH	ALGAE: CHL A		ALG CO		GAE ALGA			ACRO RESP SHA	DING			
ENDATA14														
\$\$\$ DATA TYPE	15 (COLIFORM A	ND NONCON	SERVATIVE	COEFFICIENT	S) \$\$\$									
CARD TYPE	REACH ID	COLIFORM DIE-OFF	NCM DECAY	NCM SETT	NCM CON TO SOD									
ENDATA15														
\$\$\$ DATA TYPE	16 (INCREMENTA	L DATA FOI	R FLOW, TE	MPERATURE,	SALINITY,	AND CONS	ERVATIVES) \$	\$\$\$						
CARD TYPE	REACH ID	OUTFLO	N INF	LOW TE	MP SA	LIN	CM-I CM-	-II IN/I	DIST OUT	/DIST				
ENDATA16														

\$\$\$ DATA TYPE	17 (INC	CREMENTAL	DATA FOR	DO, BOD, AN	ID NITROGEN	N) \$\$\$					
CARD TYPE	REACH	ID	DO	BOD	NBOD			BOD#2			
ENDATA17											
\$\$\$ DATA TYPE	18 (INC	CREMENTAL	DATA FOR	PHOSPHORUS,	CHLOROPHY	YLL, COLIFC	ORM, AND	NONCONSERV	ATIVES)	\$\$\$	
CARD TYPE	REACH	H ID	PHOS	CHL A	COLI	NCM					
ENDATA18											
\$\$\$ DATA TYPE	19 (NON	NPOINT SOU	JRCE DATA)	\$\$\$							
CARD TYPE	REACH	ID	BOD#1	NBOD	COLI	NCM	DO	BOD#2			
NONPOINT NONPOINT NONPOINT NONPOINT NONPOINT NONPOINT ENDATA19	1 2 3 4 5 6	BC BC BC BC BC	5.00 24.00 26.00 28.00 55.00 47.00	1.80 4.00 7.30 8.00 16.50 28.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
\$\$\$ DATA TYPE	20 (HE	ADWATER FO	OR FLOW, T	EMPERATURE,	SALINITY	AND CONSER	RVATIVES)	\$\$\$			
CARD TYPE	ELEMENT	r name		TINU	FLOW m³/s	FLOW cfs	TEMP deg C	SALIN ppt	CM-I mg/L	CM-II umhos/cm	
HDWTR-1 ENDATA20	1	HEADWA	ATER	0	0.00080	0.028	0.00	0.10	21.500	215.380	0.00
\$\$\$ DATA TYPE	21 (HE	ADWATER DA	ATA FOR DO	, BOD, AND	NITROGEN)	\$\$\$					
CARD TYPE	ELEMENT	Γ NAME			DO mg/L	BOD#1 mg/L	NBOD mg/L	mg/L	mg/L	BOD#2 mg/L	
HDWTR-2 ENDATA21	1	HEADWA	ATER		0.47	13.53	2.32	0.00	0.00	0.00	
\$\$\$ DATA TYPE	22 (HE	ADWATER DA	ATA FOR PH	OSPHORUS, C	CHLOROPHYLI	L, COLIFORM	1, AND NO	NCONSERVAT	'IVES) \$\$	\$	
CARD TYPE	ELEMENT	Γ NAME			PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L			
ENDATA22											
\$\$\$ DATA TYPE	23 (JUN	NCTION DAT	TA) \$\$\$								
	UNCTION ELEMENT	UPSTRM ELEMENT	RIVER KILOM								
ENDATA23											
\$\$\$ DATA TYPE	24 (WAS	STELOAD DA	ATA FOR FL	OW, TEMPERA	TURE, SALI	INITY, AND	CONSERVA	TIVES) \$\$\$			
CARD TYPE EL	EMENT	RKILO 1	NAME		FLOW m³/s	FLOW cfs			SALIN ppt		CM-II umhos/cm

18 3.	43 SE LA Sta	ate Hospital	0.00370	0.1306	5 0.084	0.00	0.22	22.500	458.000	
PE 25 (WASTELO	AD DATA FOR D	OO, BOD, AND	NITROGEN)	\$\$\$						
ELEMENT N	IAME		DO mg/L	BOD mg/L	% BOD RMVL	NBOD mg/L	mg/L	% NITRIF	mg/L	BOD#2 mg/L
18 S	E LA State Ho	spital	8.09	3.72	0.00	0.98	0.00	0.00	0.00	0.00
PE 26 (WASTELO	AD DATA FOR F	PHOSPHORUS,	CHLOROPHYL	L, COLIFOR	M, AND NON	ICONSERVAT	IVES) \$\$\$			
ELEMENT N	IAME		PHOS mg/L	CHL A mg/L	COLI mg/L	NCM mg/L				
PE 27 (LOWER B	OUNDARY CONDI	TIONS) \$\$\$								
CONSTITUENT		CONCE	NTRATION							
CONSERVATIVE DISSOLVED OX BOD1 BIOCHEM CHLOROPHYLL NBOD	: MATERIAL II :YGEN IICAL OXYGEN I A	(COND) = = DEMAND =	2.03(1097.00) 3724.94(6.61(10.62(28.50)	0 ppt 0 mg/L 0 umho 0 mg/L 6 mg/L 0 μg/L	s/cm					
ELEMENT N	IAME	EQN	"A"	"B"	"H"					
PE 29 (SENSITI	VITY ANALYSIS	DATA) \$\$\$								
PARAMETER	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8		
VELOCITY DEPTH DISPERSI REAERATI BOD DECA BOD SETT TRANGE NBOD DECC NBOD SET BENTHAL TEMPERAT SALINITY CHLOR A	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	-30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	ELEMENT N 18 S ELEMENT N 18 S ELEMENT N 18 S ELEMENT N ELEM	PE 25 (WASTELOAD DATA FOR INTERPRETATION OF THE PRACTICAL AND DATA FOR INTERPRETATION OF THE PRACTICAL AND DESCRIPTION OF THE PRACTI	ELEMENT NAME 18 SE LA State Hospital 22 26 (WASTELOAD DATA FOR PHOSPHORUS, OF ELEMENT NAME 18 SE LA State Hospital 22 26 (WASTELOAD DATA FOR PHOSPHORUS, OF ELEMENT NAME 23 27 (LOWER BOUNDARY CONDITIONS) \$\$\$ 24 27 (LOWER BOUNDARY CONDITIONS) \$\$\$ 25 27 (LOWER BOUNDARY CONDITIONS) \$\$\$ 26 27 (LOWER BOUNDARY CONDITIONS) \$\$\$ 27 28 29 (SENSITUENT CONSERVATIVE MATERIAL II (CHLORIDES) = CONSERVATIVE MATERIAL II (COND) = DISSOLVED OXYGEN = BOD1 BIOCHEMICAL OXYGEN DEMAND = CHLOROPHYLL A = NBOD = ELEMENT NAME EQN 26 28 (DAM DATA) \$\$\$ 27 28 (DAM DATA) \$\$\$ 28 29 (SENSITIVITY ANALYSIS DATA) \$\$\$ 29 29 (SENSITIVITY ANALYSIS DATA) \$\$\$ 20 29 (SENSITIVITY ANALYSIS DATA) \$\$\$ 20 20 (SENSITIVITY ANALYSIS DATA) \$\$\$ 21 29 (SENSITIVITY ANALYSIS DATA) \$\$\$ 22 29 (SENSITIVITY ANALYSIS DATA) \$\$\$ 23 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ELEMENT NAME ELEMENT NAME DO mg/L 18 SE LA State Hospital 8.09 ELEMENT NAME FHOS mg/L ELEMENT NAME CONCENTRATION TEMPERATURE SALINITY CONSERVATIVE MATERIAL I (CHLORIDES) = 1097.00 CONSERVATIVE MATERIAL II (COND) = 3724.94 DISSOLUPED OXYGEN BOD1 BIOCHEMICAL OXYGEN DEMAND = 6.61 BOD1 BIOCHEMICAL OXYGEN DEMAND = 10.62 CHLOROPHYLL A = 28.50 NBOD = 2.91 ELEMENT NAME ELEMENT NAME EQN "A" ELEMENT NAME ELEMENT NAME EQN "A" ELEMENT NAME ELEMENT NAME ELEMENT NAME EQN "A" ELEMENT NAME EQN "A" ELEMENT NAME ELEMENT NAME EQN "A" ELEMENT NAME ELEMENT NAME ELEMENT NAME ELEMENT NAME EQN "A" ELEMENT NAME ELEME	ELEMENT NAME DO BOD, AND NITROGEN) \$\$\$ ELEMENT NAME DO BOD mg/L mg/L 18 SE LA State Hospital 8.09 3.72 E 26 (WASTELOAD DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFOR ELEMENT NAME PHOSPHORUS, CHLOROPHYLL, COLIFOR ELEMENT NAME PHOSPHORUS, CHLOROPHYLL, COLIFOR Mg/L E 27 (LOWER BOUNDARY CONDITIONS) \$\$\$ CONSTITUENT CONCENTRATION TEMPERATURE = 31.180 deg mg/L SALINITY = 2.030 ppt CONSERVATIVE MATERIAL I (CHLORIDES) = 1097.000 mg/L CONSERVATIVE MATERIAL II (COND) = 3724.940 umbo DISSOLVED OXYGEN DEMAND = 10.626 mg/L CHLOROPHYLL A = 28.500 mg/L NBOD = 2.910 mg/L E 28 (DAM DATA) \$\$\$ ELEMENT NAME EQN "A" "B" E 29 (SENSITIVITY ANALYSIS DATA) \$\$\$ PARAMETER COL 1 COL 2 COL 3 COL 4 BASEFLOW 30.0 -30.0 0.0 0.0 0.0 VELOCITY 30.0 -30.0 0.0 0.0 0.0 DISPERSI 30.0 -30.0 0.0 0.0 0.0 DISPERSI 30.0 -30.0 0.0 0.0 0.0 BOD DECA 30.0 -30.0 0.0 0.0 0.0 BOD DECA 30.0 -30.0 0.0 0.0 0.0 TRANGE 30.0 -30.0 0.0 0.0 0.0 NBOD SETT 30.0 -30.0 0.0 0.0 0.0 NBOD DEC 30.0 -30.0 0.0 0.0 0.0 NBOD SET 30.0 -30.0 0.0 0.0 0.0 NBOD DEC 30.0 -30.0 0.0 0.0 0.0 NBOD SET 30.0 -30.0 0.0 0.0 0.0 EBENTHAL 30.0 -30.0 0.0 0.0 0.0 BENTHAL 30.0 -30.0 0.0 0.0 0.0 TEMPERAT 2.0 -2.0 0.0 0.0 CHLORA 30.0 -30.0 0.0 0.0 CHLORA 30.0 -30.0 0.0 0.0 OCHORA 400 TEMPERAT 2.0 -2.0 0.0 0.0	ELEMENT NAME ELEMENT NAME BOO BOD RMVL mg/L 18 SE LA State Hospital RE 26 (WASTELOAD DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NON ELEMENT NAME PHOS CHL A Mg/L Mg/L Mg/L RD RMVL E 25 (WASTELOAD DATA FOR DO, BOD, AND NITROGEN) \$\$\$ ELEMENT NAME	ELEMENT NAME DO BOD RMYL NBOD BOD RMYL NBOD BOD RMYL NBOD BOD RMYL NBOD RMYL NBOD BOD RMYL NBOD RMYL NBOD RMYL NBOD BOD BOD BOD RMYL NBOD BOD BOD BOD BOD BOD BOD BOD BOD BOD	E 25 (WASTELOAD DATA FOR DO, BOD, AND NITROGEN) \$\$\$ ELEMENT NAME	ELEMENT NAME DO BOD RMVL MBOD NITRIF MB/L MB	

SENSITIV	HDW BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	HDW NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL FLOW	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	WSL NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	OXR	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC TEMP	2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC DO	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	LBC NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS BOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
SENSITIV	NPS NBOD	30.0	-30.0	0.0	0.0	0.0	0.0	0.0	0.0
ENDATA29									

\$\$\$ DATA TYPE 30 (PLOT CONTROL CARDS) \$\$\$

NUMBER OF PLOTS = 1 NUMBER OF REACHES IN PLOT 1 = 6 PLOT RCH 1 2 3 4 5 6 ENDATA30

\$\$\$ DATA TYPE 31 (OVERLAY PLOT DATA) \$\$\$

OVERLAY 1 bayoucaneovl.txt :MAIN STEM ENDATA31

.....NO ERRORS DETECTED IN INPUT DATAHYDRAULIC CALCULATIONS COMPLETED

.....TRIDIAGONAL MATRIX TERMS INITIALIZED

....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS

....CONSTITUENT CALCULATIONS COMPLETED

....GRAPHICS DATA FOR PLOT 1 WRITTEN TO UNIT 21

FINAL REPORT HEADWATER BAYOU CANE WATERSHED MODEL REACH NO. 1 RKM 3.6 to 2.8 BAYOU CANE FINAL CALIBRATION RUN

SALN Chloride Conduct ELEM TYPE FLOW TEMP DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 PHOS CHL A COLI NCM NO. mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L deg C mg/L μg/L #/100mL 21.50 215.38 0.00080 0.00 0.10 0.47 13.53 0.00 13.53 0.00 0.00 1 HDWTR 0.00 2.32 0.00 0.00 0.00 8.50 18 WSTLD 0.00370 0.00 0.22 22.50 458.00 8.09 3.72 0.00 3.72 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 ELEM BEGIN ENDING MEAN FLOW PCT ADVCTV TRAVEL DEPTH WIDTH VOLUME SURFACE X-SECT TIDAL TIDAL DISPRSN NO. DIST DIST EFF VELO TIME AREA AREA PRISM VELO VELO km km m^3/s m/s days m m² m² m³ m/s m^2/s m/s 3.60 3.59 0.00080 0.0 0.00015 0.79 1.11 4.88 54.28 48.77 5.43 10.93 0.000 0.010 0.000

2	3.59	3.58	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	21.87	0.000	0.010	0.000
3	3.58	3.57	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	32.80	0.000	0.011	0.000
4	3.57	3.56	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	43.74	0.000	0.014	0.000
5	3.56	3.55	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	54.67	0.000	0.017	0.000
6	3.55	3.54	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	65.61	0.000	0.019	0.000
7	3.54	3.53	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	76.54	0.000	0.022	0.000
8	3.53	3.52	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	87.47	0.000	0.025	0.000
9	3.52	3.51	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	98.41	0.000	0.028	0.000
10	3.51	3.50	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	109.34	0.000	0.031	0.000
11	3.50	3.49	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	120.28	0.001	0.034	0.001
12	3.49	3.48	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	131.21	0.001	0.037	0.001
13	3.48	3.47	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	142.15	0.001	0.040	0.001
14	3.47	3.46	0.00080	0.0	0.00015	0.79	1.11		54.28	48.77		153.08	0.001	0.040	0.001
15								4.88			5.43				
	3.46	3.45	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	164.01	0.001	0.046	0.001
16	3.45	3.44	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	174.95	0.001	0.049	0.001
17	3.44	3.43	0.00080	0.0	0.00015	0.79	1.11	4.88	54.28	48.77	5.43	185.88	0.001	0.052	0.001
18	3.43	3.42	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	196.82	0.001	0.067	0.001
19	3.42	3.41	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	207.75	0.001	0.069	0.001
20	3.41	3.40	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	218.68	0.001	0.072	0.001
21	3.40	3.39	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	229.62	0.001	0.074	0.001
22	3.39	3.38	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	240.55	0.001	0.077	0.001
23	3.38	3.37	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	251.49	0.001	0.080	0.001
24	3.37	3.36	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	262.42	0.001	0.082	0.001
25	3.36	3.35	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	273.36	0.001	0.085	0.001
26	3.35	3.34	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	284.29	0.001	0.088	0.001
27	3.34	3.33	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	295.22	0.001	0.090	0.001
28	3.33	3.32	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	306.16	0.001	0.093	0.001
29	3.32	3.31	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	317.09	0.001	0.096	0.001
30	3.31	3.30	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	328.03	0.001	0.099	0.001
31	3.30	3.29	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	338.96	0.001	0.101	0.002
				82.2		0.14							0.001		
32	3.29	3.28	0.00450		0.00083		1.11	4.88	54.28	48.77	5.43	349.90		0.104	0.002
33	3.28	3.27	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	360.83	0.002	0.107	0.002
34	3.27	3.26	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	371.76	0.002	0.110	0.002
35	3.26	3.25	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	382.70	0.002	0.113	0.002
36	3.25	3.24	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	393.63	0.002	0.115	0.002
37	3.24	3.23	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	404.57	0.002	0.118	0.002
38	3.23	3.22	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	415.50	0.002	0.121	0.002
39	3.22	3.21	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	426.44	0.002	0.124	0.002
40	3.21	3.20	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	437.37	0.002	0.127	0.002
41	3.20	3.19	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	448.30	0.002	0.130	0.002
42	3.19	3.18	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	459.24	0.002	0.133	0.002
43	3.18	3.17	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	470.17	0.002	0.136	0.002
44	3.17	3.16	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	481.11	0.002	0.138	0.002
45	3.16	3.15	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	492.04	0.002	0.141	0.002
46	3.15	3.14	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	502.97	0.002	0.144	0.002
47	3.14	3.13	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	513.91	0.002	0.147	0.002
48	3.13	3.12	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	524.84	0.002	0.150	0.002
49	3.12	3.11	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	535.78	0.002	0.153	0.002
50			0.00450	82.2	0.00083	0.14			54.28	48.77				0.156	0.002
	3.11	3.10					1.11	4.88			5.43	546.71	0.002		
51	3.10	3.09	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	557.65	0.002	0.159	0.002
52	3.09	3.08	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	568.58	0.002	0.162	0.002
53	3.08	3.07	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	579.51	0.002	0.165	0.003
54	3.07	3.06	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	590.45	0.002	0.168	0.003
55	3.06	3.05	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	601.38	0.003	0.170	0.003
56	3.05	3.04	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	612.32	0.003	0.173	0.003
57	3.04	3.03	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	623.25	0.003	0.176	0.003
58	3.03	3.02	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	634.19	0.003	0.179	0.003
59	3.02	3.01	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	645.12	0.003	0.182	0.003
60	3.01	3.00	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	656.05	0.003	0.185	0.003

61	3.00	2.99	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	666.99	0.003	0.188	0.003
62	2.99	2.98	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	677.92	0.003	0.191	0.003
63	2.98	2.97	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	688.86	0.003	0.194	0.003
64	2.97	2.96	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	699.79	0.003	0.197	0.003
65	2.96	2.95	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	710.72	0.003	0.200	0.003
66	2.95	2.94	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	721.66	0.003	0.203	0.003
67	2.94	2.93	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	732.59	0.003	0.206	0.003
68	2.93	2.92	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	743.53	0.003	0.209	0.003
69	2.92	2.91	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	754.46	0.003	0.212	0.003
70	2.91	2.90	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	765.40	0.003	0.215	0.003
71	2.90	2.89	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	776.33	0.003	0.218	0.003
72	2.89	2.88	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	787.26	0.003	0.220	0.003
73	2.88	2.87	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	798.20	0.003	0.223	0.003
74	2.87	2.86	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	809.13	0.003	0.226	0.003
75	2.86	2.85	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	820.07	0.003	0.229	0.003
76	2.85	2.84	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	831.00	0.003	0.232	0.004
77	2.84	2.83	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	841.94	0.004	0.235	0.004
78	2.83	2.82	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	852.87	0.004	0.238	0.004
79	2.82	2.81	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	863.80	0.004	0.241	0.004
80	2.81	2.80	0.00450	82.2	0.00083	0.14	1.11	4.88	54.28	48.77	5.43	874.74	0.004	0.244	0.004
TOT						22.15			4342.48	3901.60					
AVG					0.0004		1.11	4.88			5.43				
CUM						22.15									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
1	3.590	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.84	5.84	5.84	0.01	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
2	3.580	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.84	5.84	5.84	0.01	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
3	3.570	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.02	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
4	3.560	7.80	0.73	0.03	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.02	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
5	3.550	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.02	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
6	3.540	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
7	3.530	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.85	5.85	5.85	0.04	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
8	3.520	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
9	3.510	7.80	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.06	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
10	3.500	7.80	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.08	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
11	3.490	7.80	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.11	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
12	3.480	7.80	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.86	5.86	5.86	0.15	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
13	3.470	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.22	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
14	3.460	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.24	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
15	3.450	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.25	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
16	3.440	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.26	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
17	3.430	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.87	5.87	5.87	0.27	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
18	3.420	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.28	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
19	3.410	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.27	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
20	3.400	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.27	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
21	3.390	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.26	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
22	3.380	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.88	5.88	5.88	0.26	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
23	3.370	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.25	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
24	3.360	7.79	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.25	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
25	3.350	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.24	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
26	3.340	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.24	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
27	3.330	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.89	5.89	5.89	0.22	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00

28	3.320	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.90	5.90	5.90	0.18	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
29	3.310	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.90	5.90	5.90	0.16	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
30	3.300	7.78	0.73	0.06	0.06	0.00	0.00	0.00	0.00	5.90	5.90	5.90	0.14	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
31	3.290	7.78	0.73	0.05	0.06	0.00	0.00	0.00	0 00	5.90	5.90	5.90	0.12	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
32	3.280		0.73		0.06	0.00		0.00		5.91		5.91	0.10	0.06		0.00			0.62	0.00	0.00	0.00	0.00
33	3.270		0.73		0.06	0.00	0.00	0.00			5.91		0.09	0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
34	3.260		0.73	0.05	0.06	0.00	0.00	0.00		5.91		5.91	0.08	0.06	0.00	0.00	0.00		0.62	0.00	0.00	0.00	0.00
35	3.250		0.73	0.05	0.06	0.00		0.00		5.91		5.91	0.07	0.06	0.00	0.00	0.00		0.62	0.00	0.00	0.00	0.00
36	3.240	7.78	0.73	0.05	0.06	0.00	0.00	0.00	0.00	5.91	5.91	5.91	0.07	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
37	3.230	7.77	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.92	5.92	5.92	0.06	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
38	3.220	7.77	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.92	5.92	5.92	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
39	3.210	7.77	0.73	0.04	0.06	0.00	0.00	0.00	0.00	5.92	5.92	5.92	0.05	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
40	3.200		0.74	0.04	0.06	0.00		0.00		5.92		5.92	0.05	0.06		0.00	0.00		0.62	0.00	0.00	0.00	0.00
41	3.190		0.74		0.06	0.00		0.00		5.92		5.92	0.04	0.06		0.00		0.00		0.00	0.00	0.00	0.00
42	3.180		0.74	0.01	0.06	0.00		0.00		5.93		5.93	0.04	0.06		0.00	0.00		0.62	0.00	0.00	0.00	0.00
43	3.170		0.74		0.06	0.00		0.00		5.93		5.93	0.04	0.06		0.00	0.00		0.62	0.00	0.00	0.00	0.00
44	3.160		0.74	0.04	0.06	0.00		0.00	0.00	5.93		5.93	0.03	0.06		0.00	0.00		0.62	0.00	0.00	0.00	0.00
45	3.150		0.74		0.06	0.00		0.00			5.93	5.93	0.03	0.06		0.00	0.00		0.62	0.00	0.00	0.00	0.00
46	3.140	7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.93	5.93	5.93	0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
47	3.130	7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.94	5.94	5.94	0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
48	3.120	7.77	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.94	5.94	5.94	0.03	0.06	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.00
49		7.76	0.74	0.04	0.06	0.00	0.00	0.00	0.00	5.94	5.94	5.94	0.03	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
50	3.100		0.74	0.04	0.06	0.00		0.00		5.94		5.94	0.02	0.06	0.00	0.00	0.00		0.63	0.00	0.00	0.00	0.00
51		7.76	0.74		0.06	0.00		0.00			5.94		0.02	0.06		0.00			0.63	0.00	0.00	0.00	0.00
52	3.080		0.74		0.06	0.00		0.00		5.95		5.95	0.02	0.06		0.00		0.00		0.00	0.00	0.00	0.00
53	3.070		0.74	0.03	0.06	0.00	0.00	0.00		5.95		5.95	0.02	0.06	0.00	0.00	0.00		0.63	0.00	0.00	0.00	0.00
54		7.76	0.74		0.06	0.00		0.00		5.95		5.95	0.02	0.06		0.00			0.63	0.00	0.00	0.00	0.00
55		7.76	0.74	0.03	0.06	0.00		0.00		5.95		5.95	0.02	0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
56	3.040	7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.95	5.95	5.95	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
57	3.030	7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.96	5.96	5.96	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
58	3.020	7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.96	5.96	5.96	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
59	3.010	7.76	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.96	5.96	5.96	0.02	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
60		7.76	0.74		0.06	0.00		0.00		5.96		5.96	0.02	0.06		0.00			0.63	0.00	0.00	0.00	0.00
61	2.990		0.74	0.03	0.06	0.00		0.00			5.96	5.96	0.02	0.06		0.00			0.63	0.00	0.00	0.00	0.00
62		7.75	0.74		0.06	0.00		0.00	0.00	5.97		5.97	0.02	0.06		0.00	0.00		0.63	0.00	0.00	0.00	0.00
63	2.970		0.74		0.06	0.00		0.00		5.97		5.97	0.02	0.06		0.00	0.00		0.63	0.00	0.00	0.00	0.00
64	2.960		0.74	0.03	0.06	0.00		0.00			5.97	5.97		0.06		0.00			0.63	0.00	0.00	0.00	0.00
65		7.75	0.74		0.06	0.00	0.00			5.97		5.97	0.01	0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
66	2.940		0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98			0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
67	2.930	7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
68	2.920	7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
69	2.910	7.75	0.74	0.03	0.06	0.00	0.00	0.00	0.00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
70	2.900	7.75	0.74	0.03	0.06	0.00	0.00	0.00	0 00	5.98	5.98	5.98	0.01	0.06	0.00	0.00	0.00		0.63	0.00	0.00	0.00	0.00
71		7.75	0.74		0.06	0.00		0.00		5.99		5.99		0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
72	2.880		0.74		0.06	0.00		0.00		5.99		5.99	0.01	0.06	0.00	0.00	0.00		0.63	0.00	0.00	0.00	0.00
73	2.870		0.74					0.00						0.06		0.00				0.00		0.00	0.00
				0.03	0.06	0.00					5.99	5.99							0.63		0.00		
74	2.860		0.74		0.06	0.00		0.00		5.99		5.99		0.06		0.00	0.00	0.00		0.00	0.00	0.00	0.00
75	2.850		0.74		0.06	0.00		0.00			5.99	5.99	0.01	0.06		0.00	0.00		0.63	0.00	0.00	0.00	0.00
76	2.840		0.74		0.06	0.00		0.00	0.00		6.00	6.00		0.06		0.00	0.00		0.63	0.00	0.00	0.00	0.00
77	2.830	7.74	0.74	0.03	0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
78	2.820	7.74	0.74	0.03	0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
79	2.810	7.74	0.74	0.03	0.06	0.00	0.00	0.00	0.00	6.00	6.00	6.00	0.01	0.06	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.00
80	2.800		0.74	0.03		0.00		0.00			6.00			0.06	0.00		0.00		0.63		0.00	0.00	0.00
20			- • / -				00																
AVG 2	0 DEG C	RATE	0.63	0.04	0.05	0.00	0.00	0.00	0.00	3.50			0.20	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

^{*} $g/m^2/d$ ** mg/L/day

						***	IIII QUE	THILL CO	JNSITIOE	MI AUTIO	60								
ELEM NO.	ENDING DIST	TEMP DEG C	SALN PPT	Chloride mg/L	Conduct umhos/cm	DO mg/L	BOD#1 mg/L	BOD#2 mg/L	EBOD#1 mg/L	EBOD#2 mg/L	ORGN mg/L	NH3 mg/L	NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
1	3.590	28.14	0.10	23.08	288.49	0.88	11.53	0.00	11.53	0.00	2.52	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
2	3.580	28.14	0.10	23.32	299.63	0.94	11.21	0.00	11.21	0.00	2.53	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
3	3.570	28.15	0.10	23.57	311.37	0.99	10.86	0.00	10.86	0.00	2.51	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
4	3.560	28.15	0.11	23.81	322.53	1.04	10.51	0.00	10.51	0.00	2.47	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
5	3.550	28.16	0.11	24.03	332.87	1.10	10.18	0.00	10.18	0.00	2.41	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
6	3.540	28.16	0.11	24.24	342.49	1.16	9.86	0.00	9.86	0.00	2.35	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
7	3.530	28.17	0.11	24.43	351.49	1.23	9.55	0.00	9.55	0.00	2.28	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
8	3.520	28.17	0.11	24.62	359.95	1.31	9.24	0.00	9.24	0.00	2.21	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
9	3.510	28.18	0.11	24.79	367.97	1.40	8.95	0.00	8.95	0.00	2.13	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
10	3.500	28.18	0.12	24.95	375.59	1.50	8.66	0.00	8.66	0.00	2.05	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
11	3.490	28.19	0.12	25.11	382.87	1.63	8.37	0.00	8.37	0.00	1.97	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
12	3.480	28.20	0.12	25.26	389.85	1.77	8.09	0.00	8.09	0.00	1.89	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
13	3.470	28.20	0.12	25.40	396.56	1.94	7.82	0.00	7.82	0.00	1.81	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
14	3.460	28.21	0.12	25.54	403.04	2.13	7.55	0.00	7.55	0.00	1.74	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
15	3.450	28.21	0.12	25.68	409.29	2.36	7.28	0.00	7.28	0.00	1.67	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
16	3.440	28.22	0.13	25.81	415.35	2.62	7.02	0.00	7.02	0.00	1.61	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
17	3.430	28.22	0.13	25.94	421.22	2.91	6.76	0.00	6.76	0.00	1.55	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
18	3.420	28.23	0.13	26.05	426.33	3.19	6.52	0.00	6.52	0.00	1.50	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
19	3.410	28.23	0.13	26.50	427.73	3.00	6.59	0.00	6.59	0.00	1.51	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
20 21	3.400	28.24	0.13	26.99	429.24	2.82	6.65 6.72	0.00	6.65 6.72	0.00	1.52	0.00	0.00	0.00	0.00	8.50	0.00	0. 0.	0.00
22	3.380	28.25	0.13	27.52 28.08	430.86 432.62	2.66	6.79	0.00	6.79	0.00	1.53 1.55	0.00	0.00	0.00	0.00	8.50 8.50	0.00	0.	0.00
23	3.370	28.26	0.14	28.69	432.02	2.31	6.85	0.00	6.85	0.00	1.56	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
24	3.360	28.26	0.14	29.35	436.51	2.24	6.92	0.00	6.92	0.00	1.58	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
25	3.350	28.27	0.14	30.04	438.65	2.13	6.98	0.00	6.98	0.00	1.60	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
26	3.340	28.27	0.14	30.79	440.94	2.03	7.05	0.00	7.05	0.00	1.63	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
27	3.330	28.28	0.14	31.58	443.37	1.94	7.12	0.00	7.12	0.00	1.66	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
28	3.320	28.28	0.15	32.41	445.94	1.85	7.19	0.00	7.19	0.00	1.68	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
29	3.310	28.29	0.15	33.30	448.67	1.78	7.26	0.00	7.26	0.00	1.72	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
30	3.300	28.30	0.15	34.23	451.55	1.71	7.33	0.00	7.33	0.00	1.75	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
31	3.290	28.30	0.15	35.22	454.60	1.65	7.40	0.00	7.40	0.00	1.78	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
32	3.280	28.31	0.15	36.26	457.80	1.59	7.47	0.00	7.47	0.00	1.81	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
33	3.270	28.31	0.15	37.36	461.17	1.54	7.54	0.00	7.54	0.00	1.85	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
34	3.260	28.32	0.16	38.51	464.71	1.50	7.61	0.00	7.61	0.00	1.88	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
35	3.250	28.32	0.16	39.71	468.43	1.45	7.68	0.00	7.68	0.00	1.92	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
36	3.240	28.33	0.16	40.97	472.32	1.42	7.75	0.00	7.75	0.00	1.95	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
37	3.230	28.33	0.16	42.30	476.39	1.38	7.82	0.00	7.82	0.00	1.99	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
38	3.220	28.34	0.16	43.68	480.65	1.35	7.89	0.00	7.89	0.00	2.02	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
39	3.210	28.34	0.16	45.12	485.10	1.32	7.96	0.00	7.96	0.00	2.05	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
40	3.200	28.35	0.17	46.63	489.74	1.29	8.03	0.00	8.03	0.00	2.09	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
41 42	3.190	28.36	0.17	48.20	494.57	1.26	8.10	0.00	8.10	0.00	2.12	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
	3.180	28.36	0.17	49.83	499.61 504.85	1.24	8.18 8.25	0.00	8.18 8.25	0.00	2.15	0.00	0.00	0.00	0.00	8.50 8.50	0.00	0.	0.00
43 44	3.170 3.160	28.37	0.17	51.53 53.30	510.29	1.19	8.32	0.00	8.32	0.00	2.19	0.00	0.00	0.00	0.00	8.50	0.00	0. 0.	0.00
45	3.150	28.38	0.17	55.14	515.94	1.17	8.39	0.00	8.39	0.00	2.25	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
46	3.140	28.38	0.17	57.04	521.81	1.16	8.46	0.00	8.46	0.00	2.28	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
47	3.130	28.39	0.18	59.02	527.90	1.14	8.53	0.00	8.53	0.00	2.32	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
48	3.120	28.39	0.18	61.07	534.20	1.12	8.61	0.00	8.61	0.00	2.35	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
49	3.110	28.40	0.18	63.18	540.73	1.11	8.68	0.00	8.68	0.00	2.38	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
50	3.100	28.40	0.18	65.38	547.49	1.09	8.75	0.00	8.75	0.00	2.41	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
51	3.090	28.41	0.18	67.65	554.47	1.08	8.82	0.00	8.82	0.00	2.44	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
52	3.080	28.42	0.18	69.99	561.70	1.07	8.89	0.00	8.89	0.00	2.46	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
53	3.070	28.42	0.19	72.41	569.15	1.05	8.97	0.00	8.97	0.00	2.49	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
54	3.060	28.43	0.19	74.91	576.86	1.04	9.04	0.00	9.04	0.00	2.52	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00

55	3.050	28.43	0.19	77.49	584.80	1.03	9.11	0.00	9.11	0.00	2.55	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
56	3.040	28.44	0.19	80.15	592.99	1.03	9.19	0.00	9.19	0.00	2.57	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
	3.040																		
57		28.44	0.19	82.89	601.44	1.01	9.26	0.00	9.26	0.00	2.60	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
58	3.020	28.45	0.19	85.72	610.13	1.00	9.34	0.00	9.34	0.00	2.63	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
59	3.010	28.45	0.20	88.62	619.09	0.99	9.41	0.00	9.41	0.00	2.65	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
60	3.000	28.46	0.20	91.62	628.31	0.98	9.49	0.00	9.49	0.00	2.68	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
61	2.990	28.47	0.20	94.70	637.79	0.98	9.56	0.00	9.56	0.00	2.70	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
62	2.980	28.47	0.20	97.86	647.54	0.97	9.64	0.00	9.64	0.00	2.72	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
63	2.970	28.48	0.20	101.11	657.56	0.96	9.72	0.00	9.72	0.00	2.75	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
64	2.960	28.48	0.20	104.46	667.85	0.95	9.79	0.00	9.79	0.00	2.77	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
65	2.950	28.49	0.21	107.89	678.43	0.94	9.87	0.00	9.87	0.00	2.79	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
66	2.940	28.49	0.21	111.41	689.28	0.94	9.95	0.00	9.95	0.00	2.81	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
67	2.930	28.50	0.21	115.03	700.41	0.93	10.03	0.00	10.03	0.00	2.83	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
68	2.920	28.50	0.21	118.74	711.84	0.92	10.11	0.00	10.11	0.00	2.85	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
69	2.910	28.51	0.21	122.54	723.55	0.92	10.19	0.00	10.19	0.00	2.87	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
70	2.900	28.51	0.21	126.44	735.56	0.91	10.28	0.00	10.28	0.00	2.89	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
71	2.890	28.52	0.22	130.43	747.86	0.90	10.36	0.00	10.36	0.00	2.90	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
72	2.880	28.53	0.22	134.52	760.47	0.90	10.44	0.00	10.44	0.00	2.92	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
73	2.870	28.53	0.22	138.71	773.38	0.89	10.53	0.00	10.53	0.00	2.94	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
74	2.860	28.54	0.22	143.00	786.59	0.88	10.61	0.00	10.61	0.00	2.95	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
75	2.850	28.54	0.22	147.39	800.11	0.88	10.70	0.00	10.70	0.00	2.97	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
76	2.840	28.55	0.22	151.89	813.95	0.87	10.70	0.00	10.70	0.00	2.98	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
77	2.830	28.55	0.22	156.48	828.10	0.86	10.79	0.00	10.79	0.00	3.00	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
78	2.820	28.56	0.23	161.18	842.57	0.86	10.97	0.00	10.97	0.00	3.01	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
79	2.810	28.56	0.23	165.98	857.36	0.85	11.06	0.00	11.06	0.00	3.02	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00
80	2.800	28.57	0.23	170.89	872.48	0.84	11.15	0.00	11.15	0.00	3.03	0.00	0.00	0.00	0.00	8.50	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 2 RKM 2.8 to 1.9

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

****	**************************************																	
ELEM NO.	TYPE	\deg C ppt mg/L $umhos/cm$ mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L $umhos/cm$																
81	UPR RCH	0.00450	28.57	0.2	23 170.89	872.48	0.84	11.15	0.00	11.15	0.00	3.03	0.00	0.00	0.00	8.50	0.00	0.00
****	*****	*****	*****	*****	******	** HYDRAU	LIC PARA	AMETER V	ALUES *	*****	*****	*****	*****	****	*****	*****	* *	
ELEM	BEGIN	ENDING	FLOW	PCT	ADVCTV	TRAVEL	DEPTH	WIDTH	VOLU	ME	SURFACE	X-SECT	TIE		TIDAL	DISPRSN	MEAN	
NO.	DIST	DIST	2 / .	EFF	VELO	TIME				2	AREA	AREA	PRI		VELO		VELO	
	km	km	m³/s		m/s	days	m	m		m ³	m²	m²		m ³	m/s	m²/s	m/s	
81	2.80	2.79	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	910.	27 (0.001	0.078	0.001	
82	2.79	2.78	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	945.	81 (0.001	0.081	0.001	
83	2.78	2.77	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	981.	34 (0.001	0.084	0.001	
84	2.77	2.76	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1016.	88	0.001	0.087	0.001	
85	2.76	2.75	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1052.	42 (0.001	0.090	0.001	
86	2.75	2.74	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1087.	95 (0.001	0.093	0.001	
87	2.74	2.73	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1123.	49 (0.001	0.096	0.001	
88	2.73	2.72	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1159.	02 (0.002	0.099	0.002	
89	2.72	2.71	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1194.	56 (0.002	0.102	0.002	
90	2.71	2.70	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1230.	09 (0.002	0.105	0.002	
91	2.70	2.69	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1265.	63 (0.002	0.108	0.002	
92	2.69	2.68	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1301.	17 (0.002	0.111	0.002	
93	2.68	2.67	0.00450	82.2	0.00026	0.44	1.09	15.85	171.	97	158.50	17.20	1336.	70 (0.002	0.114	0.002	

94	2.67	2.66	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1372.24	0.002	0.117	0.002
95	2.66	2.65	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1407.77	0.002	0.120	0.002
96	2.65	2.64	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1443.31	0.002	0.123	0.002
97	2.64	2.63	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1478.84	0.002	0.126	0.002
98	2.63	2.62	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1514.38	0.002	0.129	0.002
99	2.62	2.61	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1549.92	0.002	0.132	0.002
100	2.61	2.60	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1585.45	0.002	0.135	0.002
101	2.60	2.59	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1620.99	0.002	0.138	0.002
102	2.59	2.58	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1656.52	0.002	0.141	0.002
103	2.58	2.57	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1692.06	0.002	0.144	0.002
104	2.57	2.56	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1727.59	0.002	0.147	0.002
105	2.56	2.55	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1763.13	0.002	0.150	0.002
106	2.55	2.54	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1798.66	0.002	0.153	0.002
107	2.54	2.53	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1834.20	0.002	0.156	0.002
108	2.53	2.52	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1869.74	0.002	0.159	0.002
109	2.52	2.51	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1905.27	0.003	0.162	0.003
110	2.51	2.50	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1940.81	0.003	0.165	0.003
111	2.50	2.49	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	1976.34	0.003	0.168	0.003
112	2.49	2.48	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2011.88	0.003	0.171	0.003
113	2.48	2.47	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2047.41	0.003	0.174	0.003
114	2.47	2.46	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2082.95	0.003	0.177	0.003
115	2.46	2.45	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2118.49	0.003	0.180	0.003
116	2.45	2.44	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2154.02	0.003	0.183	0.003
117	2.44	2.44	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2189.56	0.003	0.186	0.003
118	2.43	2.42	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2225.09	0.003	0.189	0.003
119	2.42	2.41	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2260.63	0.003	0.192	0.003
120	2.41	2.40	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2296.16	0.003	0.195	0.003
121	2.40	2.39	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2331.70	0.003	0.198	0.003
122	2.39	2.38	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2367.24	0.003	0.201	0.003
123	2.38	2.37	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2402.77	0.003	0.204	0.003
124	2.37	2.36	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2438.31	0.003	0.207	0.003
125	2.36	2.35	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2473.84	0.003	0.210	0.003
126	2.35	2.34	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2509.38	0.003	0.213	0.003
127	2.34	2.33	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2544.91	0.003	0.216	0.003
128	2.33	2.32	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2580.45	0.003	0.219	0.003
					0.00026								0.003		
129	2.32	2.31	0.00450	82.2		0.44	1.09	15.85	171.97	158.50	17.20	2615.98		0.222	0.003
130	2.31	2.30	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2651.52	0.003	0.225	0.004
131	2.30	2.29	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2687.06	0.004	0.228	0.004
132	2.29	2.28	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2722.59	0.004	0.231	0.004
133	2.28	2.27	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2758.13	0.004	0.234	0.004
134	2.27	2.26	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2793.66	0.004	0.237	0.004
135	2.26	2.25	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2829.20	0.004	0.240	0.004
136	2.25	2.24	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2864.73	0.004	0.243	0.004
137	2.24	2.23	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2900.27	0.004	0.246	0.004
138	2.23	2.22	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2935.81	0.004	0.249	0.004
139	2.22	2.21	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	2971.34	0.004	0.252	0.004
140	2.21	2.20	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3006.88	0.004	0.255	0.004
	2.21	2.19	0.00450	82.2	0.00026	0.44		15.85	171.97	158.50	17.20	3042.41	0.004	0.258	0.004
141							1.09								
142	2.19	2.18	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3077.95	0.004	0.261	0.004
143	2.18	2.17	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3113.48	0.004	0.264	0.004
144	2.17	2.16	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3149.02	0.004	0.267	0.004
145	2.16	2.15	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3184.55	0.004	0.270	0.004
146	2.15	2.14	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3220.09	0.004	0.273	0.004
147	2.14	2.13	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3255.63	0.004	0.276	0.004
148	2.13	2.12	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3291.16	0.004	0.279	0.004
149	2.12	2.11	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3326.70	0.004	0.282	0.004
150	2.11	2.10	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3362.23	0.004	0.285	0.004
151	2.10	2.09	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3397.77	0.004	0.288	0.004
152	2.09	2.08	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3433.30	0.005	0.291	0.005
102	2.00	2.00	3.00130	52.2	3.00020	0.11	1.00	10.00	111.01	100.00	17.20	3133.30	3.003	0.251	3.003

153	2.08	2.07	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3468.84	0.005	0.294	0.005
154	2.07	2.06	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3504.38	0.005	0.297	0.005
155	2.06	2.05	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3539.91	0.005	0.300	0.005
156	2.05	2.04	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3575.45	0.005	0.303	0.005
157	2.04	2.03	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3610.98	0.005	0.306	0.005
158	2.03	2.02	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3646.52	0.005	0.309	0.005
159	2.02	2.01	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3682.05	0.005	0.312	0.005
160	2.01	2.00	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3717.59	0.005	0.315	0.005
161	2.00	1.99	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3753.13	0.005	0.318	0.005
162	1.99	1.98	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3788.66	0.005	0.321	0.005
163	1.98	1.97	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3824.20	0.005	0.324	0.005
164	1.97	1.96	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3859.73	0.005	0.327	0.005
165	1.96	1.95	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3895.27	0.005	0.330	0.005
166	1.95	1.94	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3930.80	0.005	0.333	0.005
167	1.94	1.93	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	3966.34	0.005	0.336	0.005
168	1.93	1.92	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	4001.87	0.005	0.339	0.005
169	1.92	1.91	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	4037.41	0.005	0.342	0.005
170	1.91	1.90	0.00450	82.2	0.00026	0.44	1.09	15.85	171.97	158.50	17.20	4072.95	0.005	0.345	0.005
TOT						39.81			15477.53	14265.00					
AVG					0.0003		1.08	15.85			17.20				
CUM						61.95									

ELEM NO.	ENDING DIST	SAT D.O.	REAER RATE	DECAY	SETT	ABOD#1 DECAY	DECAY	SETT	ABOD#2 DECAY	BKGD SOD	FULL SOD	CORR SOD	ORGN DECAY	ORGN SETT	NH3 DECAY	NH3 SRCE	DENIT RATE	PO4 SRCE	ALG PROD	MAC PROD	COLI	NCM DECAY	NCM SETT
		mg/L	1/da	1/da	1/da	1/da	1/da	1/da	1/da	*	*	*	1/da	1/da	1/da	*	1/da	*	**	**	1/da	1/da	1/da
81	2.790	7.74	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.01	6.01	6.01	0.00	0.06	0.00	0.00	0.00	0.00	0.65	0.00	0.00	0.00	0.00
82	2.780	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.02	6.02	6.02	0.00	0.06	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.00	0.00
83	2.770	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.02	6.02	6.02	0.00	0.06	0.00	0.00	0.00	0.00	0.69	0.00	0.00	0.00	0.00
84	2.760	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.03	6.03	6.03	0.00	0.06	0.00	0.00	0.00	0.00	0.71	0.00	0.00	0.00	0.00
85	2.750	7.73	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.03	6.03	6.03	0.00	0.06	0.00	0.00	0.00	0.00	0.74	0.00	0.00	0.00	0.00
86	2.740	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.04	6.04	6.04	0.00	0.06	0.00	0.00	0.00	0.00	0.76	0.00	0.00	0.00	0.00
87	2.730	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.05	6.05	6.05	0.00	0.06	0.00	0.00	0.00	0.00	0.78	0.00	0.00	0.00	0.00
88	2.720	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.05	6.05	6.05	0.00	0.06	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.00	0.00
89	2.710	7.72	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.06	6.06	6.06	0.00	0.06	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.00
90	2.700	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.06	6.06	6.06	0.00	0.06	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.00	0.00
91	2.690	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.07	6.07	6.07	0.00	0.06	0.00	0.00	0.00	0.00	0.86	0.00	0.00	0.00	0.00
92	2.680	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.08	6.08	6.08	0.01	0.06	0.00	0.00	0.00	0.00	0.89	0.00	0.00	0.00	0.00
93	2.670	7.71	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.08	6.08	6.08	0.01	0.06	0.00	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.00
94	2.660	7.70	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.09	6.09	6.09	0.01	0.06	0.00	0.00	0.00	0.00	0.93	0.00	0.00	0.00	0.00
95	2.650	7.70	0.76	0.04	0.06	0.00	0.00	0.00	0.00	6.09	6.09	6.09	0.01	0.06	0.00	0.00	0.00	0.00	0.95	0.00	0.00	0.00	0.00
96	2.640	7.70	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.10	6.10	6.10	0.01	0.06	0.00	0.00	0.00	0.00	0.97	0.00	0.00	0.00	0.00
97	2.630	7.70	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.11	6.11	6.11	0.01	0.06	0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00
98	2.620	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.11	6.11	6.11	0.01	0.06	0.00	0.00	0.00	0.00	1.02	0.00	0.00	0.00	0.00
99	2.610	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.12	6.12	6.12	0.01	0.06	0.00	0.00	0.00	0.00	1.04	0.00	0.00	0.00	0.00
100	2.600	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.12	6.12	6.12	0.01	0.06	0.00	0.00	0.00	0.00	1.06	0.00	0.00	0.00	0.00
101	2.590	7.69	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.13	6.13	6.13	0.01	0.06	0.00	0.00	0.00	0.00	1.08	0.00	0.00	0.00	0.00
102	2.580	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.14	6.14	6.14	0.01	0.06	0.00	0.00	0.00	0.00	1.10	0.00	0.00	0.00	0.00
103	2.570	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.14	6.14	6.14	0.01	0.06	0.00	0.00	0.00	0.00	1.12	0.00	0.00	0.00	0.00
104	2.560	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.15	6.15	6.15	0.01	0.06	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00
105	2.550	7.68	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.15	6.15	6.15	0.01	0.06	0.00	0.00	0.00	0.00	1.17	0.00	0.00	0.00	0.00
106	2.540	7.67	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.16	6.16	6.16	0.01	0.06	0.00	0.00	0.00	0.00	1.19	0.00	0.00	0.00	0.00
107	2.530	7.67	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.17	6.17	6.17	0.01	0.06	0.00	0.00	0.00	0.00	1.21	0.00	0.00	0.00	0.00
108	2.520	7.67	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.17	6.17	6.17	0.01	0.06	0.00	0.00	0.00	0.00	1.23	0.00	0.00	0.00	0.00
109	2.510	7.67	0.76	0.05	0.06	0.00	0.00	0.00	0.00	6.18	6.18	6.18	0.01	0.06	0.00	0.00	0.00	0.00	1.26	0.00	0.00	0.00	0.00

110	2.500 7.66	0.76	0.05 0.06	0.00	0.00 0.00	0.00	6.18	6.18	6.18	0.01	0.06	0.00	0.00	0.00	0.00	1.28	0.00	0.00	0.00	0.00
111	2.490 7.66	0.76	0.05 0.06	0.00	0.00 0.00	0.00	6.19	6.19	6.19	0.01	0.06	0.00	0.00	0.00	0 00	1.30	0.00	0.00	0.00	0.00
112	2.480 7.66	0.76	0.05 0.06	0.00	0.00 0.00	0.00		6.20	6.20	0.01	0.06	0.00	0.00	0.00	0.00	1.32	0.00	0.00	0.00	0.00
113	2.470 7.66	0.76	0.05 0.06	0.00	0.00 0.00	0.00	6.20	6.20	6.20	0.01	0.06	0.00	0.00	0.00	0.00	1.34	0.00	0.00	0.00	0.00
114	2.460 7.65	0.76	0.05 0.06	0.00	0.00 0.00	0.00	6.21	6.21	6.21	0.01	0.06	0.00	0.00	0.00	0 00	1.37	0.00	0.00	0.00	0.00
115	2.450 7.65	0.76	0.05 0.06			0.00			6.22			0.00	0.00	0.00			0.00	0.00	0.00	0.00
				0.00				6.22			0.06				0.00					
116	2.440 7.65	0.76	0.06 0.06	0.00	0.00 0.00	0.00	6.22	6.22	6.22	0.01	0.06	0.00	0.00	0.00	0.00	1.41	0.00	0.00	0.00	0.00
117	2.430 7.65	0.76	0.06 0.06	0.00	0.00 0.00	0.00	6.23	6.23	6.23	0.01	0.06	0.00	0.00	0.00	0.00	1.43	0.00	0.00	0.00	0.00
118	2.420 7.64	0.76	0.06 0.06	0.00	0.00 0.00	0.00		6.23	6.23	0.01		0.00	0.00	0.00		1.45	0.00	0.00	0.00	0.00
119	2.410 7.64	0.76	0.06 0.06	0.00	0.00 0.00	0.00		6.24	6.24		0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
120	2.400 7.64	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.25	6.25	6.25	0.01	0.06	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00
121	2.390 7.64	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.25	6.25	6.25	0.01	0.06	0.00	0.00	0.00	0.00	1.52	0.00	0.00	0.00	0.00
122	2.380 7.63	0.77	0.06 0.06	0.00	0.00 0.00	0.00		6.26	6.26	0.01	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
123	2.370 7.63	0.77	0.06 0.06	0.00	0.00 0.00	0.00		6.26	6.26		0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
124	2.360 7.63	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.27	6.27	6.27	0.02	0.06	0.00	0.00	0.00	0.00	1.59	0.00	0.00	0.00	0.00
125	2.350 7.62	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.28	6.28	6.28	0.02	0.06	0.00	0.00	0.00	0.00	1 61	0.00	0.00	0.00	0.00
126	2.340 7.62	0.77	0.06 0.06	0.00	0.00 0.00	0.00		6.28	6.28	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
127	2.330 7.62	0.77	0.06 0.06	0.00	0.00 0.00	0.00		6.29	6.29	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
128	2.320 7.62	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.30	6.30	6.30	0.02	0.06	0.00	0.00	0.00	0.00	1.68	0.00	0.00	0.00	0.00
129	2.310 7.62	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.30	6.30	6.30	0.02	0.06	0.00	0.00	0 00	0.00	1 70	0.00	0.00	0.00	0.00
130	2.300 7.61	0.77	0.06 0.06	0.00	0.00 0.00	0.00		6.31	6.31	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
131	2.290 7.61	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.31	6.31	6.31	0.02	0.06	0.00	0.00	0.00	0.00	1.75	0.00	0.00	0.00	0.00
132	2.280 7.61	0.77	0.06 0.06	0.00	0.00 0.00	0.00	6.32	6.32	6.32	0.02	0.06	0.00	0.00	0.00	0.00	1.77	0.00	0.00	0.00	0.00
133	2.270 7.60	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.33	6.33	6.33	0.02	0.06	0.00	0.00	0.00	0.00	1 79	0.00	0.00	0.00	0.00
134	2.260 7.60	0.77	0.07 0.06	0.00	0.00 0.00	0.00		6.33	6.33	0.02	0.06	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
135	2.250 7.60	0.77	0.07 0.06	0.00	0.00 0.00	0.00		6.34	6.34	0.02	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
136	2.240 7.60	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.35	6.35	6.35	0.02	0.06	0.00	0.00	0.00	0.00	1.86	0.00	0.00	0.00	0.00
137	2.230 7.60	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.35	6.35	6.35	0.02	0.06	0.00	0.00	0.00	0.00	1.88	0.00	0.00	0.00	0.00
138	2.220 7.59	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.36		6.36	0.03	0.06	0.00	0.00		0.00		0.00	0.00	0.00	0.00
139	2.210 7.59	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.36	6.36	6.36	0.03	0.06	0.00	0.00	0.00	0.00	1.93	0.00	0.00	0.00	0.00
140	2.200 7.59	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.37	6.37	6.37	0.03	0.06	0.00	0.00	0.00	0.00	1.95	0.00	0.00	0.00	0.00
141	2.190 7.59	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.38	6.38	6.38	0.03	0.06	0.00	0.00	0.00	0.00	1.98	0.00	0.00	0.00	0.00
		0.77															0.00			0.00
142	2.180 7.58		0.07 0.06	0.00	0.00 0.00	0.00		6.38	6.38	0.03	0.06	0.00	0.00		0.00	2.00		0.00	0.00	
143	2.170 7.58	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.39	6.39	6.39	0.03	0.06	0.00	0.00	0.00	0.00	2.02	0.00	0.00	0.00	0.00
144	2.160 7.58	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.40	6.40	6.40	0.03	0.06	0.00	0.00	0.00	0.00	2.04	0.00	0.00	0.00	0.00
145	2.150 7.58	0.77	0.07 0.06	0.00	0.00 0.00	0.00		6.40	6.40	0.03	0.06	0.00	0.00		0.00	2.07	0.00	0.00	0.00	0.00
146	2.140 7.57	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.41		6.41	0.03	0.06	0.00	0.00		0.00	2.09	0.00	0.00	0.00	0.00
147	2.130 7.57	0.77	0.07 0.06	0.00	0.00 0.00	0.00	6.41	6.41	6.41	0.04	0.06	0.00	0.00	0.00	0.00	2.11	0.00	0.00	0.00	0.00
148	2.120 7.57	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.42	6.42	6.42	0.04	0.06	0.00	0.00	0.00	0.00	2.14	0.00	0.00	0.00	0.00
149	2.110 7.57	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.43	6.43	6.43	0.04	0.06	0.00	0.00	0.00	0.00	2.16	0.00	0.00	0.00	0.00
150	2.100 7.56	0.77	0.08 0.06	0.00	0.00 0.00	0.00		6.43	6.43	0.04	0.06	0.00	0.00		0.00	2.18	0.00	0.00	0.00	0.00
151	2.090 7.56	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.44	6.44	6.44	0.04	0.06	0.00	0.00	0.00	0.00	2.21	0.00	0.00	0.00	0.00
152	2.080 7.56	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.45	6.45	6.45	0.04	0.06	0.00	0.00	0.00	0.00	2.23	0.00	0.00	0.00	0.00
153	2.070 7.56	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.45	6.45	6.45	0.04	0.06	0.00	0.00	0.00	0.00	2.25	0.00	0.00	0.00	0.00
154	2.060 7.55	0.77	0.08 0.06	0.00	0.00 0.00	0.00		6.46	6.46	0.05	0.06	0.00	0.00		0.00	2.28	0.00	0.00	0.00	0.00
155	2.050 7.55	0.77	0.08 0.06	0.00	0.00 0.00	0.00		6.47	6.47	0.05	0.06	0.00	0.00		0.00	2.30	0.00	0.00	0.00	0.00
156	2.040 7.55	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.47	6.47	6.47	0.05	0.06	0.00	0.00	0.00	0.00	2.32	0.00	0.00	0.00	0.00
157	2.030 7.55	0.77	0.08 0.06	0.00	0.00 0.00	0.00	6.48	6.48	6.48	0.05	0.06	0.00	0.00	0.00	0.00	2.35	0.00	0.00	0.00	0.00
158	2.020 7.54	0.77	0.08 0.06	0.00	0.00 0.00	0.00		6.48	6.48	0.06	0.06	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
159	2.010 7.54	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.49	6.49	6.49	0.06	0.06	0.00	0.00		0.00	2.40	0.00	0.00	0.00	0.00
160	2.000 7.54	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.50	6.50	6.50	0.06	0.06	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
161	1.990 7.54	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.50	6.50	6.50	0.06	0.06	0.00	0.00	0.00	0.00	2.44	0.00	0.00	0.00	0.00
162	1.980 7.53	0.77	0.09 0.06	0.00	0.00 0.00	0.00		6.51	6.51	0.07	0.06	0.00	0.00		0.00	2.47	0.00	0.00	0.00	0.00
163	1.970 7.53	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.52	6.52	6.52	0.07	0.06	0.00	0.00	0.00	0.00	2.49	0.00	0.00	0.00	0.00
164	1.960 7.53	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.52	6.52	6.52	0.08	0.06	0.00	0.00	0.00	0.00	2.51	0.00	0.00	0.00	0.00
165	1.950 7.53	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.53	6.53	6.53	0.08	0.06	0.00	0.00	0.00	0.00	2.54	0.00	0.00	0.00	0.00
166	1.940 7.52	0.77	0.09 0.06	0.00	0.00 0.00	0.00	6.54	6.54	6.54	0.08	0.06	0.00	0.00	0.00	0.00	2.56	0.00	0.00	0.00	0.00
167	1.930 7.52	0.77	0.10 0.06	0.00	0.00 0.00	0.00	6.54	6.54	6.54	0.09	0.06	0.00	0.00	0.00	0.00	2.59	0.00	0.00	0.00	0.00
168	1.920 7.52	0.78	0.10 0.06	0.00	0.00 0.00	0.00	6.55	6.55	6.55	0.10	0.06	0.00	0.00	0.00	0.00	2.61	0.00	0.00	0.00	0.00

169	1.910 7.52	0.78	0.10	0.06	0.00	0.00	0.00	0.00	6.56	6.56	6.56	0.10	0.06	0.00	0.00	0.00	0.00	2.63	0.00	0.00	0.00	0.00
170	1.900 7.51	0.78	0.10	0.06	0.00	0.00	0.00	0.00	6.56	6.56	6.56	0.11	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
AVG 2	DEG C RATE	0.65	0.07	0.05	0.00	0.00	0.00	0.00	3.50			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM	ENDING	TEMP	SALN	Chloride	Conduct	DO	BOD#1	BOD#2	EBOD#1	EBOD#2	ORGN	NH3	NO3+2	TOTN	PHOS	CHL A	MACRO	COLI	NCM
NO.	DIST	DEG C	PPT		umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mq/L	mg/L	mg/L	mg/L	μg/L	g/m³	#/100mL	
				3.		3.		-	J.	J.	3.	J.	J.	3.		, ,	3.		
81	2.790	28.59	0.24	175.89	887.88	0.84	11.24	0.00	11.24	0.00	3.05	0.00	0.00	0.00	0.00	8.78	0.00	0.	0.00
82	2.780	28.60	0.25	180.92	903.37	0.83	11.33	0.00	11.33	0.00	3.06	0.00	0.00	0.00	0.00	9.06	0.00	0.	0.00
83	2.770	28.62	0.26	185.92	918.80	0.83	11.41	0.00	11.41	0.00	3.07	0.00	0.00	0.00	0.00	9.34	0.00	0.	0.00
84	2.760	28.63	0.27	190.91	934.16	0.83	11.49	0.00	11.49	0.00	3.07	0.00	0.00	0.00	0.00	9.62	0.00	0.	0.00
85	2.750	28.65	0.28	195.88	949.45	0.83	11.56	0.00	11.56	0.00	3.08	0.00	0.00	0.00	0.00	9.89	0.00	0.	0.00
86	2.740	28.66	0.29	200.82	964.69	0.83	11.63	0.00	11.63	0.00	3.09	0.00	0.00	0.00	0.00	10.17	0.00	0.	0.00
87	2.730	28.68	0.30	205.75	979.87	0.83	11.69	0.00	11.69	0.00	3.10	0.00	0.00	0.00	0.00	10.45	0.00	0.	0.00
88	2.720	28.70	0.31	210.66	994.99	0.84	11.75	0.00	11.75	0.00	3.10	0.00	0.00	0.00	0.00	10.73	0.00	0.	0.00
89	2.710	28.71	0.32	215.55	1010.05	0.84	11.81	0.00	11.81	0.00	3.11	0.00	0.00	0.00	0.00	11.01	0.00	0.	0.00
90	2.700	28.73	0.33	220.42	1025.07	0.84	11.86	0.00	11.86	0.00	3.11	0.00	0.00	0.00	0.00	11.29	0.00	0.	0.00
91	2.690	28.74	0.34	225.28	1040.03	0.85	11.90	0.00	11.90	0.00	3.12	0.00	0.00	0.00	0.00	11.57	0.00	0.	0.00
92	2.680	28.76	0.35	230.12	1054.94	0.86	11.95	0.00	11.95	0.00	3.12	0.00	0.00	0.00	0.00	11.85	0.00	0.	0.00
93	2.670	28.77	0.36	234.95	1069.80	0.86	11.99	0.00	11.99	0.00	3.12	0.00	0.00	0.00	0.00	12.13	0.00	0.	0.00
94	2.660	28.79	0.37	239.76	1084.61	0.87	12.03	0.00	12.03	0.00	3.12	0.00	0.00	0.00	0.00	12.40	0.00	0.	0.00
95	2.650	28.81	0.38	244.55	1099.38	0.88	12.06	0.00	12.06	0.00	3.13	0.00	0.00	0.00	0.00	12.68	0.00	0.	0.00
96	2.640	28.82	0.39	249.33	1114.10	0.88	12.09	0.00	12.09	0.00	3.13	0.00	0.00	0.00	0.00	12.96	0.00	0.	0.00
97	2.630	28.84	0.40	254.09	1128.78	0.89	12.12	0.00	12.12	0.00	3.13	0.00	0.00	0.00	0.00	13.24	0.00	0.	0.00
98	2.620	28.85	0.41	258.85	1143.41	0.90	12.15	0.00	12.15	0.00	3.13	0.00	0.00	0.00	0.00	13.52	0.00	0.	0.00
99	2.610	28.87	0.42	263.58	1158.01	0.91	12.17	0.00	12.17	0.00	3.13	0.00	0.00	0.00	0.00	13.80	0.00	0.	0.00
100	2.600	28.88	0.43	268.31	1172.56	0.92	12.20	0.00	12.20	0.00	3.13	0.00	0.00	0.00	0.00	14.08	0.00	0.	0.00
101	2.590	28.90	0.44	273.02	1187.07	0.92	12.22	0.00	12.22	0.00	3.13	0.00	0.00	0.00	0.00	14.36	0.00	0.	0.00
102	2.580	28.91	0.45	277.72	1201.54	0.93	12.24	0.00	12.24	0.00	3.13	0.00	0.00	0.00	0.00	14.64	0.00	0.	0.00
103	2.570	28.93	0.47	282.40	1215.98	0.94	12.25	0.00	12.25	0.00	3.13	0.00	0.00	0.00	0.00	14.91	0.00	0.	0.00
104	2.560	28.95	0.48	287.08	1230.38	0.95	12.27	0.00	12.27	0.00	3.12	0.00	0.00	0.00	0.00	15.19	0.00	0.	0.00
105	2.550	28.96	0.49	291.74	1244.74	0.96	12.28	0.00	12.28	0.00	3.12	0.00	0.00	0.00	0.00	15.47	0.00	0.	0.00
106	2.540	28.98	0.50	296.39	1259.06	0.97	12.30	0.00	12.30	0.00	3.12	0.00	0.00	0.00	0.00	15.75	0.00	0.	0.00
107	2.530	28.99	0.51	301.03	1273.36	0.98	12.31	0.00	12.31	0.00	3.12	0.00	0.00	0.00	0.00	16.03	0.00	0.	0.00
108	2.520	29.01	0.52	305.66	1287.61	0.99	12.32	0.00	12.32	0.00	3.11	0.00	0.00	0.00	0.00	16.31	0.00	0.	0.00
109	2.510		0.53	310.28	1301.83	1.00	12.33	0.00	12.33	0.00	3.11	0.00	0.00	0.00	0.00	16.59	0.00	0.	0.00
110	2.500	29.04	0.54	314.88	1316.03	1.01	12.34	0.00	12.34	0.00	3.11	0.00	0.00	0.00	0.00	16.87	0.00	0.	0.00
111	2.490	29.06	0.55	319.48	1330.18	1.02	12.34	0.00	12.34	0.00	3.10	0.00	0.00	0.00	0.00	17.15	0.00	0.	0.00
112	2.480	29.07	0.56	324.07	1344.31	1.03	12.35	0.00	12.35	0.00	3.10	0.00	0.00	0.00	0.00	17.42	0.00	0.	0.00
113	2.470	29.09	0.57	328.64	1358.41	1.04	12.35	0.00	12.35	0.00	3.10	0.00	0.00	0.00	0.00	17.70	0.00	0.	0.00
114	2.460	29.10	0.58		1372.47	1.05	12.36	0.00	12.36	0.00	3.09	0.00	0.00	0.00	0.00	17.98	0.00	0.	0.00
115	2.450	29.12	0.59	337.77	1386.50	1.06	12.36	0.00	12.36	0.00	3.09	0.00	0.00	0.00	0.00	18.26	0.00	0.	0.00
116	2.440	29.13	0.60	342.31	1400.51	1.07	12.36	0.00	12.36	0.00	3.08	0.00	0.00	0.00	0.00	18.54	0.00	0.	0.00
117	2.430	29.15	0.61	346.85	1414.49	1.08	12.36	0.00	12.36	0.00	3.08	0.00	0.00	0.00	0.00	18.82	0.00	0.	0.00
118	2.420	29.17	0.62	351.38	1428.44	1.09	12.37	0.00	12.37	0.00	3.07	0.00	0.00	0.00	0.00	19.10	0.00	0.	0.00
119	2.410	29.18	0.63	355.90	1442.36	1.10	12.37	0.00	12.37	0.00	3.07	0.00	0.00	0.00	0.00	19.38	0.00	0.	0.00
120	2.400	29.20	0.64		1456.25	1.11	12.37	0.00	12.37	0.00	3.06	0.00	0.00	0.00	0.00	19.66	0.00	0.	0.00
121	2.390	29.21	0.65		1470.12	1.12	12.37	0.00	12.37	0.00	3.06	0.00	0.00	0.00	0.00	19.93	0.00	0.	0.00
122	2.380	29.23	0.66	369.40	1483.96	1.13	12.37	0.00	12.37	0.00	3.05	0.00	0.00	0.00	0.00	20.21	0.00	0.	0.00
123	2.370	29.24	0.67		1497.77	1.14	12.37	0.00	12.37	0.00	3.04	0.00	0.00	0.00	0.00	20.49	0.00	0.	0.00
124	2.360	29.26	0.68	378.37	1511.56	1.15	12.36	0.00	12.36	0.00	3.04	0.00	0.00	0.00	0.00	20.77	0.00	0.	0.00
125	2.350	29.27	0.69	382.83	1525.32	1.16	12.36	0.00	12.36	0.00	3.03	0.00	0.00	0.00	0.00	21.05	0.00	0.	0.00
126	2.340	29.29	0.70	387.29	1539.06	1.17	12.36	0.00	12.36	0.00	3.03	0.00	0.00	0.00	0.00	21.33	0.00	0.	0.00

127	2.330	29.31			1552.77		12.36		12.36	0.00	3.02	0.00	0.00	0.00		21.61	0.00	0.	0.00
128	2.320	29.32	0.72	396.19	1566.46		12.36	0.00	12.36	0.00	3.01	0.00	0.00	0.00	0.00	21.89	0.00	0.	0.00
129	2.310	29.34	0.73	400.63	1580.13		12.36	0.00	12.36	0.00	3.01	0.00	0.00	0.00	0.00	22.17	0.00	0.	0.00
130	2.300	29.35	0.74	405.06	1593.77		12.35	0.00	12.35	0.00	3.00	0.00	0.00	0.00	0.00	22.44	0.00	0.	0.00
131	2.290	29.37	0.75	409.48	1607.39		12.35	0.00	12.35	0.00	2.99	0.00	0.00	0.00	0.00	22.72	0.00	0.	0.00
132	2.280	29.38	0.76	413.89	1620.99		12.35	0.00	12.35	0.00	2.99	0.00	0.00	0.00	0.00	23.00	0.00	0.	0.00
133	2.270	29.40	0.77	418.30	1634.56	1.24	12.35	0.00	12.35	0.00	2.98	0.00	0.00	0.00	0.00	23.28	0.00	0.	0.00
134	2.260	29.42	0.78	422.70	1648.11		12.35	0.00	12.35	0.00	2.97	0.00	0.00	0.00	0.00	23.56	0.00	0.	0.00
135	2.250	29.43	0.79	427.09	1661.65		12.35	0.00	12.35	0.00	2.97	0.00	0.00	0.00	0.00	23.84	0.00	0.	0.00
136	2.240	29.45	0.80	431.48	1675.16	1.28	12.34	0.00	12.34	0.00	2.96	0.00	0.00	0.00	0.00	24.12	0.00	0.	0.00
137	2.230	29.46	0.81	435.86	1688.64		12.34	0.00	12.34	0.00	2.95	0.00	0.00	0.00	0.00	24.40	0.00	0.	0.00
138	2.220	29.48	0.82	440.23	1702.11		12.34	0.00	12.34	0.00	2.95	0.00	0.00	0.00	0.00	24.68	0.00	0.	0.00
139	2.210	29.49	0.83	444.60	1715.56		12.34	0.00	12.34	0.00	2.94	0.00	0.00	0.00	0.00	24.95	0.00	0.	0.00
140	2.200	29.51	0.84		1728.98		12.34	0.00	12.34	0.00	2.94	0.00	0.00	0.00	0.00	25.23	0.00	0.	0.00
141	2.190	29.53	0.85		1742.39		12.34	0.00	12.34	0.00	2.93	0.00	0.00	0.00	0.00	25.51	0.00	0.	0.00
142	2.180	29.54	0.86	457.66	1755.78		12.34	0.00	12.34	0.00	2.92	0.00	0.00	0.00	0.00	25.79	0.00	0.	0.00
143	2.170	29.56	0.87	462.00	1769.14	1.36	12.34	0.00	12.34	0.00	2.92	0.00	0.00	0.00	0.00	26.07	0.00	0.	0.00
144	2.160	29.57	0.88	466.33	1782.49	1.37	12.35	0.00	12.35	0.00	2.91	0.00	0.00	0.00	0.00	26.35	0.00	0.	0.00
145	2.150	29.59	0.89	470.66	1795.82	1.38	12.35	0.00	12.35	0.00	2.90	0.00	0.00	0.00	0.00	26.63	0.00	0.	0.00
146	2.140	29.60	0.90	474.98	1809.13	1.40	12.35	0.00	12.35	0.00	2.90	0.00	0.00	0.00	0.00	26.91	0.00	0.	0.00
147	2.130	29.62	0.91	479.29	1822.42	1.41	12.35	0.00	12.35	0.00	2.89	0.00	0.00	0.00	0.00	27.19	0.00	0.	0.00
148	2.120	29.64	0.93	483.60	1835.69	1.42	12.36	0.00	12.36	0.00	2.88	0.00	0.00	0.00	0.00	27.46	0.00	0.	0.00
149	2.110	29.65	0.94	487.91	1848.95	1.44	12.36	0.00	12.36	0.00	2.88	0.00	0.00	0.00	0.00	27.74	0.00	0.	0.00
150	2.100	29.67	0.95	492.20	1862.18	1.45	12.37	0.00	12.37	0.00	2.87	0.00	0.00	0.00	0.00	28.02	0.00	0.	0.00
151	2.090	29.68	0.96	496.50	1875.40	1.47	12.37	0.00	12.37	0.00	2.87	0.00	0.00	0.00	0.00	28.30	0.00	0.	0.00
152	2.080	29.70	0.97	500.78	1888.61	1.48	12.38	0.00	12.38	0.00	2.86	0.00	0.00	0.00	0.00	28.58	0.00	0.	0.00
153	2.070	29.71	0.98	505.06	1901.79	1.50	12.39	0.00	12.39	0.00	2.86	0.00	0.00	0.00	0.00	28.86	0.00	0.	0.00
154	2.060	29.73	0.99	509.34	1914.96	1.51	12.39	0.00	12.39	0.00	2.85	0.00	0.00	0.00	0.00	29.14	0.00	0.	0.00
155	2.050	29.74	1.00	513.61	1928.11	1.53	12.40	0.00	12.40	0.00	2.85	0.00	0.00	0.00	0.00	29.42	0.00	0.	0.00
156	2.040	29.76	1.01	517.87	1941.24	1.55	12.41	0.00	12.41	0.00	2.84	0.00	0.00	0.00	0.00	29.70	0.00	0.	0.00
157	2.030	29.78	1.02	522.13	1954.36	1.56	12.42	0.00	12.42	0.00	2.84	0.00	0.00	0.00	0.00	29.97	0.00	0.	0.00
158	2.020	29.79	1.03	526.39	1967.46	1.58	12.44	0.00	12.44	0.00	2.83	0.00	0.00	0.00	0.00	30.25	0.00	0.	0.00
159	2.010	29.81	1.04	530.63	1980.55	1.60	12.45	0.00	12.45	0.00	2.83	0.00	0.00	0.00	0.00	30.53	0.00	0.	0.00
160	2.000	29.82	1.05	534.88	1993.62	1.62	12.46	0.00	12.46	0.00	2.83	0.00	0.00	0.00	0.00	30.81	0.00	0.	0.00
161	1.990	29.84	1.06	539.12	2006.68	1.64	12.48	0.00	12.48	0.00	2.82	0.00	0.00	0.00	0.00	31.09	0.00	0.	0.00
162	1.980	29.85	1.07	543.35	2019.72	1.66	12.49	0.00	12.49	0.00	2.82	0.00	0.00	0.00	0.00	31.37	0.00	0.	0.00
163	1.970	29.87	1.08	547.58	2032.74	1.68	12.51	0.00	12.51	0.00	2.82	0.00	0.00	0.00	0.00	31.65	0.00	0.	0.00
164	1.960	29.89	1.09	551.80	2045.75	1.71	12.53	0.00	12.53	0.00	2.82	0.00	0.00	0.00	0.00	31.93	0.00	0.	0.00
165	1.950	29.90	1.10	556.02	2058.75	1.73	12.55	0.00	12.55	0.00	2.82	0.00	0.00	0.00	0.00	32.21	0.00	0.	0.00
166	1.940	29.92	1.11	560.24	2071.73	1.76	12.57	0.00	12.57	0.00	2.82	0.00	0.00	0.00	0.00	32.48	0.00	0.	0.00
167	1.930	29.93	1.12	564.45	2084.69	1.79	12.60	0.00	12.60	0.00	2.82	0.00	0.00	0.00	0.00	32.76	0.00	0.	0.00
168	1.920	29.95	1.13	568.65	2097.64	1.82	12.62	0.00	12.62	0.00	2.82	0.00	0.00	0.00	0.00	33.04	0.00	0.	0.00
169	1.910	29.96	1.14	572.85	2110.58	1.85	12.65	0.00	12.65	0.00	2.82	0.00	0.00	0.00	0.00	33.32	0.00	0.	0.00
170	1.900	29.98	1.15	577.05	2123.50	1.88	12.67	0.00	12.67	0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 3 RKM 1.9 to 1.5

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

****	**************************************																	
ELEM NO.	TYPE	FLOW	TEMP deg C	SALN ppt		Conduct umhos/cm					EBOD#2 mg/L					CHL A µg/L		NCM
171	UPR RCH	0.00450	29.98	1.15	577.05	2123.50	1.88	12.67	0.00	12.67	0.00	2.82	0.00	0.00	0.00	33.60	0.00	0.00

ELEM NO.	BEGIN	ENDING		FLOW	PCT EFF	ADVCTV VELO	TRAV	EL I	DEPTH	WIDTH	VOL	UME	SURFACE			TIDAL PRISM	TIDA1		SPRSN	MEA VEL			
NO.	DIST km	DIST km		m³/s	EFF	wello m/s		.ME iys	m	m		m³	AREA m²		REA m²	PKISM m³	m/s		m^2/s	m/			
171	1.90	1.89	0 0	0450	82.2	0.00014	0	85	1.19	27.74	329	70	277.37	1 32	.98	4133.82	0.003	3	0.197	0.00	3		
172	1.89	1.88			82.2	0.00014		85	1.19	27.74	329		277.37			4194.70	0.003		0.200	0.00			
173	1.88	1.87			82.2	0.00014		85	1.19	27.74	329		277.37			4255.58	0.003		0.203	0.00			
174	1.87	1.86			82.2	0.00014		85	1.19	27.74	329		277.37			4316.45	0.003		0.206	0.00			
175	1.86	1.85			82.2	0.00014		85	1.19	27.74	329		277.37			4377.33	0.003		0.200	0.00			
176	1.85	1.84			82.2	0.00014		85	1.19	27.74	329		277.37			4438.21	0.003		0.211	0.00			
177	1.84	1.83			82.2	0.00014		85	1.19	27.74	329		277.37			4430.21	0.003		0.211	0.00			
178	1.83	1.82			82.2	0.00014		85	1.19	27.74	329		277.37			4559.96	0.003		0.214	0.00			
179	1.82	1.81			82.2	0.00014		85	1.19	27.74	329		277.37			4620.84	0.003		0.217	0.00			
180	1.81	1.80			82.2	0.00014		85	1.19	27.74	329		277.37			4681.72	0.003		0.223	0.00			
181	1.80	1.79			82.2	0.00014		85	1.19	27.74	329		277.37			4742.59	0.003		0.226	0.00			
182	1.79	1.78			82.2	0.00014		85	1.19	27.74	329		277.37			4803.47	0.003		0.229	0.00			
183					82.2	0.00014		85	1.19	27.74	329		277.37				0.003		0.229	0.00			
	1.78	1.77			82.2	0.00014		85		27.74	329		277.37			4864.35 4925.22	0.003		0.232	0.00			
184	1.77	1.76							1.19														
185	1.76	1.75			82.2	0.00014		85	1.19	27.74	329		277.37			4986.10	0.003		0.237	0.00			
186	1.75	1.74			82.2	0.00014		85	1.19	27.74	329		277.37			5046.98	0.003		0.240	0.00			
187	1.74	1.73			82.2	0.00014		85	1.19	27.74	329		277.37			5107.85	0.004		0.243	0.00			
188	1.73	1.72			82.2	0.00014		85	1.19	27.74	329		277.37			5168.73	0.004		0.246	0.00			
189	1.72	1.71			82.2	0.00014		85	1.19	27.74	329		277.37			5229.61	0.004		0.249	0.00			
190	1.71	1.70			82.2	0.00014		85	1.19	27.74	329		277.37			5290.49	0.004		0.252	0.00			
191	1.70	1.69			82.2	0.00014		85	1.19	27.74	329		277.37			5351.36	0.004		0.255	0.00			
192	1.69	1.68			82.2	0.00014		85	1.19	27.74	329		277.37			5412.24	0.004		0.258	0.00			
193	1.68	1.67			82.2	0.00014		85	1.19	27.74	329		277.37			5473.12	0.004		0.261	0.00			
194	1.67	1.66			82.2	0.00014		85	1.19	27.74	329		277.37			5533.99	0.004		0.263	0.00			
195	1.66	1.65			82.2	0.00014		85	1.19	27.74	329		277.37			5594.87	0.004		0.266	0.00			
196	1.65	1.64			82.2	0.00014		85	1.19	27.74	329		277.37			5655.75	0.004		0.269	0.00			
197	1.64	1.63			82.2	0.00014		85	1.19	27.74	329		277.37			5716.62	0.004		0.272	0.00			
198	1.63	1.62			82.2	0.00014		85	1.19	27.74	329		277.37			5777.50	0.004		0.275	0.00			
199	1.62	1.61			82.2	0.00014		85	1.19	27.74	329		277.37			5838.38	0.004		0.278	0.00			
200	1.61	1.60			82.2	0.00014		85	1.19	27.74	329		277.37			5899.25	0.004		0.281	0.00			
201	1.60	1.59			82.2	0.00014		85	1.19	27.74	329		277.37			5960.13	0.004		0.284	0.00			
202	1.59	1.58			82.2	0.00014		85	1.19	27.74	329		277.37			6021.01	0.004		0.287	0.00			
203	1.58	1.57			82.2	0.00014		85	1.19	27.74	329		277.37			6081.89	0.004		0.289	0.00			
204	1.57	1.56			82.2	0.00014		85	1.19	27.74	329		277.37			6142.76	0.004		0.292	0.00			
205	1.56	1.55			82.2	0.00014		85	1.19	27.74	329		277.37			6203.64	0.004		0.295	0.00			
206	1.55	1.54			82.2	0.00014		85	1.19	27.74	329		277.37			6264.52	0.004		0.298	0.00			
207	1.54	1.53			82.2	0.00014		85	1.19	27.74	329		277.37			6325.39	0.004		0.301	0.00			
208	1.53	1.52			82.2	0.00014		85	1.19	27.74	329		277.37		.98	6386.27	0.004	4	0.304	0.00	4		
209	1.52	1.51			82.2	0.00014		85	1.19	27.74	329		277.37			6447.15	0.004		0.307	0.00			
210	1.51	1.50	0.0	0450	82.2	0.00014	0.	85	1.19	27.74	329	.79	277.37	32	.98	6508.02	0.004	4	0.310	0.00	4		
TOT							33.	93			13191	72	11094.80)									
AVG						0.0001	٠٠.	,,	1.19	27.74	1012I	. / _	±±094.00		.98								
CUM						0.0001	95.	0 0	1.19	21.14				32	.98								
COM							95.	00															
****	*****	*****	*****	*****	****	*****	BIOLOGI	CAL A	ID PHYS:	ICAL CO	EFFICI:	ENTS *	******	****	*****	*****	*****	*****	*****	*			
ELEM	ENDING	SAT	REAER	BOD#1	BOD#1	ABOD#1	BOD#2	BOD#2	ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST		RATE	DECAY			DECAY	SETT	DECAY	SOD	SOD	SOD		SETT	DECAY		RATE	SRCE	PROD	PROD	DECAY	DECAY	SETT
		mq/L	1/da	1/da		1/da	1/da	1/da	1/da	*	*	*		1/da	1/da		1/da	*	**	**	1/da	1/da	1/da
		J.		,		,			,														
171	1.890	7.51	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.63	5.63	5.63	0.12	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
172	1.880	7.51	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.63			0.12	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00

173	1.870	7.51	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.64	5.64	5.64	0.13	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
174	1.860	7.51	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.64	5.64	5.64	0.13	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
175	1.850	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.65	5.65	5.65	0.13	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
176	1.840	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.65	5.65	5.65	0.13	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
177	1.830	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.66	5.66	5.66	0.13	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
178	1.820	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.66	5.66	5.66	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
179	1.810	7.50	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.67	5.67	5.67	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
180	1.800	7.49	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.67	5.67	5.67	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
181	1.790	7.49	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.68	5.68	5.68	0.14	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
182	1.780	7.49	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.68	5.68	5.68	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
183	1.770	7.49	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.69	5.69	5.69	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
184	1.760	7.49	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.69	5.69	5.69	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
185	1.750	7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.70	5.70	5.70	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
186	1.740	7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.70	5.70	5.70	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
187	1.730	7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.70	5.70	5.70	0.14	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
188	1.720	7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.71	5.71	5.71	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
189	1.710	7.48	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.71	5.71	5.71	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
190	1.700	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.72	5.72	5.72	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
191	1.690	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.72	5.72	5.72	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
192	1.680	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.73	5.73	5.73	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
193	1.670	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.73	5.73	5.73	0.14	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
194	1.660	7.47	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.74	5.74	5.74	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
195	1.650	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.74	5.74	5.74	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
196	1.640	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.75	5.75	5.75	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
197	1.630	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.75	5.75	5.75	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
198	1.620	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.76	5.76	5.76	0.14	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
199	1.610	7.46	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.76	5.76	5.76	0.15	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
200	1.600	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.77	5.77	5.77	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
201	1.590	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.77	5.77	5.77	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
202	1.580	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.78	5.78	5.78	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
203	1.570	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.78	5.78	5.78	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
204	1.560	7.45	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.79	5.79	5.79	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
205	1.550	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.79	5.79	5.79	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
206	1.540	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.80	5.80	5.80	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
207	1.530	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.80	5.80	5.80	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
208	1.520	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.81	5.81	5.81	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
209	1.510	7.44	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.81	5.81	5.81	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
210	1.500	7.43	0.71	0.09	0.06	0.00	0.00	0.00	0.00	5.82	5.82	5.82	0.15	0.06	0.00	0.00	0.00	0.00	2.72	0.00	0.00	0.00	0.00
AVG 2	O DEG C R	RATE	0.59	0.06	0.05	0.00	0.00	0.00	0.00	3.00			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* g/m²/d ** mg/L/day

ELEM NO.	ENDING DIST	TEMP DEG C			Conduct umhos/cm					EBOD#2 mg/L			NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
171	1.890	29.99	1.16	581.06	2135.88	1.91	12.70	0.00	12.70	0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
172	1.880	30.01	1.16	584.91	2147.71	1.94	12.73	0.00	12.73	0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
173	1.870	30.02	1.17	588.72	2159.46	1.97	12.76	0.00	12.76	0.00	2.82	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
174	1.860	30.03	1.18	592.51	2171.12	1.99	12.78	0.00	12.78	0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
175	1.850	30.05	1.19	596.26	2182.69	2.02	12.81	0.00	12.81	0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
176	1.840	30.06	1.19	599.99	2194.18	2.04	12.83	0.00	12.83	0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
177	1.830	30.07	1.20	603.70	2205.58	2.06	12.86	0.00	12.86	0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
178	1.820	30.09	1.21	607.37	2216.91	2.08	12.88	0.00	12.88	0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
179	1.810	30.10	1.22	611.02	2228.16	2.09	12.91	0.00	12.91	0.00	2.83	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
180	1.800	30.11	1.23	614.65	2239.33	2.11	12.93	0.00	12.93	0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00

181	1.790	30.13	1.23	618.25	2250.42	2.12		0.00	12.96	0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
182	1.780	30.14	1.24	621.83	2261.44	2.14	12.98	0.00	12.98	0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
183	1.770	30.15	1.25	625.38	2272.39	2.15	13.01	0.00	13.01	0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
184	1.760	30.17	1.25	628.91	2283.26	2.16	13.03	0.00	13.03	0.00	2.84	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
185	1.750	30.18	1.26	632.42	2294.07	2.18	13.06	0.00	13.06	0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
186	1.740	30.19	1.27	635.91	2304.80	2.19	13.08	0.00	13.08	0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
187	1.730	30.21	1.28	639.37	2315.47	2.20	13.11	0.00	13.11	0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
188	1.720	30.22	1.28	642.81	2326.07	2.21	13.13	0.00	13.13	0.00	2.85	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
189	1.710	30.23	1.29	646.23	2336.61	2.22	13.16	0.00	13.16	0.00	2.86	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
190	1.700	30.25	1.30	649.63	2347.08	2.23	13.19	0.00	13.19	0.00	2.86	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
191	1.690	30.26	1.31	653.01	2357.49	2.25	13.21	0.00	13.21	0.00	2.86	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
192	1.680	30.27	1.32	656.37	2367.84	2.26	13.24	0.00	13.24	0.00	2.87	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
193	1.670	30.28	1.32	659.71	2378.13	2.27	13.26	0.00	13.26	0.00	2.87	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
194	1.660	30.30	1.33	663.03	2388.36	2.28	13.29	0.00	13.29	0.00	2.87	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
195	1.650	30.31	1.34	666.33	2398.53	2.29	13.32	0.00	13.32	0.00	2.88	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
196	1.640	30.32	1.35	669.62	2408.64	2.30	13.34	0.00	13.34	0.00	2.88	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
197	1.630	30.34	1.35	672.88	2418.69	2.31	13.37	0.00	13.37	0.00	2.88	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
198	1.620	30.35	1.36	676.13	2428.69	2.33	13.40	0.00	13.40	0.00	2.89	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
199	1.610	30.36	1.37	679.35	2438.63	2.34	13.43	0.00	13.43	0.00	2.89	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
200	1.600	30.38	1.38	682.57	2448.52	2.35	13.46	0.00	13.46	0.00	2.90	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
201	1.590	30.39	1.38	685.76	2458.36	2.37	13.48	0.00	13.48	0.00	2.90	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
202	1.580	30.40	1.39	688.93	2468.14	2.38	13.51	0.00	13.51	0.00	2.91	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
203	1.570	30.42	1.40	692.09	2477.87	2.40	13.54	0.00	13.54	0.00	2.91	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
204	1.560	30.43	1.41	695.24	2487.56	2.41	13.57	0.00	13.57	0.00	2.92	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
205	1.550	30.44	1.41	698.36	2497.19	2.43	13.60	0.00	13.60	0.00	2.92	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
206	1.540	30.46	1.42	701.47	2506.77	2.45	13.63	0.00	13.63	0.00	2.93	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
207	1.530	30.47	1.43	704.57	2516.30	2.47	13.67	0.00	13.67	0.00	2.93	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
208	1.520	30.48	1.44	707.65	2525.79	2.49	13.70	0.00	13.70	0.00	2.94	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
209	1.510	30.50	1.44	710.71	2535.23	2.51	13.73	0.00	13.73	0.00	2.94	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00
210	1.500	30.51	1.45	713.76	2544.62	2.53	13.76	0.00	13.76	0.00	2.95	0.00	0.00	0.00	0.00	33.60	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 4 RKM 1.5 to 1.1

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

	ABACH INFOID																	
ELEM NO.	TYPE	FLOW	TEMP deg C	SALN ppt	Chloride mg/L	Conduct umhos/cm			- "		EBOD#2 mg/L	ORGN mg/L		NO3+2 mg/L		CHL A µg/L	COLI #/100mL	NCM
211	UPR RCH	0.00450	30.51	1.45	713.76	2544.62	2.53	13.76	0.00	13.76	0.00	2.95	0.00	0.00	0.00	33.60	0.00	0.00

ELEM BEGIN ENDING FLOW PCT ADVCTV TRAVEL DEPTH WIDTH VOLUME SURFACE X-SECT TIDAL TIDAL DISPRSN MEAN NO. DIST DIST VELO TIME AREA AREA PRISM VELO VELO m^3/s km km m/s days m² m² m 3 m/s m²/s m/s m m 211 1.50 1.49 0.00450 82.2 0.00016 0.74 1.02 28.35 289.41 283.46 28.94 6570.24 0.005 0.314 0.005 212 1.49 1.48 0.00450 82.2 0.00016 0.74 1.02 28.35 289.41 283.46 28.94 6632.45 0.005 0.317 0.005 213 1.48 1.47 0.00450 82.2 0.00016 0.74 1.02 28.35 289.41 283.46 28.94 6694.67 0.005 0.320 0.005 1.47 1.46 0.00450 82.2 0.00016 0.74 1.02 28.35 289.41 283.46 28.94 6756.88 0.323 0.005 214 0.005 1.46 1.45 0.00016 0.74 283.46 28.94 6819.09 0.005 215 0.00450 82.2 1.02 28.35 289.41 0.326 0.005 1.45 1.44 0.00450 82.2 0.00016 0.74 1.02 28.35 289.41 283.46 28.94 6881.31 0.005 0.329 216 0.005 0.00450 82.2 0.00016 1.02 289.41 283.46 28.94 6943.52 0.005 217 1.44 1.43 0.74 28.35 0.332 0.005 1.02 28.35 218 1.43 0.00450 82.2 0.00016 289.41 283.46 28.94 7005.74 0.005 0.335 0.005 1.42 0.74 219 1.42 1.41 0.00450 82.2 0.00016 0.74 1.02 28.35 289.41 283.46 28.94 7067.95 0.006 0.338 0.006

220	1.41	1.40	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7130.16	0.006	0.341	0.006
221	1.40	1.39	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7192.38	0.006	0.344	0.006
222	1.39	1.38	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7254.59	0.006	0.346	0.006
223	1.38	1.37	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7316.80	0.006	0.349	0.006
224	1.37	1.36	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7379.02	0.006	0.352	0.006
225	1.36	1.35	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7441.23	0.006	0.355	0.006
226	1.35	1.34	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7503.45	0.006	0.358	0.006
227	1.34	1.33	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7565.66	0.006	0.361	0.006
228	1.33	1.32	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7627.87	0.006	0.364	0.006
229	1.32	1.31	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7690.09	0.006	0.367	0.006
230	1.31	1.30	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7752.30	0.006	0.370	0.006
231	1.30	1.29	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7814.52	0.006	0.373	0.006
232	1.29	1.28	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7876.73	0.006	0.376	0.006
233	1.28	1.27	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	7938.94	0.006	0.379	0.006
234	1.27	1.26	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8001.16	0.006	0.382	0.006
235	1.26	1.25	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8063.37	0.006	0.385	0.006
236	1.25	1.24	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8125.58	0.006	0.388	0.006
237	1.24	1.23	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8187.80	0.006	0.391	0.006
238	1.23	1.22	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8250.01	0.006	0.394	0.006
239	1.22	1.21	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8312.23	0.006	0.397	0.007
240	1.21	1.20	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8374.44	0.000	0.400	0.007
241	1.20	1.19	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8436.65	0.007	0.403	0.007
242	1.19	1.18	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8498.87	0.007	0.406	0.007
242	1.18	1.17	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8561.08	0.007	0.409	0.007
243	1.17	1.16	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8623.30	0.007	0.412	0.007
245	1.16	1.15	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8685.51	0.007	0.415	0.007
245	1.15	1.13	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8747.72	0.007	0.413	0.007
240	1.13	1.14	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8809.94	0.007	0.410	0.007
247	1.14	1.13	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8872.15	0.007	0.421	0.007
													0.007		
249	1.12	1.11	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8934.37		0.427	0.007
250	1.11	1.10	0.00450	82.2	0.00016	0.74	1.02	28.35	289.41	283.46	28.94	8996.58	0.007	0.430	0.007
TOT						20 77			11576.51	11338.40					
					0 0000	29.77	1 00	00 05	113/0.31	11338.40	00 04				
AVG					0.0002	105 66	1.02	28.35			28.94				
CUM						125.66									

ELEM NO.	ENDING DIST	SAT D.O. mg/L	REAER RATE 1/da	BOD#1 DECAY 1/da	BOD#1 SETT 1/da	ABOD#1 DECAY 1/da	BOD#2 DECAY 1/da	BOD#2 SETT 1/da	ABOD#2 DECAY 1/da	BKGD SOD *	FULL SOD *	CORR SOD *	ORGN DECAY 1/da	ORGN SETT 1/da	NH3 DECAY 1/da	NH3 SRCE *	DENIT RATE 1/da	PO4 SRCE *	ALG PROD **	MAC PROD **	COLI DECAY 1/da	NCM DECAY 1/da	NCM SETT 1/da
211 212	1.490	7.43	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.66	4.66	4.66	0.15	0.06	0.00	0.00	0.00	0.00	2.71	0.00	0.00	0.00	0.00
213	1.470		0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.66	4.66	4.66	0.15	0.06	0.00	0.00	0.00	0.00	2.70	0.00	0.00	0.00	0.00
214		7.43	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.67	4.67	4.67	0.15	0.06	0.00	0.00	0.00	0.00	2.69	0.00	0.00	0.00	0.00
215	1.450	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.67	4.67	4.67	0.15	0.06	0.00	0.00	0.00	0.00	2.68	0.00	0.00	0.00	0.00
216	1.440	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.68	4.68	4.68	0.16	0.06	0.00	0.00	0.00	0.00	2.67	0.00	0.00	0.00	0.00
217	1.430	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.68	4.68	4.68	0.16	0.06	0.00	0.00	0.00	0.00	2.66	0.00	0.00	0.00	0.00
218	1.420	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.68	4.68	4.68	0.16	0.06	0.00	0.00	0.00	0.00	2.65	0.00	0.00	0.00	0.00
219	1.410	7.42	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.69	4.69	4.69	0.16	0.06	0.00	0.00	0.00	0.00	2.64	0.00	0.00	0.00	0.00
220	1.400	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.69	4.69	4.69	0.16	0.06	0.00	0.00	0.00	0.00	2.64	0.00	0.00	0.00	0.00
221	1.390	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.70	4.70	4.70	0.16	0.06	0.00	0.00	0.00	0.00	2.63	0.00	0.00	0.00	0.00
222	1.380	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.70	4.70	4.70	0.16	0.06	0.00	0.00	0.00	0.00	2.62	0.00	0.00	0.00	0.00
223	1.370	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.70	4.70	4.70	0.16	0.06	0.00	0.00	0.00	0.00	2.61	0.00	0.00	0.00	0.00
224	1.360	7.41	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.71	4.71	4.71	0.16	0.06	0.00	0.00	0.00	0.00	2.60	0.00	0.00	0.00	0.00
225	1.350	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.71	4.71	4.71	0.16	0.06	0.00	0.00	0.00	0.00	2.59	0.00	0.00	0.00	0.00
226	1.340	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.71	4.71	4.71	0.16	0.06	0.00	0.00	0.00	0.00	2.58	0.00	0.00	0.00	0.00

227	1.330	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00	4.72	4.72	4.72	0.16	0.06	0.00	0.00	0.00	0.00	2.57	0.00	0.00	0.00	0.00
228	1.320		0.83	0.09	0.06	0.00		0.00		4.72				0.06	0.00			0.00			0.00	0.00	0.00
229	1.310	7.40	0.83	0.09	0.06	0.00	0.00	0.00	0.00		4.73			0.06	0.00	0.00	0.00	0.00	2.56	0.00	0.00	0.00	0.00
230	1.300		0.84	0.09	0.06	0.00	0.00			4.73				0.06	0.00				2.55	0.00	0.00	0.00	0.00
231	1.290		0.84	0.09	0.06	0.00	0.00	0.00		4.73				0.06		0.00		0.00		0.00	0.00	0.00	0.00
232	1.280		0.84	0.09	0.06	0.00	0.00			4.74				0.06	0.00			0.00			0.00	0.00	0.00
233	1.270		0.84	0.09		0.00	0.00			4.74				0.06	0.00			0.00			0.00	0.00	0.00
234	1.260		0.84	0.09	0.06	0.00	0.00			4.75				0.06	0.00				2.51		0.00	0.00	0.00
235	1.250		0.84		0.06	0.00	0.00			4.75			0.16		0.00		0.00		2.50	0.00	0.00	0.00	0.00
236	1.240	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.75	4.75	4.75	0.16	0.06	0.00	0.00	0.00	0.00	2.49	0.00	0.00	0.00	0.00
237	1.230	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.76	4.76	4.76	0.16	0.06	0.00	0.00	0.00	0.00	2.48	0.00	0.00	0.00	0.00
238	1.220	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.76	4.76	4.76	0.17	0.06	0.00	0.00	0.00	0.00	2.47	0.00	0.00	0.00	0.00
239	1.210	7.38	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.77	4.77	4.77	0.17	0.06	0.00	0.00	0.00	0.00	2.47	0.00	0.00	0.00	0.00
240	1.200	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.77	4.77	4.77	0.17	0.06	0.00	0.00	0.00	0.00	2.46	0.00	0.00	0.00	0.00
241	1.190	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.77	4.77	4.77	0.17	0.06	0.00	0.00	0.00	0.00	2.45	0.00	0.00	0.00	0.00
242	1.180	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.78	4.78	4.78	0.17	0.06	0.00	0.00	0.00	0.00	2.44	0.00	0.00	0.00	0.00
243	1.170	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.78	4.78	4.78	0.17	0.06	0.00	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00
244	1.160	7.37	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.79	4.79	4.79	0.17	0.06	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
245	1.150	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.79	4.79	4.79	0.17	0.06	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
246	1.140	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.79	4.79	4.79	0.17	0.06	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
247	1.130	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.80	4.80	4.80	0.17	0.06	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
248	1.120	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.80	4.80	4.80	0.17	0.06	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
249	1.110	7.36	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.81	4.81	4.81	0.17	0.06	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
250	1.100	7.35	0.84	0.09	0.06	0.00	0.00	0.00	0.00	4.81	4.81	4.81	0.17	0.06	0.00	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.00
AVG 2	DEG C	RATE	0.69	0.06	0.05	0.00	0.00	0.00	0.00	2.40			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* g/m²/d ** mg/L/day

ELEM ENDING TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 TOTN PHOS CHL A MACRO COLI NCM mg/L NO. DIST DEG C PPT mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L g/m³ #/100mL 1.490 30.52 1.46 716.99 2554.56 2.56 13.80 0.00 13.80 0.00 2.96 0.00 0.00 0.00 0.00 33.47 0.00 0.00 1.480 30.54 1.47 720.41 2565.11 2.59 13.83 0.00 13.83 0.00 2.97 0.00 33.34 0.00 212 0.00 0.00 0.00 0.00 723.83 2575.62 213 1.470 30.55 1.47 2.61 13.87 0.00 13.87 0.00 2.97 0.00 0.00 0.00 0.00 33.22 0.00 0.00 214 1.460 30.56 1.48 727.22 2586.09 2.63 13.90 0.00 13.90 0.00 2.98 0.00 0.00 0.00 0.00 33.09 0.00 0.00 1.450 30.58 1.49 215 730.61 2596.51 2.65 13.94 0.00 13.94 0.00 2.99 0.00 0.00 0.00 0.00 32.96 0.00 0.00 733.97 2606.88 2.67 13.97 0.00 13.97 0.00 216 1.440 30.59 1.50 0.00 3.00 0.00 0.00 0.00 0.00 32.83 0.00 217 1.430 30.60 1.50 737.33 2617.21 2.69 14.00 0.00 14.00 0.00 3.00 0.00 0.00 0.00 0.00 32.71 0.00 0.00 1.420 30.62 1.51 218 740.67 2627.50 2.71 14.03 0.00 14.03 0.00 3.01 0.00 0.00 0.00 0.00 32.58 0.00 0.00 1.410 30.63 1.52 743.99 2637.74 2.73 14.06 0.00 14.06 0.00 3.02 0.00 0.00 0.00 0.00 32.45 0.00 0.00 220 1.400 30.64 1.53 747.30 2647.94 2.74 14.09 0.00 14.09 0.00 3.02 0.00 0.00 0.00 0.00 32.32 0.00 0.00 1.390 30.66 1.54 750.60 2658.10 2.76 14.12 0.00 14.12 221 0.00 3.03 0.00 0.00 0.00 0.00 32.20 0.00 0.00 222 1.380 30.67 1.54 753.88 2668.22 2.77 14.15 0.00 14.15 0.00 3.03 0.00 0.00 0.00 0.00 32.07 0.00 0.00 1.370 30.68 1.55 757.16 2678.30 2.79 14.17 0.00 223 0.00 14.17 0.00 3.04 0.00 0.00 0.00 0.00 31.94 0.00 0. 0.00 0.00 31.81 1.360 30.70 1.56 760.41 2688.33 2.80 14.20 0.00 14.20 0.00 3.05 0.00 0.00 0.00 224 0.00 0. 225 1.350 30.71 1.57 763.66 2698.33 2.82 14.22 0.00 14.22 0.00 3.05 0.00 0.00 0.00 0.00 31.69 0.00 0. 0.00 1.340 30.72 1.57 766.89 2708.28 2.83 14.25 0.00 14.25 0.00 3.06 0.00 0.00 0.00 31.56 0.00 226 0.00 0.00 0. 227 1.330 30.74 1.58 770.11 2718.20 2.85 14.27 0.00 14.27 0.00 3.07 0.00 0.00 0.00 0.00 31.43 0.00 0. 0.00 228 1.320 30.75 1.59 773.32 2728.07 2.86 14.29 0.00 14.29 0.00 3.07 0.00 0.00 0.00 0.00 31.30 0.00 0.00 776.51 2737.91 2.87 14.32 0.00 14.32 0.00 31.18 0.00 229 1.310 30.76 1.60 0.00 3.08 0.00 0.00 0.00 0.00 1.300 30.78 1.61 779.69 2747.71 2.89 14.34 0.00 14.34 230 0.00 3.08 0.00 0.00 0.00 0.00 31.05 0.00 0. 0.00 1.290 30.79 1.61 782.86 2757.48 0.00 14.36 0.00 0.00 231 2.91 14.36 3.09 0.00 0.00 0.00 0.00 30.92 0.00 0. 0.00 14.38 0.00 1.280 30.80 1.62 786.02 2767.20 2.92 14.38 3.09 0.00 0.00 0.00 30.80 0.00 232 0.00 0.00 0. 1.270 30.81 1.63 789.16 2776.89 0.00 14.40 0.00 3.10 0.00 233 2.94 14.40 0.00 0.00 0.00 0.00 30.67 0.00 0. 1.260 30.83 1.64 792.30 2786.55 2.96 14.42 0.00 14.42 0.00 3.11 0.00 0.00 0.00 30.54 0.00 0.00 0.00

235 236	1.250		1.64	795.42 798.53	2796.16 2805.74	2.98	14.44	0.00	14.44 14.46	0.00	3.11 3.12	0.00	0.00	0.00	0.00	30.41	0.00	0. 0.	0.00
237	1.230	30.87	1.66	801.63	2815.29	3.01	14.48	0.00	14.48	0.00	3.12	0.00	0.00	0.00	0.00	30.16	0.00	0.	0.00
238	1.220	30.88	1.67	804.72	2824.80	3.04	14.50	0.00	14.50	0.00	3.13	0.00	0.00	0.00	0.00	30.03	0.00	0.	0.00
239	1.210	30.89	1.67	807.79	2834.28	3.06	14.51	0.00	14.51	0.00	3.14	0.00	0.00	0.00	0.00	29.90	0.00	0.	0.00
240	1.200	30.91	1.68	810.86	2843.72	3.08	14.53	0.00	14.53	0.00	3.14	0.00	0.00	0.00	0.00	29.77	0.00	0.	0.00
241	1.190	30.92	1.69	813.92	2853.13	3.11	14.55	0.00	14.55	0.00	3.15	0.00	0.00	0.00	0.00	29.65	0.00	0.	0.00
242	1.180	30.93	1.70	816.96	2862.51	3.14	14.57	0.00	14.57	0.00	3.16	0.00	0.00	0.00	0.00	29.52	0.00	0.	0.00
243	1.170	30.95	1.71	819.99	2871.86	3.16	14.58	0.00	14.58	0.00	3.16	0.00	0.00	0.00	0.00	29.39	0.00	0.	0.00
244	1.160	30.96	1.71	823.02	2881.17	3.19	14.60	0.00	14.60	0.00	3.17	0.00	0.00	0.00	0.00	29.26	0.00	0.	0.00
245	1.150	30.97	1.72	826.03	2890.45	3.23	14.61	0.00	14.61	0.00	3.18	0.00	0.00	0.00	0.00	29.14	0.00	0.	0.00
246	1.140	30.99	1.73	829.03	2899.70	3.26	14.63	0.00	14.63	0.00	3.18	0.00	0.00	0.00	0.00	29.01	0.00	0.	0.00
247	1.130	31.00	1.74	832.02	2908.91	3.30	14.64	0.00	14.64	0.00	3.19	0.00	0.00	0.00	0.00	28.88	0.00	0.	0.00
248	1.120	31.01	1.74	835.01	2918.10	3.33	14.66	0.00	14.66	0.00	3.20	0.00	0.00	0.00	0.00	28.75	0.00	0.	0.00
249	1.110	31.03	1.75	837.98	2927.25	3.37	14.67	0.00	14.67	0.00	3.20	0.00	0.00	0.00	0.00	28.63	0.00	0.	0.00
250	1.100	31.04	1.76	840.94	2936.38	3.42	14.69	0.00	14.69	0.00	3.21	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

FINAL REPORT HEADWATER
REACH NO. 5 RKM 1.1 to 0.3

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

ELEM NO.	TYPE	FLOW	TEMP deg C	SALN (Conduct umhos/cm		- "										NCM
251	HDD DCH	0 00450	31 04	1 76	840 94	2936 38	3 12	14 69	0 00	1/ 69	0 00	3 21	0 00	0 00	0 00	28 50	0 00	0 00

						11111111	,		11010						
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLUME	SURFACE AREA	X-SECT AREA	TIDAL PRISM	TIDAL VELO	DISPRSN	MEAN VELO
110.	km	km	m³/s		m/s			***	m³	m²	m ²	m³	m/s	m²/s	m/s
	KIII	KIII	III - / S		III/ S	days	m	m	111 -	111-	111-	1111	111/5	III-/S	111/5
251	1.10	1.09	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9047.29	0.008	0.554	0.008
252	1.09	1.08	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9098.00	0.008	0.557	0.008
253	1.08	1.07	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9148.71	0.008	0.560	0.008
254	1.07	1.06	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9199.43	0.008	0.563	0.008
255	1.06	1.05	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9250.14	0.008	0.566	0.008
256	1.05	1.04	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9300.85	0.008	0.569	0.008
257	1.04	1.03	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9351.56	0.008	0.572	0.008
258	1.03	1.02	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9402.27	0.008	0.576	0.008
259	1.02	1.01	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9452.99	0.008	0.579	0.008
260	1.01	1.00	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9503.70	0.008	0.582	0.008
261	1.00	0.99	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9554.41	0.008	0.585	0.008
262	0.99	0.98	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9605.12	0.008	0.588	0.008
263	0.98	0.97	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9655.83	0.008	0.591	0.008
264	0.97	0.96	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9706.55	0.008	0.594	0.008
265	0.96	0.95	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9757.26	0.008	0.597	0.008
266	0.95	0.94	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9807.97	0.009	0.600	0.009
267	0.94	0.93	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9858.68	0.009	0.603	0.009
268	0.93	0.92	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9909.39	0.009	0.607	0.009
269	0.92	0.91	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	9960.11	0.009	0.610	0.009
270	0.91	0.90	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10010.82	0.009	0.613	0.009
271	0.90	0.89	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10061.53	0.009	0.616	0.009
272	0.89	0.88	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10112.24	0.009	0.619	0.009
273	0.88	0.87	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10162.95	0.009	0.622	0.009

TOT

274	0.87	0.86	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10213.67	0.009	0.625	0.009
275	0.86	0.85	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10264.38	0.009	0.628	0.009
276	0.85	0.84	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10315.09	0.009	0.631	0.009
277	0.84	0.83	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10365.80	0.009	0.634	0.009
278	0.83	0.82	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10416.51	0.009	0.638	0.009
279	0.82	0.81	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10467.22	0.009	0.641	0.009
280	0.81	0.80	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10517.94	0.009	0.644	0.009
281	0.80	0.79	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10568.65	0.009	0.647	0.009
282	0.79	0.78	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10619.36	0.009	0.650	0.009
												10670.07			
283	0.78	0.77	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00		0.009	0.653	0.009
284	0.77	0.76	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10720.78	0.009	0.656	0.009
285	0.76	0.75	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10771.50	0.009	0.659	0.009
286	0.75	0.74	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10822.21	0.009	0.662	0.009
287	0.74	0.73	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10872.92	0.009	0.665	0.009
288	0.73	0.72	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10923.63	0.009	0.669	0.010
289	0.72	0.71	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	10974.34	0.010	0.672	0.010
290	0.71	0.70	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11025.06	0.010	0.675	0.010
291	0.70	0.69	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11075.77	0.010	0.678	0.010
292	0.69	0.68	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11126.48	0.010	0.681	0.010
293	0.68	0.67	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11177.19	0.010	0.684	0.010
294			0.00450	82.2	0.00017			21.49	260.00	214.88	26.00	11227.90	0.010	0.687	0.010
	0.67	0.66				0.67	1.21								
295	0.66	0.65	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11278.62	0.010	0.690	0.010
296	0.65	0.64	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11329.33	0.010	0.693	0.010
297	0.64	0.63	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11380.04	0.010	0.696	0.010
298	0.63	0.62	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11430.75	0.010	0.700	0.010
299	0.62	0.61	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11481.46	0.010	0.703	0.010
300	0.61	0.60	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11532.17	0.010	0.706	0.010
301	0.60	0.59	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11582.89	0.010	0.709	0.010
302	0.59	0.58	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11633.60	0.010	0.712	0.010
303	0.58	0.57	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11684.31	0.010	0.715	0.010
304	0.57	0.56	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11735.02	0.010	0.718	0.010
305	0.56	0.55	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11785.73	0.010	0.721	0.010
306	0.55	0.54	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11836.45	0.010	0.724	0.010
307	0.54	0.53	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11887.16	0.010	0.727	0.010
308	0.53	0.52	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11937.87	0.010	0.731	0.010
309	0.52	0.51	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	11988.58	0.010	0.734	0.010
310	0.51	0.50	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12039.29	0.010	0.737	0.010
311	0.50	0.49	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12090.01	0.011	0.740	0.011
312	0.49	0.48	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12140.72	0.011	0.743	0.011
313	0.48	0.47	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12191.43	0.011	0.746	0.011
314	0.47	0.46	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12242.14	0.011	0.749	0.011
315	0.46	0.45	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12292.85	0.011	0.752	0.011
316	0.45	0.44	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12343.57	0.011	0.755	0.011
317	0.44	0.43	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12394.28	0.011	0.758	0.011
318	0.43	0.42	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12444.99	0.011	0.762	0.011
319	0.42	0.42	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12495.70	0.011	0.765	0.011
320	0.42	0.41	0.00450	82.2				21.49	260.00	214.88	26.00	12546.41		0.768	0.011
					0.00017	0.67	1.21						0.011		
321	0.40	0.39	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12597.12	0.011	0.771	0.011
322	0.39	0.38	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12647.84	0.011	0.774	0.011
323	0.38	0.37	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12698.55	0.011	0.777	0.011
324	0.37	0.36	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12749.26	0.011	0.780	0.011
325	0.36	0.35	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12799.97	0.011	0.783	0.011
326	0.35	0.34	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12850.68	0.011	0.786	0.011
327	0.34	0.33	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12901.40	0.011	0.789	0.011
328	0.33	0.32	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	12952.11	0.011	0.793	0.011
329	0.32	0.31	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88	26.00	13002.82	0.011	0.796	0.011
330	0.31	0.30	0.00450	82.2	0.00017	0.67	1.21	21.49	260.00	214.88		13053.53	0.011	0.799	0.011
											•				

20800.37 17190.40

53.50

299

0.610 7.31

0.91

0.10

0.07

0.00

0.00 0.00

AVG 0.0002 1.21 21.49 26.00

CUM 179.16

ELEM ENDING SAT REAER BOD#1 BOD#1 ABOD#1 BOD#2 BOD#2 ABOD#2 BKGD FULL CORR ORGN ORGN NH3 NH3 DENIT MAC COLI NCM NCM PO4 ALG NO. DIST D.O. RATE DECAY SETT DECAY DECAY SETT DECAY SOD SOD SOD DECAY SETT DECAY SRCE RATE SRCE PROD PROD DECAY DECAY SETT mg/L 1/da 251 1.090 7.35 0.90 0.09 0.06 0.00 0.00 0.00 0.00 3.81 3.81 3.81 0.17 0.06 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 252 1.080 7.35 0.09 0.06 0.00 0.00 0.00 0.00 3.81 3.81 3.81 0.18 0.06 0.00 0.00 0.00 0.00 0.90 0.00 0.00 2.37 0.00 0.00 253 0.00 0.00 0.00 3.81 3.81 3.81 0.00 1.070 7.35 0.90 0.09 0.06 0.00 0.18 0.06 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 254 1.060 7.35 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.81 3.81 3.81 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 255 3.82 1.050 7.35 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.82 3.82 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 256 1.040 7.35 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.82 3.82 3.82 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 257 1.030 7.35 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.82 3.82 3.82 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 258 1.020 7.35 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.82 3.82 3.82 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 259 1.010 7.35 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.82 3.82 3.82 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 7.34 0.00 0.00 0.00 3.82 3.82 3.82 2.37 260 1.000 0.90 0.09 0.07 0.00 0.18 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.83 261 0.990 7.34 0.90 0.09 0.07 0.00 0.00 0.00 0.00 3.83 3.83 0.18 0.07 0.00 0.00 0.00 0.00 2.37 0.00 0.00 0.00 0.00 7.34 0.00 3.83 3.83 0.10 0.07 0.00 0.00 3.83 0.00 0.00 2.38 262 0.980 0.90 0.00 0.18 0.07 0.00 0.00 0.00 0.00 0.00 0.00 7.34 0.00 0.00 0.00 3.83 3.83 3.83 263 0.970 0.90 0.10 0.07 0.00 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 264 0.960 7.34 0.10 0.07 0.00 0.00 0.00 0.00 3.83 3.83 3.83 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.90 0.00 7.34 0.00 3.83 3.83 3.83 265 0.950 0.90 0.10 0.07 0.00 0.00 0.00 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 266 0.940 7.34 0.90 0.10 0.07 0.00 0.00 0.00 0.00 3.83 3.83 3.83 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 267 0.930 7.34 0.90 0.10 0.07 0.00 0.00 0.00 0.00 3.84 3.84 3.84 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 0.00 3.84 3.84 3.84 0.00 0.00 2.38 268 0.920 7.34 0.90 0.10 0.07 0.00 0.00 0.00 0.18 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.84 3.84 3.84 0.18 0.07 0.00 0.00 2.38 269 0.910 7.34 0.90 0.10 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 270 0.900 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.84 3.84 3.84 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 271 0.890 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.84 3.84 3.84 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 272 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.84 3.84 3.84 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 0.880 273 0.870 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.85 3.85 3.85 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 274 0.860 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.85 3.85 3.85 0.18 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 275 0.850 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.85 3.85 3.85 0.19 0.07 0.00 0.00 0.00 0.00 2.38 0.00 0.00 0.00 0.00 276 7.33 0.10 0.07 0.00 0.00 0.00 0.00 3.85 3.85 3.85 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.840 0.91 0.00 0.00 0.00 0.00 277 0.830 7.33 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.85 3.85 3.85 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 278 7.33 0.00 0.00 3.85 3.85 3.85 0.19 0.07 2.39 0.820 0.91 0.10 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 279 7.33 0.00 0.00 0.00 3.86 3.86 3.86 0.07 2.39 0.810 0.91 0.10 0.07 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 280 0.800 7.32 0.10 0.07 0.00 0.00 0.00 0.00 3.86 3.86 3.86 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 0.91 281 0.790 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.86 3.86 3.86 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 282 0.780 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.86 3.86 3.86 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 283 0.770 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.86 3.86 3.86 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 284 0.760 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.86 3.86 3.86 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 285 0.750 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.87 3.87 3.87 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 286 0.740 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.87 3.87 3.87 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 287 0.730 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.87 3.87 3.87 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 288 0.720 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.87 3.87 3.87 0.19 0.07 0.00 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00 289 0.710 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.87 3.87 3.87 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 290 0.700 7.32 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.87 3.87 3.87 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 291 0.690 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.88 3.88 3.88 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 292 0.680 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.88 3.88 3.88 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 293 0.670 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.88 3.88 3.88 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 294 0.660 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.88 3.88 3.88 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 295 0.650 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.88 3.88 3.88 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 296 0.640 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.88 3.88 3.88 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00 3.89 2.40 297 0.630 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.89 3.89 0.19 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 298 0.620 7.31 0.91 0.10 0.07 0.00 0.00 0.00 0.00 3.89 3.89 3.89 0.19 0.07 0.00 0.00 0.00 0.00 2.40 0.00 0.00 0.00 0.00

0.19 0.07

0.00 0.00

0.00 0.00 2.40

0.00

0.00

0.00

0.00

0.00 3.89 3.89 3.89

300	0.600	7.31	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.89	3.89	3.89	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
301		7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00		3.89	3.89	0.19	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
302	0.580		0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.89	3.89	3.89	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
303	0.570	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
304	0.560	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
305	0.550	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
306	0.540	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
307	0.530	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.19	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
308	0.520	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.90	3.90	3.90	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
309	0.510	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.91	3.91	3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
310	0.500	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.91	3.91	3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
311	0.490	7.30	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.91		3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
312	0.480	7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00			3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
313	0.470		0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.91		3.91	0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
314		7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00		3.91		0.20	0.07	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
315		7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.92		3.92	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
316		7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.92	3.92	3.92	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
317		7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.92	3.92	3.92	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
318		7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.92		3.92	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
319	0.410		0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.92	3.92		0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
320	0.400		0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93		3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
321		7.29	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93	3.93	3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
322		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00			3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
323		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93		3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
324		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.93		3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
325	0.350		0.91	0.10	0.07	0.00	0.00	0.00		3.93		3.93	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
326		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94		3.94	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
327		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94	3.94	3.94	0.20	0.07	0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
328		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94	3.94	3.94	0.20	0.07	0.00	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00
329		7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94	3.94	3.94	0.20	0.07	0.00	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00
330	0.300	7.28	0.91	0.10	0.07	0.00	0.00	0.00	0.00	3.94	3.94	3.94	0.21	0.07	0.00	0.00	0.00	0.00	2.43	0.00	0.00	0.00	0.00
AVG 2	0 DEG C R	RATE	0.74	0.06	0.05	0.00	0.00	0.00	0.00	1.90			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00

* $g/m^2/d$ ** mg/L/day

ELEM ENDING TEMP SALN Chloride Conduct DO BOD#1 BOD#2 EBOD#1 EBOD#2 ORGN NH3 NO3+2 TOTN PHOS CHL A MACRO COLI NCM DIST DEG C PPT mg/L umhos/cm mg/L μg/L g/m³ #/100mL 843.69 2944.83 251 1.090 31.05 1.76 3.46 14.70 0.00 14.70 0.00 3.22 0.00 0.00 0.00 0.00 28.50 0.00 0. 0.00 1.080 31.05 1.77 846.25 2952.72 3.50 14.71 0.00 14.71 0.00 3.23 0.00 0.00 0.00 0.00 28.50 0.00 0.00 253 1.070 31.06 1.77 848.80 2960.58 3.53 14.72 0.00 14.72 0.00 3.23 0.00 0.00 0.00 0.00 28.50 0.00 0.00 1.060 31.07 1.77 851.34 2968.42 3.57 14.73 0.00 14.73 0.00 0.00 0.00 254 3.24 0.00 0.00 0.00 28.50 0.00 0.00 255 1.050 31.07 1.77 853.88 2976.24 3.60 14.74 0.00 14.74 0.00 3.24 0.00 0.00 0.00 0.00 28.50 0.00 1.040 31.08 1.78 856.42 2984.05 3.63 14.75 0.00 14.75 0.00 3.25 0.00 0.00 256 0.00 0.00 0.00 28.50 0.00 257 1.030 31.09 1.78 858.95 2991.84 3.66 14.76 0.00 14.76 0.00 3.26 0.00 0.00 0.00 0.00 28.50 0.00 0.00 0. 0.00 258 1.020 31.10 1.78 861.47 2999.60 3.69 14.77 0.00 14.77 0.00 3.26 0.00 0.00 0.00 0.00 28.50 0.00 0. 259 1.010 31.10 1.78 863.98 3007.35 3.72 14.77 0.00 14.77 0.00 3.27 0.00 0.00 0.00 0.00 28.50 0.00 0.00 0. 260 1.000 31.11 1.79 866.49 3015.08 3.75 14.78 0.00 14.78 0.00 3.28 0.00 0.00 0.00 0.00 28.50 0.00 0. 0.00 261 0.990 31.12 1.79 869.00 3022.79 3.77 14.78 0.00 14.78 0.00 3.28 0.00 0.00 0.00 0.00 28.50 0.00 0.00 0.980 31.12 1.79 871.49 3030.48 3.80 14.79 0.00 14.79 0.00 3.29 0.00 0.00 28.50 0.00 262 0.00 0.00 0.00 0.970 31.13 1.80 873.98 3038.16 3.82 14.80 0.00 14.80 3.30 0.00 28.50 0.00 263 0.00 0.00 0.00 0.00 0.00 0. 0.00 14.80 0.960 31.14 1.80 876.47 3045.81 3.85 14.80 0.00 3.30 0.00 28.50 0.00 0.00 264 0.00 0.00 0.00 0. 0.950 31.14 1.80 878.95 3053.45 0.00 14.80 0.00 3.31 0.00 3.87 14.80 0.00 0.00 0.00 0.00 28.50 0.00 265 0. 0.940 31.15 1.80 881.42 3061.07 3.89 14.81 0.00 14.81 0.00 3.31 0.00 28.50 0.00 0.00 266 0.00 0.00 0.00 0. 267 0.930 31.16 1.81 883.89 3068.67 3.91 14.81 0.00 14.81 0.00 3.32 0.00 0.00 0.00 0.00 28.50 0.00 0.00

268	0.920 31.16 1.81	886.36 3076.26	3.93 14.81	0.00 14.81	0.00 3.3	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
269	0.910 31.17 1.81	888.81 3083.83	3.95 14.81	0.00 14.81	0.00 3.3	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
270	0.900 31.18 1.82	891.26 3091.38	3.97 14.81	0.00 14.81	0.00 3.3	4 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
											0.	
271	0.890 31.18 1.82	893.71 3098.91	3.99 14.81	0.00 14.81	0.00 3.3	5 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
272					0.00 3.3							0.00
212	0.880 31.19 1.82	896.15 3106.43	4.01 14.81	0.00 14.81	0.00 3.3	5 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
273	0.870 31.20 1.82	898.59 3113.93	4.03 14.81	0.00 14.81	0.00 3.3	6 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
274	0.860 31.20 1.83	901.02 3121.41	4.05 14.81	0.00 14.81	0.00 3.3	7 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
275	0.850 31.21 1.83	903.44 3128.88	4.06 14.81	0.00 14.81	0.00 3.3	8 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
276	0.840 31.22 1.83	905.86 3136.33	4.08 14.81	0.00 14.81	0.00 3.3	8 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
277	0.830 31.23 1.83	908.27 3143.76	4.10 14.81	0.00 14.81	0.00 3.3	9 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
278	0.820 31.23 1.84	910.68 3151.18	4.11 14.80	0.00 14.80	0.00 3.4	0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
279	0.810 31.24 1.84	913.09 3158.58	4.13 14.80	0.00 14.80	0.00 3.4	0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
280	0.800 31.25 1.84	915.48 3165.97	4.15 14.80	0.00 14.80	0.00 3.4	1 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
281	0.790 31.25 1.85	917.88 3173.34	4.16 14.79	0.00 14.79	0.00 3.4	2 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
282	0.780 31.26 1.85	920.26 3180.69	4.18 14.79	0.00 14.79	0.00 3.4	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
283	0.770 31.27 1.85	922.65 3188.03	4.20 14.78	0.00 14.78	0.00 3.4	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
284	0.760 31.27 1.85	925.02 3195.35	4.21 14.78	0.00 14.78	0.00 3.4	4 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
285	0.750 31.28 1.86	927.40 3202.66	4.23 14.77	0.00 14.77	0.00 3.4	5 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
286	0.740 31.29 1.86	929.76 3209.95	4.25 14.77	0.00 14.77	0.00 3.4	6 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
287	0.730 31.29 1.86	932.13 3217.22	4.26 14.76	0.00 14.76	0.00 3.4	7 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
288	0.720 31.30 1.86	934.48 3224.48	4.28 14.75	0.00 14.75	0.00 3.4	7 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
289	0.710 31.31 1.87	936.84 3231.73	4.30 14.74	0.00 14.74	0.00 3.4	8 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
290	0.700 31.32 1.87	939.19 3238.96	4.31 14.73	0.00 14.73	0.00 3.4	9 0.00	0.00 0.	.00 0.00		0.00	0.	0.00
291	0.690 31.32 1.87	941.53 3246.18	4.33 14.73	0.00 14.73	0.00 3.5	0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
292											0.	
		943.87 3253.38		0.00 14.72	0.00 3.5			.00 0.00		0.00		0.00
293	0.670 31.34 1.88	946.20 3260.56	4.37 14.71	0.00 14.71	0.00 3.5	2 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
294	0.660 31.34 1.88	948.53 3267.74	4.39 14.70	0.00 14.70	0.00 3.5	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
295	0.650 31.35 1.88	950.85 3274.89	4.41 14.69	0.00 14.69	0.00 3.5	4 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
296	0.640 31.36 1.89	953.17 3282.04	4.42 14.68	0.00 14.68	0.00 3.5	5 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
297	0.630 31.36 1.89	955.49 3289.16	4.44 14.66	0.00 14.66	0.00 3.5	6 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
298	0.620 31.37 1.89	957.80 3296.28	4.46 14.65	0.00 14.65	0.00 3.5	7 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
299	0.610 31.38 1.89	960.10 3303.38	4.48 14.64	0.00 14.64	0.00 3.5	8 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
300	0.600 31.38 1.90	962.40 3310.46	4.51 14.63	0.00 14.63	0.00 3.5	9 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
301	0.590 31.39 1.90	964.70 3317.54	4.53 14.61	0.00 14.61	0.00 3.6	0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
302	0.580 31.40 1.90	966.99 3324.59	4.55 14.60	0.00 14.60	0.00 3.6	1 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
303	0.570 31.40 1.91	969.28 3331.64	4.57 14.59	0.00 14.59	0.00 3.6	2 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
304	0.560 31.41 1.91	971.56 3338.67	4.60 14.57	0.00 14.57	0.00 3.6	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
305	0.550 31.42 1.91	973.84 3345.69	4.62 14.56	0.00 14.56	0.00 3.6	4 0.00	0.00 0.	.00 0.00		0.00	0.	0.00
306	0.540 31.43 1.91	976.12 3352.69	4.64 14.54	0.00 14.54	0.00 3.6	5 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
307	0.530 31.43 1.92	978.39 3359.68	4.67 14.53	0.00 14.53	0.00 3.6			.00 0.00		0.00	0.	0.00
308	0.520 31.44 1.92	980.65 3366.66	4.70 14.51	0.00 14.51	0.00 3.6	8 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
309	0.510 31.45 1.92	982.91 3373.62	4.72 14.49	0.00 14.49	0.00 3.6	9 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
310	0.500 31.45 1.93	985.17 3380.57	4.75 14.48	0.00 14.48	0.00 3.7	0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
311	0.490 31.46 1.93	987.42 3387.51	4.78 14.46	0.00 14.46	0.00 3.7	2 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
312	0.480 31.47 1.93	989.67 3394.43	4.81 14.44	0.00 14.44	0.00 3.7	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
313	0.470 31.47 1.93	991.91 3401.34	4.84 14.42	0.00 14.42	0.00 3.7	4 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
314	0.460 31.48 1.94	994.15 3408.24	4.88 14.40	0.00 14.40	0.00 3.7	6 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
315	0.450 31.49 1.94	996.39 3415.12	4.91 14.38	0.00 14.38	0.00 3.7	7 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
316	0.440 31.49 1.94	998.62 3422.00	4.94 14.36	0.00 14.36	0.00 3.7	8 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
317	0.430 31.50 1.94	1000.85 3428.86	4.98 14.34	0.00 14.34	0.00 3.8	0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
318	0.420 31.51 1.95	1003.07 3435.70	5.02 14.32	0.00 14.32	0.00 3.8			.00 0.00		0.00	0.	0.00
319	0.410 31.51 1.95	1005.29 3442.54	5.05 14.30	0.00 14.30	0.00 3.8	3 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
320	0.400 31.52 1.95	1007.51 3449.36	5.09 14.28	0.00 14.28	0.00 3.8			.00 0.00		0.00	0.	0.00
321	0.390 31.53 1.96	1009.72 3456.17	5.13 14.26	0.00 14.26	0.00 3.8	6 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
322	0.380 31.53 1.96	1011.93 3462.97	5.18 14.24	0.00 14.24	0.00 3.8			.00 0.00		0.00	0.	0.00
323	0.370 31.54 1.96	1014.13 3469.76	5.22 14.21	0.00 14.21	0.00 3.8	9 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
324	0.360 31.55 1.96	1016.33 3476.53	5.27 14.19	0.00 14.19	0.00 3.9			.00 0.00		0.00	0.	0.00
325	0.350 31.56 1.97	1018.53 3483.30	5.31 14.17	0.00 14.17	0.00 3.9	2 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
326	0.340 31.56 1.97	1020.72 3490.05	5.36 14.14	0.00 14.14	0.00 3.9	4 0.00	0.00 0.	.00 0.00	28.50	0.00	0.	0.00
020	1.010 01.00 1.07		0.00 11.11	0.00 11.14	0.00 0.0	- 0.00	0.00		20.00	0.00	٠.	0.00

327	0.330	31.57	1.97	1022.91	3496.79	5.41	14.12	0.00	14.12	0.00	3.96	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
328	0.320	31.58	1.97	1025.09	3503.51	5.47	14.09	0.00	14.09	0.00	3.98	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
329	0.310	31.58	1.98	1027.27	3510.23	5.52	14.07	0.00	14.07	0.00	4.00	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
330	0.300	31.59	1.98	1029.45	3516.93	5.58	14.04	0.00	14.04	0.00	4.01	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

FINAL REPORT HEADWATER BAYOU CANE WATERSHED MODEL REACH NO. 6 RKM 0.3 to 0.0 BAYOU CANE FINAL CALIBRATION RUN

*******	*****	*****	*****	*****	*****	REACH I	NPUTS *	*****	******	*****	*****	*****	*****	*****	*****	**	
ELEM TYPE	FLOW	TEMP deg C	SALN ppt		Conduct umhos/cm												NCM

****	*****	*****	*****	****	*****	*** HYDRA	JLIC PAR	AMETER V	ALUES ****	*****	*****	*****	*****	*****	k
ELEM NO.	BEGIN DIST	ENDING DIST	FLOW	PCT EFF	ADVCTV VELO	TRAVEL TIME	DEPTH	WIDTH	VOLUME	SURFACE AREA	X-SECT AREA	TIDAL PRISM	TIDAL VELO	DISPRSN	MEAN VELO
110.	km	km	m³/s	211	m/s	days	m	m	m³	m²	m ²	m³	m/s	m²/s	m/s
331	0.30	0.29	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13100.29	0.013	0.876	0.013
332	0.29	0.28	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13147.04	0.013	0.879	0.013
333	0.28	0.27	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13193.80	0.013	0.882	0.013
334	0.27	0.26	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13240.56	0.013	0.885	0.013
335	0.26	0.25	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13287.31	0.013	0.889	0.013
336	0.25	0.24	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13334.07	0.013	0.892	0.013
337	0.24	0.23	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13380.82	0.013	0.895	0.013
338	0.23	0.22	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13427.58	0.013	0.898	0.013
339	0.22	0.21	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13474.33	0.013	0.901	0.013
340	0.21	0.20	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13521.09	0.013	0.904	0.013
341	0.20	0.19	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13567.85	0.013	0.907	0.013
342	0.19	0.18	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13614.60	0.013	0.910	0.013
343	0.18	0.17	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13661.36	0.013	0.914	0.013
344	0.17	0.16	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13708.11	0.014	0.917	0.014
345	0.16	0.15	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13754.87	0.014	0.920	0.014
346	0.15	0.14	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13801.63	0.014	0.923	0.014
347	0.14	0.13	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13848.38	0.014	0.926	0.014
348	0.13	0.12	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13895.14	0.014	0.929	0.014
349	0.12	0.11	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13941.89	0.014	0.932	0.014
350	0.11	0.10	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	13988.65	0.014	0.935	0.014
351	0.10	0.09	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14035.41	0.014	0.939	0.014
352	0.09	0.08	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14082.16	0.014	0.942	0.014
353	0.08	0.07	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14128.92	0.014	0.945	0.014
354	0.07	0.06	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14175.67	0.014	0.948	0.014
355	0.06	0.05	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14222.43	0.014	0.951	0.014
356	0.05	0.04	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14269.18	0.014	0.954	0.014
357	0.04	0.03	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14315.94	0.014	0.957	0.014
358	0.03	0.02	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12		14362.70	0.014	0.960	0.014
359	0.02	0.01	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12		14409.45	0.014	0.964	0.014
360	0.01	0.00	0.00450	82.2	0.00020	0.59	1.16	19.81	229.03	198.12	22.90	14456.21	0.014	0.967	0.014
TOT						17.67			6870.80	5943.60					
AVG					0.0002		1.16	19.81			22.90				
CUM						196.83									

***	*****	*****	*****	*****	****	*****	BIOLOGI	CAL AN	ID PHYSI	CAL CO	EFFICI	ENTS *	*****	****	*****	*****	*****	****	****	*			
ELEM	ENDING	SAT	REAER	BOD#1	BOD#1	ABOD#1	BOD#2	BOD#2	ABOD#2	BKGD	FULL	CORR	ORGN	ORGN	NH3	NH3	DENIT	PO4	ALG	MAC	COLI	NCM	NCM
NO.	DIST	D.O.	RATE	DECAY	SETT	DECAY	DECAY	SETT	DECAY	SOD	SOD	SOD	DECAY	SETT	DECAY	SRCE	RATE	SRCE	PROD	PROD	DECAY	DECAY	SETT
		mg/L	1/da	1/da	1/da	1/da	1/da	1/da	1/da	*	*	*	1/da	1/da	1/da	*	1/da	*	**	**	1/da	1/da	1/da
331	0.290		0.95		0.07	0.00	0.00	0.00	0.00		0.00	0.00		0.07	0.00	0.00	0.00		2.43	0.00	0.00	0.00	0.00
332	0.280		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
333	0.270		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
334	0.260		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
335	0.250		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00		2.42	0.00	0.00	0.00	0.00
336	0.240		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
337	0.230		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.42	0.00	0.00	0.00	0.00
338	0.220 0.210		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00		2.41	0.00	0.00	0.00	0.00
339 340	0.210		0.95 0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
341	0.200		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00		2.41	0.00	0.00	0.00	0.00
341	0.190		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
343	0.170		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
344	0.160		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00
345	0.150		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
346	0.140		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
347	0.130		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
348	0.120		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
349	0.110		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
350	0.100	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.40	0.00	0.00	0.00	0.00
351	0.090	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
352	0.080	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
353	0.070	7.31	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
354	0.060	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
355	0.050		0.95		0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
356	0.040	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
357	0.030	7.32	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.39	0.00	0.00	0.00	0.00
358	0.020		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21		0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
359	0.010		0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
360	0.000	7.33	0.95	0.10	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.07	0.00	0.00	0.00	0.00	2.38	0.00	0.00	0.00	0.00
AVG	20 DEG C	RATE	0.77	0.06	0.05	0.00	0.00	0.00	0.00	0.00			0.10	0.05	0.00	0.00	0.00	0.00			0.00	0.00	0.00
*	g/m²/d		**	mg/L/da	ıУ																		
****	******	*****	******	*****	*****	*****	* אוא ייים	011711	TV CONC	חד חווב א	ייי זיאדוו	IDC ***	*****	*****	*****	*****	*****	*****	*****	*			
							MWIFL	, Anuti	.11 CONS	TITOTN	ı valu	CE											

							~ -												
ELEM NO.	ENDING DIST	TEMP DEG C			Conduct umhos/cm	DO mg/L		BOD#2 mg/L		EBOD#2 mg/L	ORGN mg/L		NO3+2 mg/L	TOTN mg/L	PHOS mg/L	CHL A µg/L	MACRO g/m³	COLI #/100mL	NCM
331	0.290	31.58	1.98	1031.67	3523.75	5.64	14.01	0.00	14.01	0.00	4.03	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
332	0.280	31.56	1.98	1033.92	3530.70	5.69	13.98	0.00	13.98	0.00	4.05	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
333	0.270	31.55	1.99	1036.17	3537.63	5.75	13.94	0.00	13.94	0.00	4.06	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
334	0.260	31.54	1.99	1038.42	3544.56	5.80	13.90	0.00	13.90	0.00	4.07	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
335	0.250	31.52	1.99	1040.67	3551.48	5.86	13.85	0.00	13.85	0.00	4.08	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
336	0.240	31.51	1.99	1042.91	3558.38	5.91	13.79	0.00	13.79	0.00	4.08	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
337	0.230	31.49	1.99	1045.15	3565.28	5.95	13.73	0.00	13.73	0.00	4.07	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
338	0.220	31.48	1.99	1047.39	3572.17	6.00	13.66	0.00	13.66	0.00	4.07	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
339	0.210	31.47	2.00	1049.63	3579.06	6.04	13.59	0.00	13.59	0.00	4.05	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
340	0.200	31.45	2.00	1051.86	3585.93	6.09	13.51	0.00	13.51	0.00	4.04	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
341	0.190	31.44	2.00	1054.09	3592.79	6.13	13.42	0.00	13.42	0.00	4.02	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

342	0.180	31.43	2.00	1056.31	3599.65	6.17	13.33	0.00	13.33	0.00	4.00	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
343	0.170	31.41	2.00	1058.54	3606.50	6.20	13.23	0.00	13.23	0.00	3.97	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
344	0.160	31.40	2.00	1060.76	3613.33	6.24	13.13	0.00	13.13	0.00	3.94	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
345	0.150	31.39	2.01	1062.97	3620.16	6.27	13.02	0.00	13.02	0.00	3.91	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
346	0.140	31.37	2.01	1065.19	3626.98	6.31	12.91	0.00	12.91	0.00	3.87	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
347	0.130	31.36	2.01	1067.40	3633.80	6.34	12.79	0.00	12.79	0.00	3.83	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
348	0.120	31.34	2.01	1069.61	3640.60	6.37	12.67	0.00	12.67	0.00	3.79	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
349	0.110	31.33	2.01	1071.82	3647.40	6.40	12.54	0.00	12.54	0.00	3.74	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
350	0.100	31.32	2.01	1074.02	3654.18	6.42	12.40	0.00	12.40	0.00	3.68	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
351	0.090	31.30	2.01	1076.22	3660.96	6.45	12.26	0.00	12.26	0.00	3.63	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
352	0.080	31.29	2.02	1078.42	3667.73	6.47	12.11	0.00	12.11	0.00	3.57	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
353	0.070	31.28	2.02	1080.62	3674.49	6.49	11.96	0.00	11.96	0.00	3.51	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
354	0.060	31.26	2.02	1082.81	3681.24	6.51	11.80	0.00	11.80	0.00	3.44	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
355	0.050	31.25	2.02	1085.00	3687.99	6.53	11.63	0.00	11.63	0.00	3.37	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
356	0.040	31.23	2.02	1087.19	3694.72	6.55	11.46	0.00	11.46	0.00	3.29	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
357	0.030	31.22	2.03	1089.37	3701.45	6.57	11.29	0.00	11.29	0.00	3.21	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
358	0.020	31.21	2.03	1091.55	3708.17	6.58	11.11	0.00	11.11	0.00	3.13	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
359	0.010	31.19	2.03	1093.73	3714.88	6.59	10.92	0.00	10.92	0.00	3.05	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00
360	0.000	31.18	2.03	1095.91	3721.59	6.61	10.73	0.00	10.73	0.00	2.96	0.00	0.00	0.00	0.00	28.50	0.00	0.	0.00

STREAM SUMMARY HEADWATER

BAYOU CANE WATERSHED MODEL BAYOU CANE FINAL CALIBRATION RUN

TRAVEL TIME	=	196.83	B DAYS	
MAXIMUM EFFLUENT	=	82.22	PERCENT	
FLOW DISPERSION VELOCITY DEPTH WIDTH	= = = =	0.00080 TO 0.0097 TO 0.00014 TO 1.02 TO 4.88 TO	0.00450 0.9667 0.00083 1.21 28.35	m3/s m2/s m/s m
BOD DECAY NH3 DECAY SOD NH3 SOURCE REAERATION BOD SETTLING NBOD DECAY NBOD SETTLING	= = = = = = = = = = = = = = = = = = = =	0.03 TO 0.00 TO 0.00 TO 0.00 TO 0.71 TO 0.06 TO 0.00 TO 0.00 TO	0.11 0.00 6.56 0.00 0.95 0.07 0.28 0.07	per day per day g/m²/d g/m²/d per day per day per day per day
TEMPERATURE DISSOLVED OXYGEN	= =	28.14 TO 0.83 TO	31.59 6.61	deg C mg/L

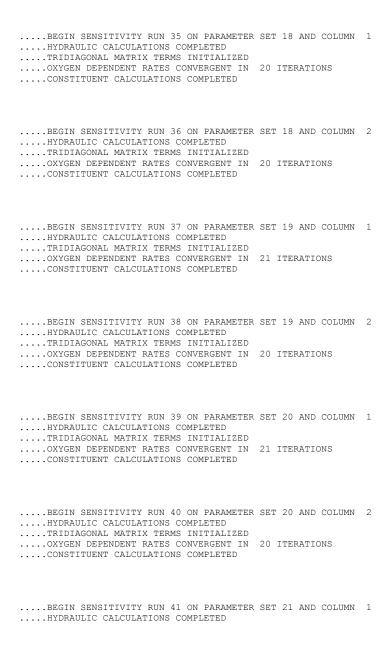
.....BEGIN SENSITIVITY RUN 1 ON PARAMETER SET 1 AND COLUMN 1HYDRAULIC CALCULATIONS COMPLETED

.....TRIDIAGONAL MATRIX TERMS INITIALIZED

.....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS

.....CONSTITUENT CALCULATIONS COMPLETED

....BEGIN SENSITIVITY RUN 2 ON PARAMETER SET 1 AND COLUMN 2


HYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	21 ITERATIONS
BEGIN SENSITIVITY RUN 3 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 4 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 5 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 6 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 7 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 8 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	

```
....BEGIN SENSITIVITY RUN 9 ON PARAMETER SET 5 AND COLUMN 1
   .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 21 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   ....BEGIN SENSITIVITY RUN 10 ON PARAMETER SET 5 AND COLUMN 2
   .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 19 ITERATIONS
   ....CONSTITUENT CALCULATIONS COMPLETED
***** WARNING: NEGATIVE CONCENTRATIONS SET TO ZERO FOR Dissolved Oxygen
   ....BEGIN SENSITIVITY RUN 11 ON PARAMETER SET 6 AND COLUMN 1
   .....HYDRAULIC CALCULATIONS COMPLETED
   ....TRIDIAGONAL MATRIX TERMS INITIALIZED
   .....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS
    ....CONSTITUENT CALCULATIONS COMPLETED
   ....BEGIN SENSITIVITY RUN 12 ON PARAMETER SET 6 AND COLUMN 2
   .....HYDRAULIC CALCULATIONS COMPLETED
   ....TRIDIAGONAL MATRIX TERMS INITIALIZED
    .....OXYGEN DEPENDENT RATES CONVERGENT IN 21 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   ....BEGIN SENSITIVITY RUN 13 ON PARAMETER SET 7 AND COLUMN 1
   .....HYDRAULIC CALCULATIONS COMPLETED
   ....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   ....BEGIN SENSITIVITY RUN 14 ON PARAMETER SET 7 AND COLUMN 2
    .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
    ....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS
    .....CONSTITUENT CALCULATIONS COMPLETED
    ....BEGIN SENSITIVITY RUN 15 ON PARAMETER SET 8 AND COLUMN 1
```

```
.....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   .....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   .....BEGIN SENSITIVITY RUN 16 ON PARAMETER SET 8 AND COLUMN 2
   .....HYDRAULIC CALCULATIONS COMPLETED
   ....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 21 ITERATIONS
   ....CONSTITUENT CALCULATIONS COMPLETED
   .....BEGIN SENSITIVITY RUN 17 ON PARAMETER SET 9 AND COLUMN 1
   .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 37 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   .....BEGIN SENSITIVITY RUN 18 ON PARAMETER SET 9 AND COLUMN 2
   .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 18 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   .....BEGIN SENSITIVITY RUN 19 ON PARAMETER SET 10 AND COLUMN 1
   .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   ....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   ....BEGIN SENSITIVITY RUN 20 ON PARAMETER SET 10 AND COLUMN 2
   .....HYDRAULIC CALCULATIONS COMPLETED
   .....TRIDIAGONAL MATRIX TERMS INITIALIZED
   .....OXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONS
   .....CONSTITUENT CALCULATIONS COMPLETED
   .....BEGIN SENSITIVITY RUN 21 ON PARAMETER SET 11 AND COLUMN 1
   .....HYDRAULIC CALCULATIONS COMPLETED
   ....TRIDIAGONAL MATRIX TERMS INITIALIZED
   .....OXYGEN DEPENDENT RATES CONVERGENT IN 19 ITERATIONS
   ....CONSTITUENT CALCULATIONS COMPLETED
***** WARNING: NEGATIVE CONCENTRATIONS SET TO ZERO FOR Dissolved Oxygen
```

BEGIN SENSITIVITY RUN 22 ON PARAMETER SET 11 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 21 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	2
BEGIN SENSITIVITY RUN 23 ON PARAMETER SET 12 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 32 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	1
BEGIN SENSITIVITY RUN 24 ON PARAMETER SET 12 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	2
BEGIN SENSITIVITY RUN 25 ON PARAMETER SET 13 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	1
BEGIN SENSITIVITY RUN 26 ON PARAMETER SET 13 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	2
BEGIN SENSITIVITY RUN 27 ON PARAMETER SET 14 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 21 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	1
BEGIN SENSITIVITY RUN 28 ON PARAMETER SET 14 AND COLUMN	2

HYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	20 ITERATIONS	
BEGIN SENSITIVITY RUN 29 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED		1
BEGIN SENSITIVITY RUN 30 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED		2
BEGIN SENSITIVITY RUN 31 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED		1
BEGIN SENSITIVITY RUN 32 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED		2
BEGIN SENSITIVITY RUN 33 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED		1
BEGIN SENSITIVITY RUN 34 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED		2

TRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	20 ITERATIONS
BEGIN SENSITIVITY RUN 42 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 43 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 44 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 45 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 46 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 47 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	

BEGIN SENSITIVITY RUN 48 ON PARAMETER SET 24 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	2
BEGIN SENSITIVITY RUN 49 ON PARAMETER SET 25 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	1
BEGIN SENSITIVITY RUN 50 ON PARAMETER SET 25 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	2
BEGIN SENSITIVITY RUN 51 ON PARAMETER SET 26 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	1
BEGIN SENSITIVITY RUN 52 ON PARAMETER SET 26 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	2
BEGIN SENSITIVITY RUN 53 ON PARAMETER SET 27 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT IN 20 ITERATIONSCONSTITUENT CALCULATIONS COMPLETED	1
BEGIN SENSITIVITY RUN 54 ON PARAMETER SET 27 AND COLUMNHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZED	2

....EXECUTION COMPLETED

OXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	20 ITERATIONS
BEGIN SENSITIVITY RUN 55 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 56 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 57 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	
BEGIN SENSITIVITY RUN 58 ON PARAMETERHYDRAULIC CALCULATIONS COMPLETEDTRIDIAGONAL MATRIX TERMS INITIALIZEDOXYGEN DEPENDENT RATES CONVERGENT INCONSTITUENT CALCULATIONS COMPLETED	